首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
长吻wei精巢发育的分期及精子的发生和形成   总被引:16,自引:2,他引:14  
长吻wei精巢的发育分为精原细胞增殖期、精母细胞生长期、精母细胞成熟期、精子细胞出现期、精子完全成熟期和精子退化吸收期。精巢的后1/3不产生也不贮存精子,精子的发生和形成经过精原细胞、精母细胞、精子细胞到精子的一系列过程。精原细胞有两种类型。精子无顶体,有中心粒帽,中片长,核凹窝和线粒体发达,鞭毛具侧鳍。  相似文献   

2.
秦岭北坡中国林蛙精巢显微结构的年周期变化   总被引:6,自引:0,他引:6  
用光镜观察了秦岭北坡中国林蛙(Ranachensinensis)精巢显微结构的年周期变化,结合精巢系数的变化探讨其生殖规律。结果显示,秦岭北坡中国林蛙的生精周期属于非连续型。精巢系数的变化与精子发生的活动周期相一致。精子发生从每年5月开始,翌年4月结束,历时1年。生精周期可划分为5个时期。Ⅰ期,精原细胞增殖期,5~7月,精巢系数最小,精原细胞进行有丝分裂;Ⅱ期,精母细胞成熟分裂期,8~9月,精巢系数最大,精原细胞、精母细胞和精子细胞在生精小管内共存;Ⅲ期,精子形成期,9~1 0月,精子细胞变态形成精子;Ⅳ期,成熟精子贮存越冬期,1 1月至翌年2月,成熟精子贮存在生精小管中;V期,精子排放期,翌年3~5月,精巢系数显著下降,成熟精子从生精小管脱离,通过输精管道排出体外。  相似文献   

3.
金丽  张翀  张耀光 《四川动物》2008,27(3):347-351
中华蟾蜍精子的发生可以分为精原细胞期、初级精母细胞期、次级精母细胞期、精子细胞期和精子期5个时期,精子的形成过程包括核固缩、细胞质丢失、鞭毛形成等阶段.曲细精管中可以分出4种形态的精原细胞,其中有3种为增殖型精原细胞,另1种形态的精原细胞通过分裂形成1个精原干细胞和1个增殖型精原细胞,前者分裂以维持精原细胞的数量,后者发育分裂成精母细胞.Mallory三色法染色能清晰的区分精原干细胞和增殖型精原细胞.毕特氏器是异性生殖腺的残余,与精巢以被膜为界.性成熟个体的毕特氏器之卵母细胞圆形或椭圆形,多处于Ⅲ时相;滤泡细胞扁平或矮立方状;卵母细胞间富含微血管、间质细胞、嗜苦味酸细胞等.  相似文献   

4.
粗糙沼虾精巢发育的组织学   总被引:1,自引:1,他引:0  
利用光镜技术,对粗糙沼虾精巢发育进行了研究,根据精子发生过程中每种生殖细胞所占的比例和发生的次序,并结合精巢的形态特征,把精巢发育过程分为五个时期,即精原细胞期,精母细胞期,精细胞期,成熟精子期及退化期,精原细胞期,精巢小,透明乳白色,生精小管内的生殖细胞以精原细胞为主;精母细胞期;精巢体积增大,半透明乳白色,主要由处于初级精母细胞的次级精母细胞阶段的生殖细胞组成;精细胞期,精巢体积继续增大,颜色加深,生精小管内的生殖细胞以精细胞为主;成熟精子期,精巢体积可达最大,紫红色,生精小管内充满着成熟的精子,退化期;精巢体积减小,半透明乳白色,生精小管内的成熟精子几乎排空。  相似文献   

5.
应用光学显微镜对唐鱼Tanichthys albonubes精巢的组织结构进行了观察.结果表明,唐鱼的精巢属于小叶型结构.性成熟唐鱼的精巢呈乳白色,长条状,左右各一,合并成“Y”型.小叶间质把精巢分成许多精小叶,每个精小叶由数个精小囊组成,精子就在精小囊中形成.同一精小叶内的精小囊不一定同步发育,但同一精小囊中的生精细胞发育是同步的.唐鱼的精子发生和形成过程经历了初级精原细胞、次级精原细胞、初级精母细胞、次级精母细胞、精子细胞和成熟精子6个阶段.精巢内同时存在初级精原细胞和次级精原细胞两种类型的精原细胞.  相似文献   

