首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
 There is strong evidence indicating that gene flow from transgenic B. napus into weedy wild relatives is inevitable following commercial release. Research should now focus on the transmission, stability, and impact of transgene expression after the initial hybridization event. The present study investigated the transfer of a phosphinothricin-tolerance transgene by inter-specific hybridization between B. rapa and two transgenic B. napus lines. The expression of the transgene was monitored in the F1 hybrids and in subsequent backcross generations. The transgene was transmitted relatively easily into the F1 hybrids and retained activity. Large differences in the transmission frequency of the transgene were noted between offspring of the two transgenic lines during backcrossing. The most plausible explanation of these results is that the line showing least transmission during backcrossing contains a transgene integrated into a C-genome chromosome. Approximately 10% of offspring retained the tolerant trait in the BC3 and BC4 generations. The implications of these findings for the stable introgression of transgenes carried on one of the chromosomes of the C-genome from B. napus and into B. rapa are briefly discussed. Received: 5 November 1996 / Accepted: 21 February 1997  相似文献   

2.
This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (AnAnCnCn) and a new type of B. napus with introgressions of genomic components of Brassica rapa (ArAr). This B. napus was selected from the progeny of B. napus × B. rapa and (B. napus × B. rapa) × B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F3 or BC1F3 to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC1F5 and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC1F5 and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.  相似文献   

3.
The level of transgene expression in crop × weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T1 single-locus insert GFP/Bacillus thuringiensis (Bt) transgenic canola (Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC1F1, BC2F1) were produced by backcrossing various GFP/Bt transgenic canola (B. napus, cv Westar) and birdseed rape (Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC2F2 Bulk) were generated by crossing BC2F1 individuals in the presence of a pollinating insect (Musca domestica L.). The ploidy of plants in the BC2F2 Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F1 hybrid generations contained 95–97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15–29% presence in the BC2F2 Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC2F2 Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid generations (F1, BC1F1 and BC2F1). These data demonstrate that the formation of homozygous individuals within hybrid populations increases the average level of transgene expression as generations progress. This phenomenon must be considered in the development of risk-management strategies.Communicated by J. Dvorak  相似文献   

4.
Intergeneric somatic hybridization between Brassica napus and Raphanus sativus was carried out to enrich gene pool of B. napus. Twelve somatic hybrids were produced via PEG-mediated protoplast fusion between B. napus and R. sativus. The hybridity was confirmed by morphological observation and molecular marker analysis. Hybrid progenies (BC1) were obtained via backcrosses with B. napus. Behaviour of R. sativus chromosomes in a B. napus background in the F1 and BC1 plants was revealed by genomic in situ hybridization (GISH). The potential of somatic hybridization to enrich the suitable gene pool for rapeseed breeding is discussed.  相似文献   

5.
We have examined the inheritance of 20 rapeseed (Brassica napus)-specific RAPD (randomly amplified polymorphic DNA) markers from transgenic, herbicide-tolerant rapeseed in 54 plants of the BC1 generation from the cross B. junceax(B. junceaxB. napus). Hybridization between B. juncea and B. napus, with B. juncea as the female parent, was successful both in controlled crosses and spontaneously in the field. The controlled backcrossing of selected hybrids to B. juncea, again with B. juncea as the female parent, also resulted in many seeds. The BC1 plants contained from 0 to 20 of the rapeseed RAPD markers, and the frequency of inheritance of individual RAPD markers ranged from 19% to 93%. The transgene was found in 52% of the plants analyzed. Five synteny groups of RAPD markers were identified. In the hybrids pollen fertility was 0–28%. The hybrids with the highest pollen fertility were selected as male parents for backcrossing, and pollen fertility in the BC1 plants was improved (24–90%) compared to that of the hybrids.  相似文献   

