首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
Fungal communities play a key role in ecosystem functioning. However, only little is known about their composition in plant roots and the soil of biomass plantations. The goal of this study was to analyze fungal biodiversity in their belowground habitats and to gain information on the strategies by which ectomycorrhizal (ECM) fungi form colonies. In a 2-year-old plantation, fungal communities in the soil and roots of three different poplar genotypes (Populus × canescens, wildtype and two transgenic lines with suppressed cinnamyl alcohol dehydrogenase activity) were analyzed by 454 pyrosequencing targeting the rDNA internal transcribed spacer 1 (ITS) region. The results were compared with the dynamics of the root-associated ECM community studied by morphotyping/Sanger sequencing in two subsequent years. Fungal species and family richness in the soil were surprisingly high in this simple plantation ecosystem, with 5944 operational taxonomic units (OTUs) and 186 described fungal families. These findings indicate the importance that fungal species are already available for colonization of plant roots (2399 OTUs and 115 families). The transgenic modification of poplar plants had no influence on fungal root or soil communities. Fungal families and OTUs were more evenly distributed in the soil than in roots, probably as a result of soil plowing before the establishment of the plantation. Saprophytic, pathogenic, and endophytic fungi were the dominating groups in soil, whereas ECMs were dominant in roots (87%). Arbuscular mycorrhizal diversity was higher in soil than in roots. Species richness of the root-associated ECM community, which was low compared with ECM fungi detected by 454 analyses, increased after 1 year. This increase was mainly caused by ECM fungal species already traced in the preceding year in roots. This result supports the priority concept that ECMs present on roots have a competitive advantage over soil-localized ECM fungi.  相似文献   

2.
Mexico is a center of diversity for pines, but few studies have examined the ectomycorrhizal (ECM) fungal communities associated with pines in this country. We investigated the ECM communities associated with Pinus montezumae seedlings and mature trees in neotropical forests of central Mexico and compared their structure and species composition. Root tips were sampled on both planted seedlings and naturally occurring adult trees. A total of 42 ECM operational taxonomic units (OTUs) was found on P.?montezumae. Diversity and similarity indices showed that community structure was similar for both plant growth stages, but phylogenetic diversity and Chao-estimated richness were higher for seedlings. Species composition differed between communities. The dominant OTUs belonged to the families Atheliaceae, Cortinariaceae, and Sebacinaceae, although different taxa appeared to colonize seedlings and adults. Only 12 OTUs were shared between seedlings and adults, which suggests that ECM fungi which colonize seedlings are still not fully incorporated into mycelial networks and that ECM taxa colonizing young individuals of P.?montezumae are likely to come from fungal propagules. Intra-generic diversity could be an insurance mechanism to maintain forest productivity under stressed conditions. This is the first report describing the abundance of Atheliaceae in tree roots in neotropical ecosystems.  相似文献   

3.
Picea is one of the most dominant conifer genera in the Northern Hemisphere and includes species which require coarse woody debris (CWD) as a seedbed for regeneration. To understand the future of forest distribution under global climate change, it is important to investigate regeneration mechanisms in Picea forests on the borders of its distribution. In the present study, we evaluated the biotic factors affecting the establishment of Picea jezoensis var. hondoensis seedlings on CWD in one of its southernmost populations in central Japan, where there is dieback of Picea forest. Amplicon sequencing of the fungal ITS1 region of rDNA obtained from wood samples showed that forest dieback increased the frequency of brown rot fungi in CWD. The frequency of brown-rotted wood, in which wood holocellulose is decayed, increased with dieback intensity. The domination of brown-rotted wood in dieback forests was negatively associated with bryophyte cover which was positively associated with Picea seedling density. Forest dieback itself also had other strong negative effects on bryophytes. Thus, linkages between dead wood and spruce seedlings via bryophytes had collapsed after the dieback event, which may partly be a reason that the spruce forest shifted to and is staying as open grassland.  相似文献   