6.
锯缘青蟹精巢发育的组织学观察   总被引:15,自引:0,他引:15  
组织学观察表明,锯缘青蟹(Scylla serrata)精巢发育周期可以分为精原细胞期,精母细胞期,精子细胞期,精子期和休止期5个时期。在划分精巢发育期的基础上,结合生精小管直径的成熟节段比例这2个指标,可以较准确地反映锯缘青解精巢的发育状况。而成熟节段比例可以作为锯缘青蟹精巢发育的表征指标。  相似文献   

7.
应用光镜和透射电镜技术研究山羊精子发生不同阶段各级生精细胞显微、超微结构及山羊精子分化成熟过程。结果表明:山羊精子发生经历了精原细胞、初级精母细胞、次级精母细胞、精子细胞及变态精子阶段发育成成熟的精子。精原细胞期核呈椭圆形,染色质凝集成团分布于核质中,线粒体开始出现;精母细胞期有高尔基体分布;精子细胞经过核质浓缩、线粒体迁移等过程发育成成熟精子,成熟的山羊精子头部细长,核质高度浓缩,中段膨大,线粒体丰富。线粒体、中心粒对精子变态发生起重要作用,同时观察到头部与中段脱落的畸形精子。  相似文献   

8.
黑脊倒刺鲃精巢结构和精子发生的研究   总被引:9,自引:0,他引:9  
用光学显微镜和电子显微镜研究了黑脊倒刺鲃精巢的组织结构和精子发生过程。精巢属于小叶型,由精小叶、小叶间质、壶腹腔和输出管构成。精小叶由各期生精细胞和支持细胞构成。除初级精原细胞以外的各期生精细胞和支持细胞组成了精小囊。每一精小囊中的生精细胞发育同步。成熟的精子从精小囊中释放出来,进入小叶腔中。在精巢的腹侧,小叶腔与壶腹腔连接。在壶腹腔的外侧,有一条与壶腹腔平行的输出管。壶腹腔与输出管相通。在壶腹腔和输出管中都充满精子。精巢的后端与贮精囊相连。贮精囊中充满形状不规则的腔隙。腔隙中有精子分布。输出管从精巢延伸出来,进入贮精囊中,位于贮精囊的一侧。左右两个贮精囊通向一条共同的输精管。输精管上皮具有分泌功能。精子发生在精小叶中进行。精子发生经历了初级精原细胞、次级精原细胞、初级精母细胞、次级精母细胞和精子细胞阶段。精子细胞经过精子形成过程,形成精子。  相似文献   

9.
通过比较D 系三倍体银鲫 (Carassius auratus gibelio Bloch) 与异源四倍体银鲫, 我们发现异源四倍体的外周血与精巢组织跟三倍体银鲫存在明显差异。HE 染色结果表明, 异源四倍体银鲫外周血红细胞有明显的分裂倾向。利用流式细胞术对D 系三倍体银鲫与异源四倍体银鲫外周血的DNA 直方图进行比较, 结果表明异源四倍体外周血的DNA 直方图有两个主峰。此外, 我们观察到异源四倍体银鲫精巢的三种类型, 其中Ⅰ型精巢可以产生正常精子, Ⅱ型可观察到精小囊结构, 但不能产生精子, Ⅲ型精巢未发育出精小囊结构。进一步用银鲫Vasa 抗体对精巢切片进行组织免疫荧光共聚焦显微分析, 结果表明, Ⅰ型精巢的生殖细胞完成了减数分裂, 能观察到精原细胞、初级精母细胞、次级精母细胞, 以及大量位于精小管中间的精子细胞和精子; 而Ⅱ型精巢的生殖细胞不能完成第二次减数分裂, 精小囊中存在大量的初级和次级精母细胞, 没有精子细胞产生。研究丰富了对异源四倍体银鲫生物学性状的认识。    相似文献   

10.
大弹涂鱼性腺发育的组织学观察   总被引:2,自引:0,他引:2  
于光镜下对大弹涂鱼性腺切片作了组织学观察,对大弹涂鱼卵细胞和精子发育规律进行研究。结果表明:大弹涂鱼在一个生殖季节中只能产卵1次,大弹涂鱼属于一次性产卵类型。大弹涂鱼3月卵母细胞进入大生长期发育阶段,4—6月为繁殖盛期,7—8月为繁殖末期。10月卵巢基本修整完毕,进入Ⅱ′恢复期。卵细胞发育可分为6个时相:卵原细胞、卵母细胞单层滤泡、卵母细胞出现脂滴和卵黄、卵母细胞卵黄充满、卵母细胞核极化、卵母细胞退化时相。卵母细胞膜单层,由具有辐射纹的放射带构成,滤泡膜细胞分泌而成的次级卵膜成为成熟卵子的附着丝。大弹涂鱼2月精巢开始发育,5月GSI值达最高值,平均成熟系数达0.70%,排精量最旺盛,出现高峰。7—9月GSI值明显下降。11月至翌年2月GSI值波动于0.08%—0.20%之间,变辐小,此期间精巢处于静止发育状态。大弹涂鱼的精巢属于小叶型结构。精子发育分为6个时期:精原细胞期、精原细胞增殖期、精母细胞生长成熟期、精子细胞变态期、精子成熟期和退化吸收期。繁殖季节精小叶内充满精子,精小囊消失。    相似文献   

