首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Papouskova K  Sychrova H 《FEBS letters》2006,580(8):1971-1976
The family of Nha antiporters mediating the efflux of alkali metal cations in exchange for protons across the plasma membrane is conserved in all yeast species. Yarrowia lipolytica is a dimorphic yeast, phylogenetically very distant from the model yeast Saccharomyces cerevisiae. A search in its sequenced genome revealed two genes (designated as YlNHA1 and YlNHA2) with homology to the S. cerevisiae NHA1 gene, which encodes a plasma membrane alkali metal cation/H+ antiporter. Upon heterologous expression of both YlNHA genes in S. cerevisiae, we showed that Y. lipolytica antiporters differ not only in length and sequence, but also in their affinity for individual substrates. While the YlNha1 protein mainly increased cell tolerance to potassium, YlNha2p displayed a remarkable transport capacity for sodium. Thus, Y. lipolytica is the first example of a yeast species with two plasma membrane alkali metal cation/H+ antiporters differing in their putative functions in cell physiology; cell detoxification vs. the maintenance of stable intracellular pH, potassium content and cell volume.  相似文献   

2.
The newly identified metazoan Na(+)/H(+) antiporter (NHA) family is represented by two paralogues, AgNHA1 and AgNHA2, in the genome of the African malaria mosquito, Anopheles gambiae. Both antiporters are postulated to be electrophoretic i.e. voltage-driven. AgNHA1 was first cloned from An. gambiae larvae and immunolocalized with respect to the H(+) V-ATPase by the Harvey laboratory. Little is known about the properties of NHA1s; attempts to characterize AgNHA1 in Na(+)/H(+) exchanger (NHE)-lacking Chinese hamster ovary cells and in yeast cells or frog oocytes were unsuccessful. Even less is known about AgNHA2. It is predicted to have a relative molecular mass of ~60 kDa and shares 30.5% amino acid identity with AgNHA1. Immunolocalization images show AgNHA2 on the apical plasma membrane of stellate cells in Malpighian tubules of An. gambiae larvae and adults. When heterologously expressed in a mutant strain of the yeast, Saccharomyces cerevisiae, which lacks endogenous cation/proton antiporters and pumps, AgNHA2 enhanced repression of growth by the alkali metal cations, Li(+), Na(+), or K(+) and enhanced Li(+) accumulation. The yeast growth studies invite the speculation that AgNHA2 is an electrophoretic antiporter with a stoichiometry of nNa(+) to 1H(+) with n > 1. Immunolocalization images provide direct evidence that H(+) V-ATPase is co-localized with AgNHA1 on the apical membrane of principal cells but it is not present in the stellate cells where AgNHA2 is localized apically. These results are consistent with the notion that the outside positive voltage that the H(+) V-ATPase generates across the apical membrane of principal cells appears with but little attenuation across the apical membrane of stellate cells. This immunolocalization pattern is consistent with the hypothesis that the voltage acts via AgNHA1 to drive nH(+) into the principal cells and Na(+) out to the lumen and acts via AgNHA2 to drive nNa(+) into the stellate cells and H(+) out to the lumen. Precious Na(+) is then retained by ejection into the blood via a basal Na(+)/K(+)-ATPase. Localizations of anion transporters and their functions in stellate and principal cells are described by Linser, Romero and associates in this volume. The role that the electrogenic H(+) V-ATPase and the electrophoretic cationic and anionic transporters play in ion homeostasis is incorporated into a model for Malpighian tubule cells of larval mosquitoes.  相似文献   

3.
The Saccharomyces cerevisiae genome contains three genes encoding alkali metal cation/H+ antiporters (Nha1p, Nhx1p, Kha1p) that differ in cell localization, substrate specificity and physiological function. Systematic genome sequencing of other yeast species revealed highly conserved homologous ORFs in all of them. We compared the yeast sequences both at DNA and protein levels. The subfamily of yeast endosomal/prevacuolar Nhx1 antiporters is closely related to mammalian plasma membrane NHE proteins and to both plasma membrane and vacuolar plant antiporters. The high sequence conservation within this subfamily of yeast antiporters suggests that Nhx1p is of great importance in cell physiology. Yeast Kha1 proteins probably belong to the same subfamily as bacterial antiporters, whereas Nhal proteins form a distinct subfamily.  相似文献   