4.
苔藓植物对植物天然更新的影响   总被引:10,自引:0,他引:10  
蔺菲  郝占庆  叶吉 《生态学杂志》2006,25(4):456-460
种子是天然更新的基础,幼苗和幼树的生长是天然更新过程中最敏感的阶段。苔藓植物作为许多生态系统的主要地被物,在维管植物天然更新过程中发挥着不容忽视的作用。在许多植被类型中,都有发育良好的苔藓群落,大量的研究证明它们的存在影响到维管植物的萌发、建成和生长,并且可能进一步影响到物种的共生,有一些种类甚至可能指示树种的更新。本文就苔藓植物对物种更新早期阶段的作用和影响进行了综述。包括苔藓植物的生理特性造成的微气候变化;苔藓群落对种子传播、萌发及幼苗建成的影响。并讨论了苔藓植物与更新物种的种间关系及其对幼苗生长的化感作用。  相似文献   

5.
Bryophytes, which include mosses, liverworts and hornworts, indeed play a significant role in the natural dynamics of native forests. They contribute to fundamental ecological processes such as tree regeneration. In this context, the objective was to analyse the association of bryophytes with Nothofagus seedlings, as well as whether the substrates where bryophytes grew influenced bryophyte-tree seedling association, in sub-Antarctic forests at two contrasting landscapes (coastal and mountain) of Tierra del Fuego (Argentina), to better understand their impacts on the natural regeneration processes. We hypothesized that bryophytes act as a substrate for seed germination and initial regeneration growth in pure and mixed forests of N. pumilio and N. betuloides, resulting in widespread tree seedlings–bryophyte associations in all landscapes. In each forest and landscape location, 60 transects were established (10 m in length) to evaluate bryophyte cover (by point intercept method) and substrate type (bare soil, decaying wood and litter cover) where they were growing. An adaptation of the relative interaction index (RII) based on tree seedling cover associated with bryophyte species (%) and tree seedling cover in the absence of bryophytes (%) was calculated and analysed to assess competition or facilitation between bryophytes and tree seedlings. Nothofagus pumilio seedlings were less abundant in bryophytes compared to other substrates, suggesting an inhibitory effect on the germination and/or survival of N. pumilio. In contrast, the seedlings of N. betuloides, in both pure and mixed forests, exhibited higher abundance on bryophyte substrates, particularly in mosses at mountain landscape (RII = 0.83 ± 0.08 in litter and 0.62 ± 0.11 in decaying wood). These findings suggest that bryophytes play a facilitating role for N. betuloides seedlings during germination and initial phases of growth, mainly in the mountain. Therefore, their conservation promotes N. betuloides forest continuity, both in pure and mixed structures.  相似文献   

6.
Interactions between vascular plants and bryophytes determine plant community composition in many ecosystems. Yet, little is known about the importance of interspecific differences between bryophytes with respect to their effects on vascular plants. We compared the extent to which species-specific bryophyte effects on vascular plant generative recruitment depend on the following underlying mechanisms: allelopathy, mechanical obstruction, soil moisture and temperature control. We sowed 10 vascular plant species into monospecific mats of six chemically and structurally diverse bryophytes, and examined 1-yr seedling recruitment. Allelopathic effects were also assessed in a laboratory phyto-assay. Although all bryophytes suppressed vascular plant regeneration, there were significant differences between the bryophyte species. The lack of interactions indicated the absence of species-specific adaptations of vascular plants for recruitment in bryophyte mats. Differences between bryophyte species were best explained by alterations in temperature regime under bryophyte mats, mostly by reduced temperature amplitudes during germination. The temperature regime under bryophyte mats was well predicted by species-specific bryophyte cushion thickness. The fitness of established seedlings was not affected by the presence of bryophytes. Our results suggest that climatically or anthropogenically driven changes in the species' composition of bryophyte communities have knock-on effects on vascular plant populations via generative reproduction.  相似文献   

7.
The fungal communities associated with three bryophytes species (the liverwort Barbilophozia hatcheri, the mosses Chorisodontium aciphyllum and Sanionia uncinata) in the Fildes Region, King George Island, maritime Antarctica, were studied using clone library analysis. Fungal communities showed low diversity; the 680 clones belonged to 93 OTUs. Of these, 78 belonged to the phylum Ascomycota, 13 to the phylum Basidiomycota, 1 to the phylum Zygomycota, and 1 to an unknown phylum. Among the OTUs, the most common orders in the Ascomycota were Helotiales (42 OTUs) and Chaetothyriales (14 OTUs) and the most common orders in the Basidiomycota were Sebacinales (3 OTUs) and Platygloeales (3 OTUs). Most OTUs clustered within clades that contained phylotypes identified from samples in Antarctic or Arctic ecosystems or from bryophytes in other ecosystems. In addition, we found that host-related factor may shape the fungal communities associated with bryophytes in this region. This is the first systematic study of the fungal community in Antarctic bryophytes to be performed using culture-independent method and the results may improve understanding of the endophytic fungal evolution and ecology in the Antarctic ecosystem.  相似文献   