11.
鳗鲡精巢发育可划分为6个时期,即精原细胞前增殖期,精原细胞后增殖期,精母细胞生长、成熟期,精子开始出现期,精子完全成熟期和精子退化吸收期。卵细胞的发育可划分为6个时相,即卵原细胞时相,卵母细胞单层滤泡时相,卵母细胞出现脂肪泡时相,卵母细胞卵黄充满时相,卵母细胞核极化时相和卵母细胞退化时相。以卵细胞发育6个时相在卵巢中组成的差异,也可把卵巢划分为相应的6个时期。对鳗鲡性腺发育的分期,卵黄积累方式,产卵类型等问题进行了讨论。    相似文献   

12.
Telomeres, the noncoding sequences at the ends of chromosomes, progressively shorten with each cellular division. Spermatozoa have very long telomeres but they lack telomerase enzymatic activity that is necessary for de novo synthesis and addition of telomeres. We performed a telomere restriction fragment analysis to compare the telomere lengths in immature rat testis (containing type A spermatogonia) with adult rat testis (containing more differentiated germ cells). Mean telomere length in the immature testis was significantly shorter in comparison to adult testis, suggesting that type A spermatogonia probably have shorter telomeres than more differentiated germ cells. Then, we isolated type A spermatogonia from immature testis, and pachytene spermatocytes and round spermatids from adult testis. Pachytene spermatocytes exhibited longer telomeres compared to type A spermatogonia. Surprisingly, although statistically not significant, round spermatids showed a decrease in telomere length. Epididymal spermatozoa exhibited the longest mean telomere length. In marked contrast, telomerase activity, measured by the telomeric repeat amplification protocol was very high in type A spermatogonia, decreased in pachytene spermatocytes and round spermatids, and was totally absent in epididymal spermatozoa. In summary, these results indicate that telomere length increases during the development of male germ cells from spermatogonia to spermatozoa and is inversely correlated with the expression of telomerase activity.  相似文献   

13.
长吻鮠精巢及精子结构的研究   总被引:11,自引:0,他引:11  
长吻鮠精巢高度分支呈指状。后1/3紫红色,由上皮细胞组成,既不产生精子,也不贮存精子。精巢的内部结构为叶型,由体细胞和生殖细胞构成,小叶的基本单位是小囊。精子头短而圆,主要为核占据,无顶体,核凹窝十分发达,有中心粒帽;尾极长,具侧鳍,轴丝基部有发达的囊泡状结构和线粒体。  相似文献   

14.
Spermatogenesis in male Atlantic halibut (Hippoglossus hippoglossus L.) was investigated by sampling blood plasma and testicular tissue from 15-39-month-old fish. The experiment covered a period in which all fish reached puberty and completed sexual maturation at least once. The germinal compartment in Atlantic halibut testis appears to be organized in branching lobules of the unrestricted spermatogonial type, because spermatocysts with spermatogonia were found throughout the testis. Spermatogenesis was characterized histologically, and staged according to the most advanced type of germ cell present: spermatogonia (Stage I), spermatogonia and spermatocytes (Stage II), spermatogonia, spermatocytes and spermatids (Stage III), spermatogonia, spermatocytes, spermatids and spermatozoa (Stage IV), and regressing testis (Stage V). Three phases could be distinguished: first, an initial phase with low levels of circulating testosterone (T; quantified by RIA) and 11-ketotestosterone (11-KT; quantified by ELISA), spermatogonial proliferation, and subsequently the initiation of meiosis marked by the formation of spermatocytes (Stage I and II). Secondly, a phase with increasing T and 11-KT levels and with haploid germ cells including spermatozoa present in the testis (Stage III and IV). Thirdly, a phase with low T and 11-KT levels and a regressing testis with Sertoli cells displaying signs of phagocytotic activity (Stage V). Circulating levels of 11-KT were at least four-fold higher than those of T during all stages of spermatogenesis. Increasing plasma levels of T and 11-KT were associated with increasing testicular mass throughout the reproductive cycle. The absolute level of, or the relation between, testis growth and circulating androgens were not significantly different in first time spawners compared to fish that underwent their second spawning season. These results provide reference levels for Atlantic halibut spermatogenesis.  相似文献   