6.
Summary Sexual and somatic hybrid plants have been produced between Sinapis alba L. (white mustard) and Brassica napus L. (oil-seed rape), with the aim to transfer resistance to the beet cyst nematode Heterodera schachtii Schm. (BCN) from white mustard into the oil-seed rape gene pool. Only crosses between diploid accessions of S. alba (2n = 24, Sa1Sa1) as the pistillate parent and several B. napus accessions (2n = 38, AACC) yielded hybrid plants with 31 chromosomes. Crosses between tetraploid accessions of S. alba (2n = 48, Sa1Sa1Sa1Sa1) and B. napus were unsuccessful. Somatic hybrid plants were also obtained between a diploid accession of S. alba and B. napus. These hybrids were mitotically unstable, the number of chromosomes ranging from 56 to more than 90. Analysis of total DNA using a pea rDNA probe confirmed the hybrid nature of the sexual hybrids, whereas for the somatic hybrids a pattern identical to that of B. napus was obtained. Using chloroplast (cp) and mitochondrial (mt) DNA sequences, we found that all of the sexual F1 hybrids and somatic hybrids contained cpDNA and mtDNA of the S. alba parent. No recombinant mtDNA or cpDNA pattern was observed. Three BC1 plants were obtained when sexual hybrids were back-crossed with B. napus. Backcrossing of somatic hybrids with B. napus was not successful. Three sexual hybrids and one BC1 plant, the latter obtained from a cross between a sexual hybrid and B. napus, were found to show a high level of BCN resistance. The level of BCN resistance of the somatic hybrids was in general high, but varied between cuttings from the same plant. Results from cytological studies of chromosome association at meiotic metaphase I in the sexual hybrids suggest partial homology between chromosomes of the AC and Sa1 genomes and thus their potential for gene exchange.  相似文献   

7.
Controlled reciprocal crosses between B. rapa and F1-hybrids (B. napus (♀) × B. rapa), giving 20 pair-crossings, were made to reveal possible irregularities in chloroplast inheritance during production of BC1s. Despite the close relationship of chloroplasts in B. rapa and B. napus, development of PCR-based molecular markers specific to B. rapa chloroplasts and B. napus chloroplasts was successful. Offspring from each cross were investigated and among these, we found no irregular chloroplast inheritance, since their plastid genotypes in all cases were identical to that of their mother. With a certainty of 95% our data indicate that the probability that chloroplasts are being inherited paternally is less than 0.015. In oilseed rape, pollen-mediated transgene-dispersal poses a well-known risk. Our results support development of transplastomic oilseed rape as an approach to reduce transgene dispersal.  相似文献   

8.
A major QTL for resistance to Gibberella stalk rot in maize   总被引:1,自引:0,他引:1  
Fusarium graminearum Schwabe, the conidial form of Gibberella zeae, is the causal fungal pathogen responsible for Gibberella stalk rot of maize. Using a BC1F1 backcross mapping population derived from a cross between ‘1145’ (donor parent, completely resistant) and ‘Y331’ (recurrent parent, highly susceptible), two quantitative trait loci (QTLs), qRfg1 and qRfg2, conferring resistance to Gibberella stalk rot have been detected. The major QTL qRfg1 was further confirmed in the double haploid, F2, BC2F1, and BC3F1 populations. Within a qRfg1 confidence interval, single/low-copy bacterial artificial chromosome sequences, anchored expressed sequence tags, and insertion/deletion polymorphisms, were exploited to develop 59 markers to saturate the qRfg1 region. A step by step narrowing-down strategy was adopted to pursue fine mapping of the qRfg1 locus. Recombinants within the qRfg1 region, screened from each backcross generation, were backcrossed to ‘Y331’ to produce the next backcross progenies. These progenies were individually genotyped and evaluated for resistance to Gibberella stalk rot. Significant (or no significant) difference in resistance reactions between homozygous and heterozygous genotypes in backcross progeny suggested presence (or absence) of qRfg1 in ‘1145’ donor fragments. The phenotypes were compared to sizes of donor fragments among recombinants to delimit the qRfg1 region. Sequential fine mapping of BC4F1 to BC6F1 generations enabled us to progressively refine the qRfg1 locus to a ~500-kb interval flanked by the markers SSR334 and SSR58. Meanwhile, resistance of qRfg1 to Gibberella stalk rot was also investigated in BC3F1 to BC6F1 generations. Once introgressed into the ‘Y331’ genome, the qRfg1 locus could steadily enhance the frequency of resistant plants by 32–43%. Hence, the qRfg1 locus was capable of improving maize resistance to Gibberella stalk rot.  相似文献   