8.
Although bryophytes are a dominant vegetation component of boreal and alpine ecosystems, little is known about their associated fungal communities. HPLC assays of ergosterol (fungal biomass) and amplicon pyrosequencing of the ITS2 region of rDNA were used to investigate how the fungal communities associated with four bryophyte species changed across an elevational gradient transitioning from conifer forest to the low‐alpine. Fungal biomass and OTU richness associated with the four moss hosts did not vary significantly across the gradient (P > 0.05), and both were more strongly affected by host and tissue type. Despite largely constant levels of fungal biomass, distinct shifts in community composition of fungi associated with Hylocomium, Pleurozium and Polytrichum occurred between the elevation zones of the gradient. This likely is a result of influence on fungal communities by major environmental factors such as temperature, directly or indirectly mediated by, or interacting with, the response of other components of the vegetation (i.e. the dominant trees). Fungal communities associated with Dicranum were an exception, exhibiting spatial autocorrelation between plots, and no significant structuring by elevation. Nevertheless, the detection of distinct fungal assemblages associated with a single host growing in different elevation zones along an elevational gradient is of particular relevance in the light of the ongoing changes in vegetation patterns in boreal and alpine systems due to global climate warming.  相似文献   

9.
BACKGROUND AND AIMS: Natural regeneration of white spruce (Picea glauca) after disturbance has been reported to be very poor. Here a study was made to determine whether C compounds released from understorey species growing together with white spruce could be involved in this regeneration failure, either by (1) changing soil nutrient dynamics, (2) inhibiting germination, and/or (3) delaying seedling growth. METHODS: Foliage leachates were obtained from two shrubs (Ledum palustre and Empetrum hermaphroditum) and one bryophyte (Sphagnum sp.) with high phenolic compound concentrations that have been reported to depress growth of conifers in boreal forests, and, as a comparison, one bryophyte (Hylocomium splendens) with negligible phenolic compounds. Mineral soil from a white spruce forest was amended with plant leachates to examine the effect of each species on net N mineralization. Additionally, white spruce seeds and seedlings were watered with plant leachates to determine their effects on germination and growth. KEY RESULTS: Leachates from the shrubs L. palustre and E. hermaphroditum contained high phenolic compound concentrations and dissolved organic carbon (DOC), while no detectable levels of C compounds were released from the bryophytes Sphagnum sp. or H. splendens. A decrease in net N mineralization was determined in soils amended with L. palustre or E. hermaphroditum leachates, and this effect was inversely proportional to the phenolic concentrations, DOC and leachate C/N ratio. The total percentage of white spruce germination and the growth of white spruce seedlings were similar among treatments. CONCLUSIONS: These results suggest that the shrubs L. palustre and E. hermaphroditum could negatively affect the performance of white spruce due to a decrease in soil N availability, but not by direct effects on plant physiology.  相似文献   

10.
Bryophytes form the major seedbed for coniferous trees in the subalpine forests of central Japan. Field experiments were conducted on the floor of a closed stand dominated byTsuga on Mt Fuji to examine the seedling survival ofAbies veitchii andTsuga diversifolia in seven substrate types in relation to the morphological characteristics of the seeds and seedlings. NeitherAbies norTsuga seedlings could survive on dwarf-bamboo litter beyond 2 years after the seed rain.Abies seedlings survived not only in all types of bryophyte communities but also in larch litter. In contrast, the survival ofTsuga seedlings was restricted to communities of smaller-statured bryophytes found on logs. The seeds and 1st year seedlings ofA. veitchii were larger than those ofT. diversifolia. Abies seedlings produced hypocotyls taller than any bryophyte community and radicles which were long enough to penetrate into the moist humus layer, whereasTsuga seedling radicles presumably penetrate into humus only in bryophyte communities forming a thin mat on logs. The effect of bryophytes on survival of tree seedlings therefore depends on the relationships between the morphology of seeds and seedlings and the structure of bryophyte communities.  相似文献   