4.
Na(+)/H(+) antiporters are ubiquitous membrane proteins and play an important role in cell homeostasis. We amplified a gene encoding a member of the monovalent cation:proton antiporter-2 (CPA2) family (TC 2.A.37) from the Thermus thermophilus genome and expressed it in Escherichia coli. The gene product was identified as a member of the NapA subfamily and was found to be an active Na(+)(Li(+))/H(+) antiporter as it conferred resistance to the Na(+) and Li(+) sensitive strain E. coli EP432 (DeltanhaA, DeltanhaB) upon exposure to high concentration of these salts in the growth medium. Fluorescence measurements using the pH sensitive dye 9-amino-6-chloro-2-methoxyacridine in everted membrane vesicles of complemented E. coli EP432 showed high Li(+)/H(+) exchange activity at pH 6, but marginal Na(+)/H(+) antiport activity. Towards more alkaline conditions, Na(+)/H(+) exchange activity increased to a relative maximum at pH 8, where by contrast the Li(+)/H(+) exchange activity reached its relative minimum. Substitution of conserved residues D156 and D157 (located in the putative transmembrane helix 6) with Ala resulted in the complete loss of Na(+)/H(+) activity. Mutation of K305 (putative transmembrane helix 10) to Ala resulted in a compromised phenotype characterized by an increase in apparent K(m) for Na(+) (36 vs. 7.6 mM for the wildtype) and Li(+) (17 vs. 0.22 mM), In summary, the Na(+)/H(+) antiport activity profile of the NapA type transporter of T. thermophilus resembles that of NhaA from E. coli, whereas in contrast to NhaA the T. thermophilus NapA antiporter is characterized by high Li(+)/H(+) antiport activity at acidic pH.  相似文献   

5.
A gene encoding a Na(+)/H(+) antiporter was obtained from the genome of Halobacillus aidingensis AD-6(T), which was sequenced and designated as nhaH. The deduced amino acid sequence of the gene was 91% identical to the NhaH of H. dabanensis, and shared 54% identity with the NhaG of Bacillus subtilis. The cloned gene enable the Escherichia coli KNabc cell, which lack all of the major Na(+)/H(+) antiporters, to grow in medium containing 0.2 M NaCl or 10 mM LiCl. The nhaH gene was predicted to encode a 43.5 kDa protein (403 amino acid residues) with 11 putative transmembrane regions. Everted membrane vesicles prepared from E. coli KNabc cells carrying NhaH exhibited Na(+)/H(+) as well as Li(+)/H(+) antiporter activity, which was pH-dependent with the highest activity at pH 8.0, and no K(+)/H(+) antiporter activity was detected. The deletion of hydrophilic C-terminal amino acid residues showed that the short C-terminal tail was vital for Na(+)/H(+) antiporter activity.  相似文献   

