首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Neuropilin (NRP) receptors and their class 3 semaphorin (SEMA3) ligands play well-established roles in axon guidance, with loss of NRP1, NRP2, SEMA3A or SEMA3F causing defasciculation and errors in growth cone guidance of peripherally projecting nerves. Here we report that loss of NRP1 or NRP2 also impairs sensory neuron positioning in the mouse head, and that this defect is a consequence of inappropriate cranial neural crest cell migration. Specifically, neural crest cells move into the normally crest-free territory between the trigeminal and hyoid neural crest streams and recruit sensory neurons from the otic placode; these ectopic neurons then extend axons between the trigeminal and facioacoustic ganglia. Moreover, we found that NRP1 and NRP2 cooperate to guide cranial neural crest cells and position sensory neurons; thus, in the absence of SEMA3/NRP signalling, the segmentation of the cranial nervous system is lost. We conclude that neuropilins play multiple roles in the sensory nervous system by directing cranial neural crest cells, positioning sensory neurons and organising their axonal projections.  相似文献   

3.
Ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), such as 15-deoxy-Delta(12,14)PGJ2 (15d-PGJ2) have been proposed as a new class of antiinflammatory compounds with possible clinical applications. As there is some controversy over the inhibitory effects of 15d-PGJ2 on chemokine gene expression, we investigated whether 15d-PGJ2 itself affected chemokine gene expression in human monocytes/macrophages and two monocytic cell lines. Here we demonstrate that the 15d-PGJ2 can induce IL-8 gene expression. In contrast, monocyte chemoattractant protein-1 gene expression was suppressed by 15d-PGJ2, while the expression of RANTES was unaltered. Furthermore, concomitant treatment of monocytes/macrophages with 15d-PGJ2 (2.5 x 10(-6) M) potentiated LPS-induced gene expression of IL-8 mRNA, but suppressed PMA-induction of IL-8 mRNA. In addition, treatment of U937 and THP-1 cells with 15d-PGJ2 also resulted in induction of IL-8 gene expression. Further studies demonstrated that 15d-PGJ2 regulated IL-8 gene expression via a ligand-specific and PPARgamma-dependent pathway. Our observations revealed a previous unappreciated function and mechanism of 15d-PGJ2-mediated regulation of cytokine gene expression in monocytes/macrophages.  相似文献   

4.
Preeclampsia (PE) is characterized by placental ischemia and hypoxia, resulting in abnormal casting of the uterine spiral artery, which is mainly caused by insufficient trophoblastic cell infiltration. A reduction in levels of growth factor-based signalling via Neuropilin-1 (NRP1) has been shown to contribute to dysfunctional trophoblast development. In this study, we showed that the RNA-binding protein, QKI5, regulated NRP1 expression and significantly improved trophoblast proliferation in vitro and in vivo. QKI5 and NRP1 expressions were significantly reduced in human PE placentas and in trophoblasts during hypoxia. Overexpression of these factors significantly improved cell proliferation and migration in vitro, in contrast to a decrease upon siRNA knockdown of QKI5 and NRP1 in HTR-8/SVneo cells. Using RIP and RNA pull-down assays, we further showed that QKI5 directly interacted with the 3'-UTR region of NRP1, to mediate cell proliferation and migration via matrix metalloprotease-9. Further, similar to NRP1, QKI5 also targets matrix metalloproteinase 9 (MMP9) involved in secretion of growth factors and its effects can be counteracted by NRP1 overexpression. In vivo studies using a PE mouse model revealed that QKI5 overexpression alleviated PE-related symptoms such as elevated blood pressure and proteinuria. Taken together, we found that QKI5 was a novel regulator, of VEGF-R/NRP1 signalling pathway functioning in trophoblast proliferation and migration, resulting in major contributors to the pathogenesis of PE. While careful evaluation of the broad implications of QKI5 expression is still necessary, this study identified QKI5 as a promising target for treatment strategies in acute PE patients.  相似文献   

