首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein tyrosine phosphatases (PTPases), such as SHP-1 and SHP-2, that contain Src homology 2 (SH2) domains play important roles in growth factor and cytokine signal transduction pathways. A protein of approximately 115 to 120 kDa that interacts with SHP-1 and SHP-2 was purified from v-src-transformed rat fibroblasts (SR-3Y1 cells), and the corresponding cDNA was cloned. The predicted amino acid sequence of the encoded protein, termed SHPS-1 (SHP substrate 1), suggests that it is a glycosylated receptor-like protein with three immunoglobulin-like domains in its extracellular region and four YXX(L/V/I) motifs, potential tyrosine phosphorylation and SH2-domain binding sites, in its cytoplasmic region. Various mitogens, including serum, insulin, and lysophosphatidic acid, or cell adhesion induced tyrosine phosphorylation of SHPS-1 and its subsequent association with SHP-2 in cultured cells. Thus, SHPS-1 may be a direct substrate for both tyrosine kinases, such as the insulin receptor kinase or Src, and a specific docking protein for SH2-domain-containing PTPases. In addition, we suggest that SHPS-1 may be a potential substrate for SHP-2 and may function in both growth factor- and cell adhesion-induced cell signaling.  相似文献   

2.
Protein tyrosine phosphatases have been implicated in the regulation of receptor tyrosine kinase signalling pathways, including that of the insulin receptor. Here, cell density-dependent changes in PTPase expression have been exploited to investigate the relationship between cellular PTPase levels and the insulin receptor signal transduction pathway. Increasing cell density (20%, 50%, and >90%) in the rat McA-RH7777 hepatoma cell line resulted in increased protein expression of the receptor-like PTPase LAR (14-fold), and the nonreceptor PTPases PTP1B (11-fold) and SHP2 (10-fold). Each of these PTPases has previously been implicated in regulating insulin receptor signal transduction. Despite these marked increases, maximum insulin receptor autophosphorylation as well as receptor expression actually increased 2-fold. MAP kinase also increased approximately 2-fold as a function of cell density and paralleled increases in expression levels. Neither sensitivity nor maximum responsiveness to insulin were decreased at increasing cell densities as assessed by activation of PI 3-kinase. Duration of response was also unimpaired. These results suggest that expression levels of relevant PTPases are not the primary determinant in their modulation of insulin receptor kinase activity. Restricted accessibility at the molecular level or involvement of accessory proteins may be more critical parameters.  相似文献   

3.
Protein tyrosine phosphatases (PTPases) are a family of enzymes that play a crucial role in the regulation of signal transduction mediated by reversible protein tyrosine phosphorylation. To understand the significance of PTPases in physiological and pathophysiological processes in the kidney, we isolated three cDNA segments encoding PTPases (LAR, LRP and a novel PTPase) from rat kidney by polymerase chain reaction (PCR). Using PCR product as a probe, we isolated a full-length cDNA of rat LRP. LRP cDNA encoded a single membrane spanning protein consisted of 796 amino acids, with two tandemly located intracellular PTPase domains. By Northern analysis, a ubiquitous pattern of LRP gene expression in rat tissues was demonstrated. In cultured rat mesangial cells, LRP mRNA was detected and the mRNA level was suppressed by either interleukin-1 or interleukin-6 treatment.  相似文献   

4.
Seven protein tyrosine phosphatase (PTPase) genes have been identified in the fruit-fly Drosophila melanogaster. Four of these genes encode receptor-linked PTPases (R-PTPs) that are expressed on central nervous system axons in the embryo. Each axonal R-PTP has an extracellular domain that is homologous to vertebrate adhesion molecules and to identified mammalian R-PTPs. Two non-receptor PTPase genes have been isolated to date. One of these, corkscrew (csw), encodes an SH2 domain-containing PTPase that appears to be a homolog of mammalian PTP1D. Genetic evidence indicates that the csw PTPase is involved in the transduction of signals from receptor tyrosine kinases to their down-stream targets, which include Ras proteins.  相似文献   

5.
N X Krueger  M Streuli    H Saito 《The EMBO journal》1990,9(10):3241-3252
Protein tyrosine phosphatases (PTPases), together with protein tyrosine kinases, regulate the tyrosine phosphorylation that controls cell activities and proliferation. Previously, it has been recognized that both cytosolic PTPases and membrane associated, receptor-like PTPases exist. In order to examine the structural diversity of receptor-like PTPases, we isolated human cDNA clones that cross-hybridized to a Drosophila PTPase cDNA clone, DPTP12, under non-stringent hybridization conditions. The cDNA clones thus isolated included LCA and six other novel receptor-like PTPases, named HPTP alpha, beta, gamma, delta, epsilon, and zeta. The cytoplasmic regions of HPTP alpha and epsilon are highly homologous, and are composed of two tandemly duplicated PTPase-like domains. The extracellular regions of HPTP alpha and epsilon are, respectively, 123 amino acids and 27 amino acids, and do not have obvious similarity to any known protein. The cytoplasmic region of HPTP beta contains only one PTPase domain. The extracellular region of HPTP beta, which is 1599 amino acids, is composed of 16 fibronectin type-III repeats. HPTP delta is very similar to leukocyte common antigen related molecule (LAR), in both the extracellular and cytoplasmic regions. Partial sequences of HPTP gamma and zeta indicate that they are highly homologous and contain two PTPase-like domains. The PTPase-like domains of HPTP alpha, beta and delta expressed in Escherichia coli had tyrosine phosphatase activities.  相似文献   