9.
Zhao ZG  Hu TT  Ge XH  Du XZ  Ding L  Li ZY 《Plant cell reports》2008,27(10):1611-1621
Alien chromosome addition lines have been widely used for identifying gene linkage groups, assigning species-specific characters to a particular chromosome and comparing gene synteny between related species. In plant breeding, their utilization lies in introgressing characters of agronomic value. The present investigation reports the production of intergeneric somatic hybrids Brassica napus (2= 38) + Orychophragmus violaceus (2= 24) through asymmetric fusions of mesophyll protoplasts and subsequent development of B. napus-O. violaceous chromosome addition lines. Somatic hybrids showed variations in morphology and fertility and were mixoploids (2= 51–67) with a range of 19–28 O. violaceus chromosomes identified by genomic in situ hybridization (GISH). After pollinated with B. napus parent and following embryo rescue, 20 BC1 plants were obtained from one hybrid. These exhibited typical serrated leaves of O. violaceus or B. napus-type leaves. All BC1 plants were partially male fertile but female sterile because of abnormal ovules. These were mixoploids (2= 41–54) with 9–16 chromosomes from O. violaceus. BC2 plants showed segregations for female fertility, leaf shape and still some chromosome variation (2= 39–43) with 2–5 O. violaceus chromosomes, but mainly containing the whole complement from B. napus. Among the selfed progenies of BC2 plants, monosomic addition lines (2= 39, AACC + 1O) with or without the serrated leaves of O. violaceus or female sterility were established. The complete set of additions is expected from this investigation. In addition, O. violaceus plants at diploid and tetraploid levels with some variations in morphology and chromosome numbers were regenerated from the pretreated protoplasts by iodoacetate and UV-irradiation. Z. Zhao and T. Hu make equal contributions to this work.  相似文献   

10.
Summary Oryza minuta J. S. Presl ex C. B. Presl is a tetraploid wild rice with resistance to several insects and diseases, including blast (caused by Pyricularia grisea) and bacterial blight (caused by Xanthomonas oryzae pv. oryzae). To transfer resistance from the wild species into the genome of cultivated rice (Oryza sativa L.), backcross progeny (BC1, BC2, and BC3) were produced from interspecific hybrids of O. sativa cv IR31917-45-3-2 (2n=24, AA genome) and O. minuta Acc. 101141 (2n=48, BBCC genomes) by backcrossing to the O. sativa parent followed by embryo rescue. The chromosome numbers ranged from 44 to 47 in the BC1 progeny and from 24 to 37 in the BC2 progeny. All F1 hybrids were resistant to both blast and bacterial blight. One BC1 plant was moderately susceptible to blast while the rest were resistant. Thirteen of the 16 BC2 progeny tested were resistant to blast; 1 blast-resistant BC2, plant 75-1, had 24 chromosomes. A 3 resistant: 1 susceptible segregation ratio, consistent with the action of a major, dominant gene, was observed in the BC2F2 and BC2F3 generations. Five of the BC1 plants tested were resistant to bacterial blight. Ten of the 21 BC2 progeny tested were resistant to Philippine races 2, 3, and 6 of the bacterial blight pathogen. One resistant BC2, plant 78-1, had 24 chromosomes. The segregation of reactions of the BC2F2, BC2F3, and BC2F4 progenies of plant 78-1 suggested that the same or closely linked gene(s) conferred resistance to races 2, 3, 5, and 6 of the bacterial blight pathogen from the Philippines.  相似文献   