6.
7.
In plants, the plasma membrane Na(+)/H(+) antiporter is the only key enzyme that extrudes cytosolic Na(+) and contributes to salt tolerance. But in fungi, the plasma membrane Na(+)/H(+) antiporter and Na(+)-ATPase are known to be key enzymes for salt tolerance. Saccharomyces cerevisiae Ena1p ATPase encoded by the ENA1/PMR2A gene is primarily responsible for Na(+) and Li(+) efflux across the plasma membrane during salt stress and for K(+) efflux at high pH and high K(+). To test if the yeast ATPase would improve salt tolerance in plants, we expressed a triple hemagglutinin (HA)-tagged Ena1p (Ena1p-3HA) in cultured tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 (BY2) cells. The Ena1p-3HA proteins were correctly localized to the plasma membrane of transgenic BY2 cells and conferred increased NaCl and LiCl tolerance to the cells. Under moderate salt stress conditions, the Ena1p-3HA-expressing BY2 clones accumulated lower levels of Na(+) and Li(+) than nonexpressing BY2 clones. Moreover, the Ena1p-3HA expressing BY2 clones accumulated lower levels of K(+) than nonexpressing cells under no-stress conditions. These results suggest that the yeast Ena1p can also function as an alkali-cation (Na(+), Li(+), and K(+)) ATPase and alter alkali-cation homeostasis in plant cells. We conclude that, even with K(+)-ATPase activity, Na(+)-ATPase activity of the yeast Ena1p confers increased salt tolerance to plant cells during salt stress.  相似文献   

8.
Synechocystis sp. strain PCC 6803 has five genes for putative Na(+)/H(+) antiporters (designated nhaS1, nhaS2, nhaS3, nhaS4, and nhaS5). The deduced amino acid sequences of NhaS1 and NhaS2 are similar to that of NhaP, the Na(+)/H(+) antiporter of Pseudomonas aeruginosa, whereas those of NhaS3, NhaS4, and NhaS5 resemble that of NapA, the Na(+)/H(+) antiporter of Enterococcus hirae. We successfully induced the expression of nhaS1, nhaS3, and nhaS4 under control of an Na(+)-dependent promoter in Escherichia coli TO114, a strain that is deficient in Na(+)/H(+) antiport activity. Inverted membrane vesicles prepared from TO114 nhaS1 and TO114 nhaS3 cells exhibited Na(+)(Li(+))/H(+) antiport activity. Kinetic analysis of this activity revealed that nhaS1 encodes a low-affinity Na(+)/H(+) antiporter with a K(m) of 7.7 mM for Na(+) ions and a K(m) of 2.5 mM for Li(+) ions, while nhaS3 encodes a high-affinity Na(+)/H(+) antiporter with a K(m) of 0.7 mM for Na(+) ions and a K(m) of 0.01 mM for Li(+) ions. Transformation of E. coli TO114 with the nhaS1 and nhaS3 genes increased cellular tolerance to high concentrations of Na(+) and Li(+) ions, as well as to depletion of K(+) ions during cell growth. To our knowledge, this is the first functional characterization of Na(+)/H(+) antiporters from a cyanobacterium. Inverted membrane vesicles prepared from TO114 nhaS4 cells did not have Na(+)/H(+) antiport activity, and the cells themselves were as sensitive to Na(+) and Li(+) ions as the original TO114 cells. However, the TO114 nhaS4 cells were tolerant to depletion of K(+) ions. Taking into account these results and the growth characteristics of Synechocystis mutants in which nhaS genes had been inactivated by targeted disruption, we discuss possible roles of NhaS1, NhaS3, and NhaS4 in Synechocystis.  相似文献   

9.
The Saccharomyces cerevisiae Nha1p, a plasma membrane protein belonging to the monovalent cation/proton antiporter family, plays a key role in the salt tolerance and pH regulation of cells. We examined the molecular function of Nha1p by using secretory vesicles isolated from a temperature sensitive secretory mutant, sec4-2, in vitro. The isolated secretory vesicles contained newly synthesized Nha1p en route to the plasma membrane and showed antiporter activity exchanging H+ for monovalent alkali metal cations. An amino acid substitution in Nha1p (D266N, Asp-266 to Asn) almost completely abolished the Na+/H+ but not K+/H+ antiport activity, confirming the validity of this assay system as well as the functional importance of Asp-266, especially for selectivity of substrate cations. Nha1p catalyzes transport of Na+ and K+ with similar affinity (12.7 mM and 12.4 mM), and with lower affinity for Rb+ and Li+. Nha1p activity is associated with a net charge movement across the membrane, transporting more protons per single sodium ion (i.e., electrogenic). This feature is similar to the bacterial Na+/H+ antiporters, whereas other known eukaryotic Na+/H+ antiporters are electroneutral. The ion selectivity and the stoichiometry suggest a unique physiological role of Nha1p which is distinct from that of other known Na+/H+ antiporters.  相似文献   