11.
Shifts in ectomycorrhizal (ECM) community structure were examined across an experimental hydrologic gradient on containerized seedlings of two oak species, Quercus montana and Quercus palustris, inoculated from a homogenate of roots from mature oak trees. At the end of one growing season, seedlings were harvested, roots were sorted by morphotype, and proportional colonization of each type was determined. DNA was subsequently extracted from individual root tips for polymerase chain reaction, restriction fragment length polymorphism, and rDNA sequencing of the ITS1/5.8S/ITS2 region to determine identities of fungal morphotypes. Twelve distinct molecular types were identified. Analysis of similarity showed that ECM fungal assemblages shifted significantly in composition across the soil moisture gradient. Taxa within the genus Tuber and the family Thelephoraceae were largely responsible for the changes in fungal assemblages. There were also significant differences in ECM community assemblages between the two oak host species. These results demonstrate that the structure of ECM fungal communities depends on both the abiotic and biotic environments and can shift with changes in soil moisture as well as host plant, even within the same genus.  相似文献   

12.
Ectomycorrhizal (ECM) fungi are important for efficient nutrient uptake of several widespread arctic plant species. Knowledge of temporal variation of ECM fungi, and the relationship of these patterns to environmental variables, is essential to understand energy and nutrient cycling in Arctic ecosystems. We sampled roots of Bistorta vivipara ten times over two years; three times during the growing‐season (June, July and September) and twice during winter (November and April) of both years. We found 668 ECM OTUs belonging to 25 different ECM lineages, whereof 157 OTUs persisted throughout all sampling time‐points. Overall, ECM fungal richness peaked in winter and species belonging to Cortinarius, Serendipita and Sebacina were more frequent in winter than during summer. Structure of ECM fungal communities was primarily affected by spatial factors. However, after accounting for spatial effects, significant seasonal variation was evident revealing correspondence with seasonal changes in environmental conditions. We demonstrate that arctic ECM richness and community structure differ between summer (growing‐season) and winter, possibly due to reduced activity of the core community, and addition of fungi adapted for winter conditions forming a winter‐active fungal community. Significant month × year interactions were observed both for fungal richness and community composition, indicating unpredictable between‐year variation. Our study indicates that addressing seasonal changes requires replication over several years.  相似文献   

13.
Nara K 《The New phytologist》2006,169(1):169-178
Ectomycorrhizal (ECM) fungal mycelia are the main organs for nutrient uptake in many woody plants, and often connect seedlings to mature trees. While it is known that resources are shared among connected plants via common mycorrhizal networks (CMNs), the net effects of CMNs on seedling performance in the field are almost unknown. CMNs of individual ECM fungal species were produced in an early succession volcanic desert by transplanting current-year seedlings of Salix reinii with ECM mother trees that had been inoculated with one of 11 dominant ECM fungal species. Most seedlings were connected to individual CMNs without being infected by other ECM fungi. Although control seedlings showed poor growth under severe nutrient competition with larger nonmycorrhizal mother trees, nutrient acquisition and growth of seedlings connected to CMNs were improved with most fungal species. The positive effects of CMNs on seedling performance were significantly different among ECM fungal species; for example, the maximum difference in seedling nitrogen acquisition was 1 : 5.9. The net effects of individual CMNs in the field and interspecific variation among ECM fungal species are shown.  相似文献   

14.
The role of common mycorrhizal networks (CMNs) in postfire boreal forest successional trajectories is unknown. We investigated this issue by sampling a 50-m by 40-m area of naturally regenerating black spruce (Picea mariana), trembling aspen (Populus tremuloides), and paper birch (Betula papyrifera) seedlings at various distances from alder (Alnus viridis subsp. crispa), a nitrogen-fixing shrub, 5 years after wildfire in an Alaskan interior boreal forest. Shoot biomasses and stem diameters of 4-year-old seedlings were recorded, and the fungal community associated with ectomycorrhizal (ECM) root tips from each seedling was profiled using molecular techniques. We found distinct assemblages of fungi associated with alder compared with those associated with the other tree species, making the formation of CMNs between them unlikely. However, among the spruce, aspen, and birch seedlings, there were many shared fungi (including members of the Pezoloma ericae [Hymenoscyphus ericae] species aggregate, Thelephora terrestris, and Russula spp.), raising the possibility that these regenerating seedlings may form interspecies CMNs. Distance between samples did not influence how similar ECM root tip-associated fungal communities were, and of the fungal groups identified, only one of them was more likely to be shared between seedlings that were closer together, suggesting that the majority of fungi surveyed did not have a clumped distribution across the small scale of this study. The presence of some fungal ribotypes was associated with larger or smaller seedlings, suggesting that these fungi may play a role in the promotion or inhibition of seedling growth. The fungal ribotypes associated with larger seedlings were different between spruce, aspen, and birch, suggesting differential impacts of some host-fungus combinations. One may speculate that wildfire-induced shifts in a given soil fungal community could result in variation in the growth response of different plant species after fire and a shift in regenerating vegetation.  相似文献   