11.
The two-spotted spider mite (Tetranychus urticae Koch) is an important pest of tomato (Lycopersicon esculentum Mill.) crops in temperate regions as this spider mite has a very large capacity for population increase and causes severe tomato yield losses. There is no described tomato cultivar fully resistant to this pest, although resistant accessions have been reported within the green-fruited tomato wild species L. pennellii (Corr.) D’Arcy and L. hirsutum Humb. & Bonpl. We observed a L. pimpinellifolium (Jusl.) Mill. accession, ‘TO-937’, which seemed to be completely resistant to mite attacks and we crossed it with the susceptible L. esculentum cultivar. ‘Moneymaker’ to obtain a family of generations consisting of the two parents, the F1, the F2, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium. This family was evaluated for mite resistance in a polyethylene greenhouse using an experimental design in 60 small complete blocks distributed along 12 double rows. Each block consisted of five F2 plants in one row and one plant of each of the two parents, the F1, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium in the adjacent row. Plants at the 10–15 leaf stage were artificially infested by putting on them two pieces of French bean leaf heavily infested with T. urticae. After two months, evaluations of infestation were made by visual observation of mite nets and leaf damage. Plants that were free of signs of mite reproduction on the top half were considered as resistant, plants with silky nets only on their basal leaves, intermediate, and plants with mite reproduction on both basal and top canopies were scored as susceptible. Dominance for resistance appeared because all the ‘To-937’, BC1 to L. pimpinellifolium, and F1 plants were resistant. Not all ‘Moneymaker’ plants behaved as susceptible because 35% of plants were intermediate. In the BC1 to L. pimpinellifolium and the F2, most plants were scored as resistant, only 7 % BC1 and 3 % F2 plants were intermediate, and a single F2 plant (0.3 %) was susceptible. With these figures, resistance seemed to be controlled by either four or two genes according to whether segregation in the BC1 or in the F2, respectively, were considered. These results could in part be explained because of appearance of negative interplot interference due to the high frequency of resistant genotypes within most of the generations. Therefore, the family was evaluated again but using a different experimental design. In the new experiment, 16 ‘TO-937’, 17 ‘Moneymaker’, 17 F1, 37 BC1 to L. pimpinellifolium, 38 BC1 to L. esculentum, and 125 F2 plants were included. Each of these test plants was grown besides a susceptible ‘Moneymaker’ auxilliary plant that served to keep mite population high and homogeneous in the greenhouse. Negative interplot interference was avoided with this design and all the ‘TO-937’, F1, and BC1 to L. pimpinellifolium plants were resistant, all ‘Moneymaker’ test plants were susceptible, and 52 % BC1 to L. esculentum and 25 % F2 plants were susceptible, which fitted very well with the expected for resistance governed by a single dominant gene. The simple inheritance mode found will favour sucessful introgression of mite resistance into commercial tomatoes from the very close relative L. pimpinellifolium.  相似文献   

12.
Black rot caused by the bacterium Xanthomonas campestris pv campestris is one of the most serious diseases of Brassica oleracea. Since sources of resistance to the disease within B. oleracea are insufficient and control means are limited, the development of resistant breeding lines is extremely desirable. Certain lines of B. napus contain very high resistance controlled by a dominant gene, but crossing the two species sexually is very difficult. Therefore, somatic hybrids were produced by protoplast fusion between rapid cycling B. oleracea and a B. napus line highly resistant to X. campestris pv campestris. Hybrid identity was confirmed by morphological studies, flow cytometric estimation of nuclear DNA content, and analysis of random amplified polymorphic DNA (RAPD). Inoculations with the pathogen identified four somatic hybrids with high resistance. The resistant hybrid plants were fertile and set seed when selfed or crossed reciprocally to the bridge line 15 (Quazi 1988). Direct crosses to B. oleracea were unsuccessful, but embryo rescue facilitated the production of a first-backcross generation. The BC1 plants were resistant to the pathogen. Progeny from the crosses to line 15 were all susceptible. Embryo rescue techniques were not obligatory for the development of a second-backcross generation, and several resistant BC2 plants were obtained.  相似文献   

13.
Brassica napus, an allopolyploid species having the A genome of B. rapa and the C genome of B. oleracea, is self-compatible, although both B. rapa and B. oleracea are self-incompatible. We have previously reported that SP11/SCR alleles are not expressed in anthers, while SRK alleles are functional in the stigma in B. napus cv. ‘Westar’, which has BnS-1 similar to B. rapa S-47 and BnS-6 similar to B. oleracea S-15. This genotype is the most frequent S genotype in B. napus, and we hypothesized that the loss of the function of SP11 is the primary cause of the self-compatibility of ‘Westar’. To verify this hypothesis, we transformed ‘Westar’ plants with the SP11 allele of B. rapa S-47. All the transgenic plants and their progeny were completely self-incompatible, demonstrating self-compatibility to be due to the S haplotype having the non-functional SP11 allele in the A genome, which suppresses a functional recessive SP11 allele in the C genome. An artificially synthesized B. napus line having two recessive SP11 alleles was developed by interspecific hybridization between B. rapa and B. oleracea. This line was self-incompatible, but F1 hybrids between this line and ‘Westar’ were self-compatible. These results suggest that the self-compatibility mechanism of ‘Westar’ is applicable to F1 seed production in B. napus.  相似文献   