10.
The Zygosaccharomyces rouxii Na+/H+ antiporter Sod2-22p is a member of the subfamily of yeast plasma membrane Nha/Sod antiporters that do not recognize potassium as their substrate. A functional study of two ZrSod2-22p mutated versions that improved the tolerance of a S. cerevisiae alkali-metal-cation sensitive strain to high extracellular concentration of KCl identified two polar non-charged amino-acid residues in the fifth transmembrane domain, Thr141 and Ser150, as being involved in substrate recognition and transport in yeast Nha/Sod antiporters. A reciprocal substitution of amino-acid residues with a hydroxyl group at these positions, T141S or S150T, produced a broadened cation selectivity of the antiporter for K+, in addition to Na+ and Li+. Site-directed mutagenesis of Ser150 showed that while the replacement of Ser150 with a small hydrophobic (valine) or negatively charged (aspartate) amino acid did not produce a significant change in ZrSod2-22p substrate specificity, the introduction of a positive charge at this position stopped the activity of the antiporter. This data demonstrates that the amino-acid composition of the fifth transmembrane domain, mainly the presence of amino acids containing hydroxyl groups in this part of the protein, is critical for the recognition and transport of substrates and could participate in conformational movements during the binding and/or cation transport cycle in yeast plasma membrane Na+/H+ antiporters.  相似文献   

11.
Monovalent cation proton antiporter-3 (Mrp) family antiporters are widely distributed and physiologically important in prokaryotes. Unlike other antiporters, they require six or seven hydrophobic gene products for full activity. Standard fluorescence-based assays of Mrp antiport in membrane vesicles from Escherichia coli transformants have not yielded strong enough signals for characterization of antiport kinetics. Here, an optimized assay protocol for vesicles of antiporter-deficient E. coli EP432 transformants produced higher levels of secondary Na(+)(Li(+))/H(+) antiport than previously reported. Assays were conducted on Mrps from alkaliphilic Bacillus pseudofirmus OF4 and Bacillus subtilis and the homologous antiporter of Staphylococcus aureus (Mnh), all of which exhibited Na(+)(Li(+))/H(+) antiport. A second paralogue of S. aureus (Mnh2) did not. K(+), Ca(2+), and Mg(2+) did not support significant antiport by any of the test antiporters. All three Na(+)(Li(+))/H(+) Mrp antiporters had alkaline pH optima and apparent K(m) values for Na(+) that are among the lowest reported for bacterial Na(+)/H(+) antiporters. Using a fluorescent probe of the transmembrane electrical potential (DeltaPsi), Mrp Na(+)/H(+) antiport was shown to be DeltaPsi consuming, from which it is inferred to be electrogenic. These assays also showed that membranes from E. coli EP432 expressing Mrp antiporters generated higher DeltaPsi levels than control membranes, as did membranes from E. coli EP432 expressing plasmid-borne NhaA, the well-characterized electrogenic E. coli antiporter. Assays of respiratory chain components in membranes from Mrp and control E. coli transformants led to a hypothesis explaining how activity of secondary, DeltaPsi-consuming antiporters can elicit increased capacity for DeltaPsi generation in a bacterial host.  相似文献   

12.
We isolated cDNAs for Na(+)/H(+) antiporter genes (PhaNHA1s) from salt-sensitive and salt-tolerant reed plants. A phylogenetic analysis and localization analysis using yeast strains expressing PhaNHA1-GFP protein showed that PhaNHA1s were plasma membrane Na(+)/H(+) antiporters. Yeast strains expressing PhaNHA1 from salt-tolerant reed plants (PhaNHA1-n) grew well than yeast strains expressing PhaNHA1 from salt-sensitive reed plants (PhaNHA1-u) in the presence of 100mM NaCl. Furthermore, Na(+) contents of yeast cells expressing PhaNHA1-n were less than half of those of yeast cells expressing PhaNHA1-u. These results suggest that PhaNHA1-n is more efficient at excluding Na(+) from the cells than PhaNHA1-u.  相似文献   