5.
Monocytes and macrophages play a major role in atherosclerosis development. Previously, we found that triglyceride (TG) promoted cell death of PMA-differentiated THP-1 macrophages. In this study, we compared the responsiveness of THP-1 monocytes and PMA-differentiated THP-1 macrophages to TNF-α-induced cell death. We found that, whereas THP-1 monocytes were TNF-α-resistant, THP-1 macrophages were sensitive to TNF-α-induced cell death. THP-1 monocytes treated with TG underwent cell death beginning at 24 h and addition of TNF-α further increased cell death. Based on these observations, we hypothesized that TG-induced differentiation of THP-1 monocytes into THP-1 macrophages, subsequently allowing sensitivity to TNF-α. To determine if TG could induce differentiation of THP-1 monocytes into THP-1 macrophages, we examined the mRNA expression levels of the macrophage-specific markers, CD11b, CD18, CD36 and CD68, by RT-PCR analysis. Our results show that expression of CD11b, CD36 and CD68 increased in TG-treated THP-1 monocytes in a dose- and time-dependent manner; furthermore, TNF-α expression was upregulated in TG-treated THP-1 monocytes. We have concluded that TG induces differentiation of THP-1 monocytes into macrophages concomitant with the production of TNF-α and increased sensitivity to TNF-α-dependent cell death.  相似文献   

6.
7.
The identity of the neutral cholesteryl ester hydrolase (CEH) in human monocyte/macrophages is uncertain. Prior studies indicate that hormone sensitive lipase (HSL) is a major CEH in mouse macrophages, and that HSL mRNA is present in human THP-1 monocytes. In the present study, HSL mRNA expression was examined in THP-1 cells as a function of differentiation status and cholesterol enrichment. By RT-PCR with primer pairs that span exon boundaries, HSL mRNA was demonstrated in THP-1 monocytes and phorbol-ester differentiated THP-1 macrophages. cDNA identities were confirmed by sequencing. By Northern blotting, with HSL cDNA as probe, THP-1 monocytes were found to contain HSL mRNA of approximately 3 and 3.9 kb. In THP-1 macrophages, the 3 kb mRNA was greatly diminished, while the level of the 3.9 kb mRNA was maintained. mRNA of approximately 3 and 3.9 kb are those expected of the 86-kDa (adipocyte) and 117-kDa (testicular) HSL isoforms, respectively. The presence of the testicular isoform mRNA was confirmed in THP-1 cells by amplification and sequencing of an isoform-specific cDNA. Additionally, Northern-blot comparisons showed that the 3 and 3.9 kb mRNA in THP-1 comigrated with the HSL mRNA in 3T3-L1 adipocytes and rat testis, respectively. The level of the 3.9 kb mRNA did not vary greatly with cholesterol enrichment. Thus, the HSL gene is transcribed in THP-1 cells both before and after differentiation into macrophages; after differentiation, the predominant mRNA is that for the 117-kDa isoform. This isoform is a CEH, and may mediate some CE turnover in THP-1 cells.  相似文献   

8.
Oxidized LDL (OxLDL) is composed of many potentially proatherogenic molecules, including oxysterols. Of the oxysterols, 7-ketocholesterol (7-KC) is found in relatively large abundance in OxLDL, as well as in atherosclerotic plaque and foam cells in vivo. Although there is evidence that 7-KC activates endothelial cells, its effect on monocytes is unknown. We tested the hypothesis that 7-KC may induce monocyte differentiation and promote foam cell formation. THP-1 cells were used as a monocyte model system and were treated with 7-KC over a range of concentrations from 0.5 to 10 microg/ml. Changes in cell adhesion properties, cell morphology, and expression of antigens characteristic of differentiated macrophages were monitored over a 7-day period. 7-KC promoted cells to firmly adhere and display morphologic features of differentiated macrophages; this effect was time and dose dependent and was markedly more potent than cholesterol treatment (45% of cells became adherent after 7 days of treatment with 7-KC at 10 microg/ml vs. less then 5% for control cells, P < 0.01). Similar effects were obtained when LDL enriched with 7-KC or OxLDL were added to THP-1 cells. 7-KC-differentiated cells expressed CD11b, CD36, and CD68, phagocytized latex beads, and formed lipid-laden foam cells after exposure to acetylated LDL or OxLDL. In contrast to 7-KC, oxysterols with known cell regulatory effects such as 25-hydroxycholesterol, 7beta-hydroxycholesterol, and (22R)-hydroxycholesterol did not effectively promote THP-1 differentiation.In conclusion, these results demonstrate for the first time that 7-KC, a prominent oxysterol formed in OxLDL by peroxidation of cholesterol, may play an important role in promoting monocyte differentiation and foam cell formation. These studies also suggest that 7-KC induces monocyte differentiation through a sterol-mediated regulatory pathway that remains to be characterized.  相似文献   