15.
Fungal spores are morphologically highly diverse and are therefore frequently used as diagnostic characters in taxonomy. However, the connection between spore morphology and fungal ecology remains poorly understood. Using phylogenetic comparative analyses, we investigated the putative relationships between four ascospore traits and the dominant place of infection, host ecology, and host taxonomic placement in 123 species of biotrophic parasites of bryophytes. Ascospore shape, ornamentation height and relative lipid content are significantly correlated in bryophilous Pezizales. Species attached by their hyphae to bryophyte rhizoids have more globose ascospores with higher ornamentation and relative lipid content than species attached to aboveground organs. Furthermore, some ascospore traits are significantly associated with host lifespan, habitat preferences, and taxonomic placement of their host bryophytes. Our results suggest that the ascospore morphology in this fungal group is closely linked to its ecology and several of the detected relationships point to the existence of distinct dispersal strategies.  相似文献   

16.
为探索兰科(Orchidaceae)植物毛唇芋兰(Nervilia fordii)根内和根际土壤真菌群落多样性,该研究采用Illumina MiSeq高通量测序技术,分析了大新(DX)和龙州(LZ)两个样地(简称两地)毛唇芋兰根内和根际土壤的真菌组成。结果表明:(1)两地的毛唇芋兰根内和根际土壤真菌多样性很丰富,根际土壤真菌多样性均高于根内,主根的真菌多样性高于走茎。(2)通过测序共获得有效序列118 040条,207个可操作分类单元(OTUs)涉及8门19纲42目86科123属。(3)担子菌门(Basidiomycota)真菌是两地毛唇芋兰根内真菌的共同优势菌群,涉及胶膜菌科(Tulasnellaceae)、Trimorphomycetaceae、角担菌科(Ceratobasidiaceae)、马拉色菌科(Malasseziaceae)和小皮伞科(Marasmiaceae)等,其中优势科和优势属分别是胶膜菌科(75%)和瘤菌根菌属(Epulorhiza)(56%),而土壤中的优势菌属则是镰刀菌属(Fusarium)。综上认为,毛唇芋兰根内与根际土壤中的优势菌群既差异显著也存在一些共同...  相似文献   

17.
Ding Q  Liang Y  Legendre P  He XH  Pei KQ  Du XJ  Ma KP 《Mycorrhiza》2011,21(8):669-680
As the main source of inocula, ectomycorrhizal (ECM) fungal propagules are critical for root colonization and seedling survival in deforested areas. It is essential to know factors that may affect the diversity and composition of ECM fungal community on roots of seedlings planted in deforest areas during reforestation. We quantitatively evaluated the effect of host plant and soil origin on ECM fungal propagule community structure established on roots of Castanopsis fargesii, Lithocarpus harlandii, Pinus armandii, and Pinus massoniana growing in soils from local natural forests and from sites deforested by clear-cut logging in the 1950s and 1960s. ECM root tips were sampled in April, July, and October of 2006, and ECM fungal communities were determined using ECM root morphotyping, internal transcribed spacer (ITS)-RFLP, and ITS sequencing. A total of 36 ECM fungal species were observed in our study, and species richness varied with host species and soil origin. Decreased colonization rates were found in all host species except for L. harlandii, and reduced species richness was found in all host species except for P. armandii in soil from the deforested site, which implied the great changes in ECM fungal community composition. Our results showed that 33.3% variance in ECM fungal community composition could be explained by host plant species and 4.6% by soil origin. Results of indicator species analysis demonstrated that 14 out of 19 common ECM fungal species showed significant preference to host plant species, suggesting that the host preference of ECM fungi was one of the most important mechanisms in structuring ECM fungal community. Accordingly, the host plant species should be taken into account in the reforestation of deforested areas due to the strong and commonly existed host preference of ECM fungi.  相似文献   