13.
In saline environments, plants accumulate Na(+) in vacuoles through the activity of tonoplast Na(+)/H(+) antiporters. The first gene for a putative plant vacuolar Na(+)/H(+) antiporter, AtNHX1, was isolated from Arabidopsis and shown to increase plant tolerance to NaCl. However, AtNHX1 mRNA was up-regulated by Na(+) or K(+) salts in plants and substituted for the homologous protein of yeast to restore tolerance to several toxic cations. To study the ion selectivity of the AtNHX1 protein, we have purified a histidine-tagged version of the protein from yeast microsomes by Ni(2+) affinity chromatography, reconstituted the protein into lipid vesicles, and measured cation-dependent H(+) exchange with the fluorescent pH indicator pyranine. The protein catalyzed Na(+) and K(+) transport with similar affinity in the presence of a pH gradient. Li(+) and Cs(+) ions were also transported with lower affinity. Ion exchange by AtNHX1 was inhibited 70% by the amiloride analog ethylisopropyl-amiloride. Our data indicate a role for intracellular antiporters in organelle pH control and osmoregulation.  相似文献   

14.
Flegelova H  Sychrova H 《FEBS letters》2005,579(21):4733-4738
Na(+)/H+exchangers form a broad family of transporters that mediate opposing fluxes of alkali metal cations and protons across cell membranes. They play multiple roles in different organisms (protection from toxic cations, regulation of cell volume or pH). Rat NHE2 exchanger was expressed in a Saccharomyces cerevisiae mutant strain lacking its own exporters of alkali metal cations. Though most of the overexpressed NHE2 remained entrapped in the secretory pathway, part of it reached the plasma membrane and mediated K+ efflux from the yeast. We demonstrate for the first time that a mammalian Na(+)/H+ exchanger transports alkali metal cations in yeast in the opposite direction than in mammalian cells, and that the substrate specificity of the rat NHE2 exchanger is limited only to potassium cations upon expression in yeast cells.  相似文献   

15.
Na(+)/H(+) antiporters are ubiquitous membrane proteins that are involved in homeostasis of H(+) and Na(+) throughout the biological kingdom. Corroborating their role in pH homeostasis, many of the Na(+)/H(+) antiporter proteins are regulated directly by pH. The pH regulation of NhaA, the Escherichia coli Na(+)/H(+) antiporter (EcNhaA), as of other, both eukaryotic and prokaryotic Na(+)/H(+) antiporters, involves a pH sensor and conformational changes in different parts of the protein that transduce the pH signal into a change in activity. Thus, residues that affect the pH response, the translocation or both activities cluster in separate domains along the antiporter molecules. Importantly, in the NhaA family, these domains are conserved. Helix-packing model of EcNhaA based on cross-linking data suggests, that in the three dimensional structure of NhaA, residues that affect the pH response may be in close proximity, forming a single pH sensitive domain. Therefore, it is suggested that, despite considerable differences in the primary structure of the antiporters from the bacterial NhaA to the mammalian NHEs, their three-dimensional architectures are conserved. Test of this possibility awaits the atomic resolution of the 3D structure of the antiporters.  相似文献   

16.
Multiple resistance and pH adaptation (Mrp) antiporters are widely distributed in various prokaryotes and have been reported to function as a hetero-oligomeric monovalent cation/proton antiporter, which exchanges a cytoplasmic monovalent cation (Na(+) , Li(+) , and/or K(+) ) with extracellular H(+) . In many organisms, they are essential for survival in alkaline or saline environments. Here, we report that the Mrp antiporter from the thermophilic gram-negative bacterium, Thermomicrobium roseum, does not catalyze monovalent cation/proton antiport like the Mrp antiporters studied to date, but catalyzes Ca(2+) /H(+) antiport in Escherichia coli membrane vesicles.  相似文献   