9.
BackgroundThe large extracellular matrix protein SVEP1 mediates cell adhesion via integrin α9β1. Recent studies have identified an association between a missense variant in SVEP1 and increased risk of coronary artery disease (CAD) in humans and in mice Svep1 deficiency alters the development of atherosclerotic plaques. However how SVEP1 functionally contributes to CAD pathogenesis is not fully understood. Monocyte recruitment and differentiation to macrophages is a key step in the development of atherosclerosis. Here, we investigated the requirement for SVEP1 in this process.MethodsSVEP1 expression was measured during monocyte–macrophage differentiation in primary monocytes and THP-1 human monocytic cells. SVEP1 knockout THP-1 cell lines and the dual integrin α4β1/α9β1 inhibitor, BOP, were utilised to investigate the effect of these proteins in THP-1 cell adhesion, migration and cell spreading assays. Subsequent activation of downstream integrin signalling intermediaries was quantified by western blotting.ResultsSVEP1 gene expression increases in monocyte to macrophage differentiation in human primary monocytes and THP-1 cells. Using two SVEP1 knockout THP-1 cells we observed reduction in monocyte adhesion, migration, and cell spreading compared to control cells. Similar results were found with integrin α4β1/α9β1 inhibition. We demonstrate reduced activity of Rho and Rac1 in SVEP1 knockout THP-1 cells.ConclusionsSVEP1 regulates monocyte recruitment and differentiation phenotypes through an integrin α4β1/α9β1 dependent mechanism.General significanceThese results describe a novel role for SVEP1 in monocyte behaviour relevant to CAD pathophysiology.  相似文献   

10.
Blood vessels and neurons share several types of guidance cues and cell surface receptors to control their behaviour during embryogenesis. The transmembrane protein NRP1 is present on blood vessels and nerves. NRP1 binds two structurally diverse ligands, the semaphorin SEMA3A and the VEGF164 isoform of vascular endothelial growth factor. SEMA3A was originally identified as a repulsive cue for developing axons that acts by signalling through receptor complexes containing NRP1 and plexins. In vitro, SEMA3A also inhibits integrin function and competes with VEGF164 for binding to NRP1 to modulate the migration of endothelial cells. These observations resulted in a widely accepted model of vascular patterning in which the balance of VEGF164 and SEMA3A determines endothelial cell behaviour. However, we now demonstrate that SEMA3A is not required for angiogenesis in the mouse, which instead is controlled by VEGF164. We find that SEMA3A, but not VEGF164, is required for axon patterning of limb nerves, even though the competition between VEGF164 and SEMA3A for NRP1 affects the migration of neuronal progenitor cells in vitro and has been hypothesised to control axon guidance. Moreover, we show that there is no genetic interaction between SEMA3A and VEGF164 during vasculogenesis, angiogenesis or limb axon patterning, suggesting that ligand competition for NRP1 binding cannot explain neurovascular congruence, as previously suggested. We conclude that NRP1 contributes to both neuronal and vascular patterning by preferentially relaying SEMA3A signals in peripheral axons and VEGF164 signals in blood vessels.  相似文献   

11.

Objective

The uremic toxin Indoxyl-3-sulphate (IS), a ligand of Aryl hydrocarbon Receptor (AhR), raises in blood during early renal dysfunction as a consequence of tubular damage, which may be present even when eGFR is normal or only moderately reduced, and promotes cardiovascular damage and monocyte-macrophage activation. We previously found that patients with abdominal aortic aneurysms (AAAs) have higher CD14+CD16+ monocyte frequency and prevalence of moderate chronic kidney disease (CKD) than age-matched control subjects. Here we aimed to evaluate the IS levels in plasma from AAA patients and to investigate in vitro the effects of IS concentrations corresponding to mild-to-moderate CKD on monocyte polarization and macrophage differentiation.