14.
The crossability between Brassica tournefortii (TT, 2n = 20) and Brassica rapa (AA, 2n = 20) and the cytomorphology of their F1 hybrids were studied. Hybrids between these two species were obtained only when B. tournefortii was involved as a female parent. The hybrid plants were intermediate for most of the morphological attributes and were found to be free from white rust under field conditions. The F1 plants showed poor pollen fertility, although occasional seed set was achieved from open pollination. Self-pollination or backcrosses did not yield any seeds in these plants. The occurrence of chromosome association ranging from bivalents (0–7), trivalents (0–2) to a rare quadrivalent (0–1) in the dihaploid hybrids indicates pairing between the T and A genomes. The homoeologous pairing coupled with seed set in the F1 plants offer an opportunity for interspecific gene transfers from B. tournefortii to B. rapa and vice-versa through interspecific hybridization. Received: 3 July 2000 / Accepted: 22 September 2000  相似文献   

15.
Resistance to six known races of black rot in crucifers caused by Xanthomonas campestris pv. campestris (Pammel) Dowson is absent or very rare in Brassica oleracea (C genome). However, race specific and broad-spectrum resistance (to type strains of all six races) does appear to occur frequently in other brassica genomes including B. rapa (A genome). Here, we report the genetics of broad spectrum resistance in the B. rapa Chinese cabbage accession B162, using QTL analysis of resistance to races 1 and 4 of the pathogen. A B. rapa linkage map comprising ten linkage groups (A01–A10) with a total map distance of 664 cM was produced, based on 223 AFLP bands and 23 microsatellites from a F2 population of 114 plants derived from a cross between the B. rapa susceptible inbred line R-o-18 and B162. Interaction phenotypes of 125 F2 plants were assessed using two criteria: the percentage of inoculation sites in which symptoms developed, and the severity of symptoms per plant. Resistance to both races was correlated and a cluster of highly significant QTL that explained 24–64% of the phenotypic variance was located on A06. Two additional QTLs for resistance to race 4 were found on A02 and A09. Markers closely linked to these QTL could assist in the transference of the resistance into different B. rapa cultivars or into B. oleracea.  相似文献   

16.
 Chromosome counts and RFLP markers mapped to Arabidopsis thaliana were used to determine the proportion of eliminated chromosomes and retained A. thaliana DNA in the back-crossed (BC) progeny derived from symmetric and asymmetric somatic hybrids between Brassica napus and A. thaliana. All plants were analysed for the presence of two RFLP markers per chromosome, preferably with one located on each chromosome arm. A reduction in both A. thaliana RFLP markers and chromosome numbers was found in the BC1 and BC2 generations of the symmetric hybrids as well as in the BC1 generation of the asymmetric hybrids. In the symmetric hybrids, two back-crosses to B. napus were required to reduce the frequency of retained A. thaliana loci to 42.4% and mean chromosome number to 39.4. In comparison, the BC1 progeny of the asymmetric hybrids had 16% of the analysed A. thaliana loci present and an average of 38.4 chromosomes maintained. When the frequency of A. thaliana chromosomes with both analysed loci maintained was compared with the frequency of chromosomes with one locus lost and one kept, a reduction in the number of complete chromosomes between BC1 and BC2 derived from the symmetric hybrids was observed. Among the BC1 plants in the asymmetric group the situation was different, with higher amounts of incomplete donor chromosomes compared to whole chromosomes. The results indicate that A. thaliana chromosome fragments are more often found in the progeny of irradiated hybrids, while back-crossed symmetric hybrids have more complete chromosomes. Received: 2 April 1998 / Accepted: 14 July 1998  相似文献   