15.
16.
The Cdc2-cyclin B complex (named the M-phase-promoting factor, MPF) is well known to be a key regulator of G2-M transition in both mitosis and meiosis. However, MPF may have functions other than the cell cycle regulation, since its activity is detectable in post-mitotic (or post-meiotic) non-dividing cells. Cyclin B comprises several subtypes, but their functional differences are still unknown. Despite the established function of MPF during oocyte maturation, its role during spermatogenesis, where spermatogenic cells undergo drastic morphological changes after meiosis, remains to be elucidated. To address these issues, we have isolated cDNA clones encoding cyclins B1 and B2 from medaka testis and raised polyclonal antibodies against their products. Using these as probes, we examined the expression patterns of cyclins B1 and B2 in medaka testis at both mRNA and protein levels. Cyclin B1 and B2 mRNAs were expressed in all stages of spermatogenic cells except for spermatozoa, although the expression levels varied according to the spermatogenic stages. Cyclin B1 protein was expressed only in spermatogonia and spermatocytes at prophase and metaphase with a transient disappearance at anaphase. On the other hand, cyclin B2 protein was continuously expressed throughout spermatogenesis, even in spermatogonia and spermatocytes at anaphase and in post-meiotic spermatids and spermatozoa. The difference in their expression patterns suggests that cyclins B1 and B2 have distinct roles in medaka spermatogenesis; i.e., cyclin B1 controls the meiotic cell cycle, whereas cyclin B2 is involved in process(es) other than meiosis.  相似文献   

17.
金鱼精巢的细胞构造与精子的发生和形成   总被引:40,自引:2,他引:38  
  相似文献   

18.
19.
The efficiency of spermatogenesis and degenerations of different spermatogenic cells under normal conditions of the environment have been investigated in rams. The meiotic divisions and the position of first-generation spermatids in haematoxylin-eosin stained testicular preparations were used to identify eight stages of the seminiferous epithelial cycle (SEC). The stages of relatively long duration (i.e., 1,2,3,4,8) were sub-divided. The percent-ages of frequency for the 14 stages reported were also studied. Three generations of type A (A(1), A(2), A(3)), one generation of type intermediate (In) and two generations of type B (B(1), B(2)) spermatogonia were recognized. A(2) and B(2) spermatogonia as well as primary and secondary spermatocytes did not degenerate. Contrarily, A(1), A(2), A(3), In and B(1) spermatogonia showed 25, 13.7, 27.3 and 21.2% degenerations respectively. We concluded that compared with the previously used eight-stage classification, subdividing stages with long durations as done in this study facilitates investigating the degenerations of spermatogenic cells. The efficiency of spermatogenesis in rams was 47.58% since one A(3) spermatogonium produces 30.45 spermatids/spermatozoa against the expected number of 64.  相似文献   

20.
A procedure is described which permits the isolation from the prepuberal mouse testis of highly purified populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, leptotene and zygotene primary spermatocytes, pachytene primary spermatocytes and Sertoli cells. The successful isolation of these prepuberal cell types was accomplished by: (a) defining distinctive morphological characteristics of the cells, (b) determining the temporal appearance of spermatogenic cells during prepuberal development, (c) isolating purified seminiferous cords, after dissociation of the testis with collagenase, (d) separating the trypsin-dispersed seminiferous cells by sedimentation velocity at unit gravity, and (e) assessing the identity and purity of the isolated cell types by microscopy. The seminiferous epithelium from day 6 animals contains only primitive type A spermatogonia and Sertoli cells. Type A and type B spermatogonia are present by day 8. At day 10, meiotic prophase is initiated, with the germ cells reaching the early and late pachytene stages by 14 and 18, respectively. Secondary spermatocytes and haploid spermatids appear throughout this developmental period. The purity and optimum day for the recovery of specific cell types are as follows: day 6, Sertoli cells (purity>99 percent) and primitive type A spermatogonia (90 percent); day 8, type A spermatogonia (91 percent) and type B spermatogonia (76 percent); day 18, preleptotene spermatocytes (93 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号