Methods

Free IS plasma levels, monocyte subsets and laboratory parameters were evaluated on blood from AAA patients and eGFR-matched controls. THP-1 monocytes, treated with IS 1, 10, 20 μM were evaluated for CD163 expression, AhR signaling and then induced to differentiate into macrophages by PMA. Their phenotype was evaluated both at the stage of semi-differentiated and fully differentiated macrophages. AAA and control sera were similarly used to treat THP-1 monocytes and the resulting macrophage phenotype was analyzed.

Results

IS plasma concentration correlated positively with CD14+CD16+ monocytes and was increased in AAA patients. In THP-1 cells, IS promoted CD163 expression and transition to macrophages with hallmarks of classical (IL-6, CCL2, COX2) and alternative phenotype (IL-10, PPARγ, TGF-β, TIMP-1), via AhR/Nrf2 activation. Analogously, AAA sera induced differentiation of macrophages with enhanced IL-6, MCP1, TGF-β, PPARγ and TIMP-1 expression.

Conclusion

IS skews monocyte differentiation toward low-inflammatory, profibrotic macrophages and may contribute to sustain chronic inflammation and maladaptive vascular remodeling.  相似文献   

12.
pRb/E2F1 activity is coordinately regulated during the cell cycle progression, while the molecular strategies safeguarding this pathway are not fully understood. We have previously shown that RNA binding protein QKI inhibits the cell proliferation and promotes the differentiation of gastrointestinal epithelium, suggesting a role of QKI in cell cycle regulation. Here we found that with the cell entry into S phase, QKI expression increased both at the mRNA and protein levels, which was reminiscent of cyclin E expression. Forced expression of E2F1 increased the endogenous level of QKI. Promoter luciferase assay and ChIP analysis identified that the -542~-538 E2F1 binding site was responsible for the upregulation. Increased QKI expression by E2F1, in turn, reduced the E2F1 activity and delayed S-phase entry, forming a negative feedback. As a gene expression regulator, QKI overexpression increased p27, while it decreased cyclin D1 and c-fos expression. Molecularly, p27 and c-fos were direct targets of QKI, while cyclin D1 reduction might be an indirect effect. Taken together, our results reveal that E2F1 directly transcribes QKI, which, in turn, negatively regulates the cell cycle by targeting multiple cell cycle regulators, forming an E2F1-QKI-pRb/E2F1 negative feedback loop.  相似文献   

13.
Neuropilins and semaphorins are known as modulators of axon guidance, angiogenesis, and organogenesis in the developing nervous system, but have been recently evidenced as also playing a role in the immune system. Here we describe the expression and role of semaphorin 3F (SEMA3F) and its receptor neuropilin-2 (NRP2) in human T cell precursors. NRP2 and SEMA3F are expressed in the human thymus, in both lymphoid and non-lymphoid compartments. SEMA3F have a repulsive effect on thymocyte migration and inhibited CXCL12- and sphingosine-1-phosphate (S1P)-induced thymocyte migration by inhibiting cytoskeleton reorganization prior to stimuli. Moreover, NRP2 and SEMA3F are expressed in human T-cell acute lymphoblastic leukemia/lymphoma primary cells. In these tumor cells, SEMA3F also blocks their migration induced by CXCL12 and S1P. Our data show that SEMA3F and NRP2 are further regulators of human thymocyte migration in physiological and pathological conditions.  相似文献   