18.
Bryophytes are widespread in terrestrial ecosystems but little is known about their influence on vascular species. Water‐soluble leachates (0%, 1%, 5%, 10% concentration) derived from 18 species of bryophytes (mosses 11 species; liverworts 7 species) were tested on the germination and seedling growth of Lactuca sativa and two common trees Melicytus ramiflorus (Violaceae) and Fuchsia excorticata (Onagraceae) in southern New Zealand forests. Bryophyte water soluble extracts (BWSE) have minor impact on seed germination of Lactuca, stimulatory effects on radical growth at low (1%) concentrations and inhibitory effects at higher concentrations (5–10%). For Melicytus the BWSE had variable effects, with evidence of strong stimulatory (Dendrohypopterygium filiculiforme) and inhibitory (Lepidozia concinna) effects on germination, but generally inhibited radical growth. BWSE at all test concentrations consistently inhibit both germination and seedling radicle growth in Fuchsia. The toxicity effect of water‐soluble leachates varies significantly between bryophyte species but not consistently between mosses and liverworts. Bryophyte species exhibiting strongest inhibition effects under control conditions were associated with significantly reduced densities of broadleaved tree seedlings in forest ecosystems. Our results demonstrate that some bryophyte species via allelopathic interactions can inhibit seedling establishment and growth of forest trees. This mechanism provides an additional factor constraining the spatial distribution of the regeneration niche in forest communities.  相似文献   

19.
The objectives of this study were to investigate impact of stump and slash removal on growth and mycorrhization of Picea abies seedlings outplanted on a forest clear-cut. Four non-replicated site preparation treatments included: (1) mounding (M), (2) removal of stumps (K), (3) mounding and removal of logging slash (HM) and (4) removal of logging slash and stumps (HK). Results showed that height increment of the seedlings was highest in K and lowest in M after the third growing season, and similar pattern remained after the fourth season. Ectomycorrhizal (ECM) colonisation of seedling roots was highest in M (96.6%) and lowest in K (72.3%), and even in HK (76.0%) and HM (76.3%). Morphotyping and sequencing of internal transcribed spacer of fungal ribosomal DNA revealed a total of 13 ECM species. Among those, Thelephora terrestris and Cenococcum geophilum were the most common, found on 27.4% and 26.3% of roots, respectively. The rest of species colonised 26.6% of roots. Richness of ECM species was highest in M (10 species) and lowest in K (three species). Consequently, stump and slash removal from clear-felled sites had a positive effect on growth of outplanted spruce seedlings, but negative effect on their mycorrhization. This suggests that altered soil conditions due to site disturbance by stump and slash removal might be more favourable for tree growth than more abundant mycorrhization of their root systems in less disturbed soil.  相似文献   

20.
以1、2、3年生的楸树实生苗和嫁接苗(梓树砧木)根系为研究对象,通过对ITS rDNA区域标记扩增子的Illumina MiSeq测序,分析不同苗龄楸树实生苗和嫁接苗根相关真菌的结构组成和多样性。获得根相关真菌OTU共842个,分属4门、24纲、70目、134科、233属、347种;丛枝菌根真菌(arbuscular mycorrhizal fungi)AMF-OTU共42个,分属1门、1纲、3目、3科、3属、13种。根相关真菌和AMF的OTU数量、丰度和多样性在实生苗中均随苗龄的增加而降低,而在嫁接苗中则随着苗龄的增加而增加。门水平上,实生苗与嫁接苗根相关真菌的优势菌都是子囊菌门Ascomycota、担子菌门Basidiomycota和接合菌门Zygomycota,但它们的相对丰度有所差异;属水平上,实生苗和嫁接苗根相关真菌的优势菌种在组成和数量上都具有一定的差异性。楸树根相关真菌拥有3种营养模式和12个生态功能群,其中实生苗根系中病理营养型真菌的比例大于嫁接苗,腐生营养型则差异不大,而共生营养型则小于嫁接苗。生态功能群分析显示大多数楸树根系真菌表现出多种生存策略,部分真菌可以在植物-真菌-动物中跨界侵染。该研究可为楸树根相关真菌的利用提供一定的理论依据和基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号