17.
A screening for multicopy suppressors of the G(1)/S blockage of a conditional sit4 hal3 mutant yielded the NHA1 gene, encoding a Na(+),K(+)/H(+) antiporter, composed of a transmembrane domain and a large carboxyl-terminal tail, which has been related to cation detoxification processes. Expression of either the powerful Saccharomyces cerevisiae Ena1 Na(+)/H(+)-ATPase or the Schizosaccharomyces pombe Sod2 Na(+)/H(+) antiporter, although increasing tolerance to sodium, was unable to mimic the Nha1 function in the cell cycle. Mutation of the conserved Asp residues Asp(266)-Asp(267) selectively abolished Na(+) efflux without modifying K(+) efflux and did not affect the capacity of Nha1 to relieve the G(1) blockage. Mutagenesis analysis revealed that the region near the carboxyl-terminal end of Nha1 comprising residues 800-948 is dispensable for sodium detoxification but necessary for transport of K(+) cations. Therefore, this portion of the protein contains structural elements that selectively modulate Nha1 antiporter functions. This region is also required for Nha1 to function in the cell cycle. However, expression of the closely related Cnh1 antiporter from Candida albicans, which also contains a long carboxyl-terminal extension, although allowing efficient K(+) transport does not relieve cell cycle blockage. This indicates that although the determinants for Nha1-mediated regulation of potassium transport and the cell cycle map very closely in the protein, most probably the function of Nha1 on cell cycle is independent of its ability to extrude potassium cations.  相似文献   

18.
19.
Saccharomyces cerevisiae cells possess an alkali metal cation antiporter encoded by the NHA1 gene. Nha1p is unique in the family of yeast Na+/H+ antiporters on account of its broad substrate specificity (Na+, Li+, K+) and its long C-terminus (56% of the whole protein). In order to study the role of the C-terminus in Nha1p function, we constructed a series of 13 truncated NHA1 versions ranging from the complete one (2958 nucleotides, 985 amino acids) down to the shortest version (1416 nucleotides, 472 amino acids), with only 41 amino acid residues after the last putative transmembrane domain. Truncated NHA1 versions were expressed in an S. cerevisiae alkali metal cation-sensitive strain (B31; ena1-4Delta nha1Delta). We found that the entire Nha1p C-terminus domain is not necessary for either the proper localization of the antiporter in the plasma membrane or the transport of all four substrates (we identified rubidium as the fourth Nha1p substrate). Partial truncation of the C-terminus of about 70 terminal amino acids improves the tolerance of cells to Na+, Li+ and Rb+ compared with cells expressing the complete Nha1p. The presence of the neighbouring part of the C-terminus (amino acids 883-928), rich in aspartate and glutamate residues, is necessary for the maintenance of maximum Nha1p activity towards sodium and lithium. In the case of potassium, the participation of the long C-terminus in the regulation of intracellular potassium content is demonstrated. We also present evidence that the Nha1p C-terminus is involved in the cell response to sudden changes in environmental osmolarity.  相似文献   

20.
The plant NHX gene family encodes Na + /H + antiporters which are crucial for salt tolerance, potassium homeostasis and cellular pH regulation. Understanding the role of NHX antiporters in membrane trafficking is becoming an increasingly interesting subject of study. Membrane trafficking is a central cellular process during which proteins, lipids and polysaccharides are continuously exchanged among membrane compartments. Yeast ScNhx1p, a prevacuole/ vacuolar Na + /H + antiporter, plays an important role in regulating pH to control trafficking out of the endosome. Evidence begins to accumulate that plant NHX antiporters might function in regulating membrane trafficking in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号