14.
It was hypothesized that monocyte treatment with bone morphogenetic protein 7 (BMP7) would significantly enhance monocyte polarization into M2 macrophages as well as increasing the levels of anti-inflammatory cytokines. In a cell culture system using monocytes (human acute monocytic leukemia cell line THP-1), we studied the effects of BMP7 on monocytes polarizing into M2 macrophages. The data demonstrate that THP-1 cells contain a BMP type II receptor (BMPR2), and that its activation is significantly (p < 0.05) increased following treatment with BMP7. Furthermore, there was an increase of M2 macrophages, BMPR2, and anti-inflammatory cytokines interleukin (IL)-10 and IL-1ra compared with the respective controls. Moreover, treatment with BMP7 caused a significant (p < 0.05) decrease in the levels of pro-inflammatory cytokines IL-6, tumour necrosis factor (TNF-α), and monocyte chemotactic protein-1 (MCP-1), compared with the controls. In conclusion, we suggest for the first time that BMP7 has a unique potential to polarize monocytes into M2 macrophages, required for tissue repair, which will have significant applications for the treatment of atherosclerosis.  相似文献   

15.
cAMP mediates its intracellular effects through activation of protein kinase A (PKA), nucleotide-gated ion channels, or exchange protein directly activated by cAMP (Epac). Although elevation of cAMP in lymphocytes leads to suppression of immune functions by a PKA-dependent mechanism, the effector mechanisms for cAMP regulation of immune functions in monocytes and macrophages are not fully understood. In this study, we demonstrate the presence of Epac1 in human peripheral blood monocytes and activation of Rap1 in response to cAMP. However, by using an Epac-specific cAMP analog (8-CPT-2'-O-Me-cAMP), we show that monocyte activation parameters such as synthesis and release of cytokines, stimulation of cell adhesion, chemotaxis, phagocytosis, and respiratory burst are not regulated by the Epac1-Rap1 pathway. In contrast, activation of PKA by a PKA-specific compound (6-Bnz-cAMP) or physiological cAMP-elevating stimuli like PGE(2) inhibits monocyte immune functions. Furthermore, we show that the level of Epac1 increases 3-fold during differentiation of monocytes into macrophages, and in monocyte-derived macrophages cAMP inhibits FcR-mediated phagocytosis via both PKA and the Epac1-Rap1 pathway. However, LPS-induced TNF-alpha production is only inhibited through the PKA pathway in these cells. In conclusion, the Epac1-Rap1 pathway is present in both monocytes and macrophages, but only regulates specific immune effector functions in macrophages.  相似文献   

16.
Lipid droplets (LDs) perform several important functions like inflammatory responses, membrane trafficking, acts as secondary messengers, etc. rather than simply working as an energy reservoir. LDs have been implicated as a controlling factor in the progression of atherosclerosis followed by foam cell formation that derives from macrophages during the differentiation process. However, the role of LDs in monocyte differentiation or its further immunological function is still an area that mandates in-depth investigation. We report that LD dynamics is important for differentiation of monocytes and is absolutely required for sustained and prolonged functional activity of differentiated macrophages. In THP-1 cell line model system, we elucidated that increase in total LD content in monocyte by external lipid supplements, can induce monocyte differentiation independent of classical stimuli, PMA. Differential expression of PLIN2 and ATGL during the event, together with abrogation of de novo lipogenesis further confirmed the fact. Besides, an increase in LD content by free fatty acid supplement was able to exert a synergistic effect with PMA on differentiation and phagocytic activity compared to when they are used alone. Additionally, we have shown Rab5a to play a vital role in LDs biosynthesis/maturation in monocytes and thereby directly affecting differentiation of monocytes into macrophages via AKT pathway. Thus our study reveals the multi-faceted function of LDs during the process of monocyte to macrophage differentiation and thereby helping to maintain the functional activity.  相似文献   