17.
Blackleg, caused by Leptosphaeria maculans, is one of the most economically important diseases of Brassica napus worldwide. Two blackleg-resistant lines, 16S and 61446, were developed through interspecific hybridization between B. napus and B. rapa subsp. sylvestris and backcrossing to B. napus. Classical genetic analysis demonstrated that a single recessive gene in both lines conferred resistance to L. maculans and that the resistance alleles were allelic. Using BC1 progeny derived from each resistant plant, this locus was mapped to B. napus linkage group N6 and was flanked by microsatellite markers sN2189b and sORH72a in an interval of about 10 cM, in a region equivalent to about 6 Mb of B. rapa DNA sequence. This new resistance gene locus was designated as LepR4. The two lines were evaluated for resistance to a wide range of L. maculans isolates using cotyledon inoculation tests under controlled environment conditions, and for stem canker resistance in blackleg field nurseries. Results indicated that line 16S, carrying LepR4a, was highly resistant to all isolates tested on cotyledons and had a high level of stem canker resistance under field conditions. Line 61446, carrying LepR4b, was only resistant to some of the isolates tested on cotyledons and was weakly resistant to stem canker under field conditions.  相似文献   

18.
Novel Brassica napus somatic hybrids have been created through protoplast fusion of B. oleracea var. botrytis and B. rapa var. oleifera genotypes selected for high erucic acid (22:1) content in the seed oil. Fifty amphidiploids (aacc) and one putative hexaploid (aacccc) hybrid were recovered in one fusion experiment. Conversely, only one amphidiploid and numerous regenerates with higher DNA contents were produced in a similar fusion using a different B. rapa partner. Hybridity was confirmed by morphology, isozyme expression, flow cytometry, and DNA hybridization. Analysis of organellar DNA revealed a distinct bias toward the inheritance of chloroplasts from the B. rapa (aa) genome. All amphidiploids set self-pollinated seed. A erucic acid content as high as 57.4% was found in the seed oil of one regenerated plant. Fatty acid composition was stable in the R1 generation and was coupled with increased female fertility. Other novel agronomic characters in the hybrids recovered include large seed size, lodging resistance, and non-shattering seed pods.  相似文献   

19.
The persistence and stability of a transgene encoding a Bacillus thuringiensis (Bt) Cry1Ac insecticidal protein was investigated in hybrids between crop Brassica napus and a recurrent wild Brassica juncea population. Interspecific hybrids (F1) and backcross progenies (BC1, BC2) containing green fluorescent protein (GFP) and Bt genes were successfully produced in the greenhouse. Stable Bt toxin levels were found in hybrid and advanced backcross progenies formed in wild B. juncea. Bt Cry1Ac concentration was significantly lower in BC2 plants than in transgenic B. napus, F1, BC1, while no significant differences were detected among the latter three plant genotypes. A GFP marker gene was used as a scorable marker and indicator of Bt transgene expression. GFP fluorescence intensity was significantly correlated with Bt Cry1Ac concentration at the flowering stage and the pod formation stage in both transgenic oilseed rape hybrids and backcrossed progenies (BC1, BC2). It was demonstrated that GFP was a suitable marker for Bt protein in the backcross of B. juncea, which could facilitate the detection of gene flow and is useful in biosafety management.  相似文献   

20.
Intertribal somatic hybrids between Brassica napus (2n = 38, AACC) and a dye and medicinal plant Isatis indigotica (2n = 14, II) were obtained by fusions of mesophyll protoplasts. From a total of 237 calli, only one symmetric hybrid (S2) and five asymmetric hybrids (As1, As4, As6, As7 and As12) were established in the field. These hybrids showed some morphological variations and had very low pollen fertility. Hybrids S2 and As1 possessed 2n = 52 (AACCII), the sum of the parental chromosomes, and As12 had 2n = 66 (possibly AACCIIII). Hybrids As4, As6 and As7 were mixoploids (2n = 48–62). Genomic in situ hybridization analysis revealed that pollen mother cells at diakinesis of As1 contained 26 bivalents comprising 19 from B. napus and 7 from I. indigotica and mainly showed the segregation 26:26 at anaphase I (AI) with 7 I. indigotica chromosomes in each polar group. Four BC1 plants from As1 after pollinated by B. napus resembled mainly B. napus in morphology but also exhibited some characteristics from I. indigotica. These plants produced some seeds on selfing or pollination by B. napus. They had 2n = 45 (AACCI) and underwent pairing among the I. indigotica chromosomes and/or between the chromosomes of two parents at diakinesis. All hybrids mainly had the AFLP banding patterns from the addition of two parents plus some alterations. B. napus contributed chloroplast genomes in majority of the hybrids but some also had from I. indigotica. Production of B. napusI. indigotica additions would be of considerable importance for genome analysis and breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号