17.
The quaking (qkI) gene encodes 3 major alternatively spliced isoforms that contain unique sequences at their C termini dictating their cellular localization. QKI-5 is predominantly nuclear, whereas QKI-6 is distributed throughout the cell and QKI-7 is cytoplasmic. The QKI isoforms are sequence-specific RNA binding proteins expressed mainly in glial cells modulating RNA splicing, export, and stability. Herein, we identify a new role for the QKI proteins in the regulation of microRNA (miRNA) processing. We observed that small interfering RNA (siRNA)-mediated QKI depletion of U343 glioblastoma cells leads to a robust increase in miR-7 expression. The processing from primary to mature miR-7 was inhibited in the presence QKI-5 and QKI-6 but not QKI-7, suggesting that the nuclear localization plays an important role in the regulation of miR-7 expression. The primary miR-7-1 was bound by the QKI isoforms in a QKI response element (QRE)-specific manner. We observed that the pri-miR-7-1 RNA was tightly bound to Drosha in the presence of the QKI isoforms, and this association was not observed in siRNA-mediated QKI or Drosha-depleted U343 glioblastoma cells. Moreover, the presence of the QKI isoforms led to an increase presence of pri-miR-7 in nuclear foci, suggesting that pri-miR-7-1 is retained in the nucleus by the QKI isoforms. miR-7 is known to target the epidermal growth factor (EGF) receptor (EGFR) 3′ untranslated region (3′-UTR), and indeed, QKI-deficient U343 cells had reduced EGFR expression and decreased ERK activation in response to EGF. Elevated levels of miR-7 are associated with cell cycle arrest, and it was observed that QKI-deficient U343 that harbor elevated levels of miR-7 exhibited defects in cell proliferation that were partially rescued by the addition of a miR-7 inhibitor. These findings suggest that the QKI isoforms regulate glial cell function and proliferation by regulating the processing of certain miRNAs.  相似文献   

18.

Introduction

Our objectives were to examine mononuclear cell gene expression profiles in patients with systemic lupus erythematosus (SLE) and healthy controls and to compare subsets with and without atherosclerosis to determine which genes’ expression is related to atherosclerosis in SLE.

Methods

Monocytes were obtained from 20 patients with SLE and 16 healthy controls and were in vitro-differentiated into macrophages. Subjects also underwent laboratory and imaging studies to evaluate for subclinical atherosclerosis. Whole-genome RNA expression microarray was performed, and gene expression was examined.

Results

Gene expression profiling was used to identify gene signatures that differentiated patients from controls and individuals with and without atherosclerosis. In monocytes, 9 out of 20 patients with SLE had an interferon-inducible signature compared with 2 out of 16 controls. By looking at gene expression during monocyte-to-macrophage differentiation, we identified pathways which were differentially regulated between SLE and controls and identified signatures based on relevant intracellular signaling molecules which could differentiate SLE patients with atherosclerosis from controls. Among patients with SLE, we used a previously defined 344-gene atherosclerosis signature in monocyte-to-macrophage differentiation to identify patient subgroups with and without atherosclerosis. Interestingly, this signature further classified patients on the basis of the presence of SLE disease activity and cardiovascular risk factors.

Conclusions

Many genes were differentially regulated during monocyte-to-macrophage differentiation in SLE patients compared with controls. The expression of these genes in mononuclear cells is important in the pathogenesis of SLE, and molecular profiling using gene expression can help stratify SLE patients who may be at risk for development of atherosclerosis.  相似文献   

19.
Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is a type II C-type lectin that functions as an adhesion receptor and mediates binding and internalization of pathogens such as virus (human immunodeficiency virus, hepatitis C), bacteria (Mycobacterium), fungi, and parasites. DC-SIGN expression in vivo is primarily restricted to interstitial dendritic cells (DC) and certain tissue macrophages. We now report that leukemic THP-1 cells, widely used as a model for monocyte-macrophage differentiation, express very low basal levels of DC-SIGN and that DC-SIGN expression in THP-1 cells is regulated during differentiation. Differentiation-inducing agents (phorbol ester, bryostatin) conveyed THP-1 cells with the ability to up-regulate DC-SIGN mRNA levels and cell surface expression in response to interleukin-4 (IL-4) or IL-13. DC-SIGN up-regulation required a functional JAK-STAT signaling pathway, was inhibited in the presence of lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha), and conferred THP-1 cells with increased pathogen recognition and T cell stimulatory capabilities. The up-regulation of DC-SIGN on THP-1 cells resembles its inducible expression on monocytes and macrophages, where DC-SIGN expression is also induced by IL-4/IL-13 and negatively regulated by TNF-alpha, LPS, and vitamin D(3). These results point to THP-1 cells as a useful cellular system to characterize the pathogen-binding capabilities of DC-SIGN and to dissect the molecular mechanisms that control its regulated and tissue-specific expression in myeloid dendritic cells, and the results suggest that DC-SIGN constitutes a marker for both DC and alternatively activated macrophages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号