6.
SHP1 and SHP2 tyrosine phosphatases have both been implicated in signalling pathways downstream of the interleukin-3 (IL-3) receptor. We have investigated the co-association of SHP1 and SHP2 with tyrosine-phosphorylated proteins in IL-3-dependent BaF/3 cells. We demonstrate that both SHP1 and SHP2 associate with Aic2A (beta chain of the IL-3 receptor), Gab2 and the paired inhibitory receptor B (PIR-B). The individual SH2 domains of SHP2 can independently bind Gab2, potentially important for the adapter function of SHP2. Association of both phosphatases with Aic2A and Gab2 increases upon IL-3 treatment. Recruitment of SHP1 to PIR-B also increases in response to IL-3, suggesting a functional link between inhibitory and cytokine receptor signalling. Aic2A is a rapid target for dephosphorylation following IL-3 stimulation and substrate-trapping versions of both phosphatases identify Aic2A and Gab2 as substrates for SHP1 and SHP2. These studies suggest that SH2-domain interactions are important for targetting these phosphatases to their substrates.  相似文献   

7.
Protein-tyrosine phosphatases (PTPases) play key roles in regulating tyrosine phosphorylation levels in cells, yet the identity of their substrates remains limited. We report here on the identification of PTPases capable of dephosphorylating the phosphorylated immune tyrosine-based activation motifs present in the T cell receptor zeta subunit. To characterize these PTPases, we purified enzyme activities directed against the phosphorylated T cell receptor zeta subunit by a combination of anion and cation chromatography procedures. A novel ELISA-based PTPase assay was developed to rapidly screen protein fractions for enzyme activity following the various chromatography steps. We present data that SHP-1 and PTPH1 are present in highly enriched protein fractions that exhibit PTPase activities toward a tyrosine-phosphorylated TCR zeta substrate (specific activity ranging from 0.23 to 40 pmol/min/microg). We also used a protein-tyrosine phosphatase substrate-trapping library comprising the catalytic domains of 47 distinct protein-tyrosine phosphatases, representing almost all the tyrosine phosphatases identified in the human genome. PTPH1 was the predominant phosphatase capable of complexing phospho-zeta. Subsequent transfection assays indicated that SHP-1 and PTPH1 are the two principal PTPases capable of regulating the phosphorylation state of the TCR zeta ITAMs, with PTPH1 directly dephosphorylating zeta. This is the first reported demonstration that PTPH1 is a candidate PTPase capable of interacting with and dephosphorylating TCR zeta.  相似文献   

8.
Protein tyrosine phosphorylation is an important regulatory mechanisms in cell physiology. While the protein tyrosine kinase (PTKase) family has been extensively studied, only six protein tyrosine phosphatases (PTPases) have been described. By Southern blot analysis, genomic DNA from several different phyla were found to cross-hybridize with a cDNA probe encoding the human leukocyte-common antigen (LCA; CD45) PTPase domains. To pursue this observation further, total mRNA from the protochordate Styela plicata was used as a tempalte to copy and amplify, using polymerase chain reaction (PCR) technology, PTPase domains. Twenty-seven distinct sequences were identified that contain hallmark residues of PTPases; two of these are similar to described mammalian PTPases. Southern blot analysis indicates that at least one other Styela sequence is highly conserved in a variety of phyla. Seven of the Styela domains have significant similarity to each other, indicating a subfamily of PTPases. However, most of the sequences are disparate. A comparison of the 27 Styela sequences with the ten known PTPase domain sequences reveals that only three residues are absolutely conserved and identifies regions that are highly divergent. The data indicate that the PTPase family will be equally as large and diverse as the PTKases. The extent and diversity of the PTPase family suggests that these enzymes are, in their own right, important regulators of cell behavior.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M37986-M38041.  相似文献   

9.
In the past few years, very rapid advances have been made in determining the primary structure of protein tyrosine phosphatases (PTPases). PTPase genes have now been isolated from bacteria, viruses, yeasts and insects as well as vertebrates. The cytosolic PTPases have a catalytic domain associated with various accessory domains that are believed to be involved in protein-protein interaction or subcellular localization. The transmembrane PTPases have either one or two cytoplasmic PTPase domains and an extracellular receptor-like structure. The existence of a large number of structurally diverse PTPases suggests that they play specific and crucial roles in signal transduction. In this article, the structural features of the PTPases from higher eukaryotes are reviewed.  相似文献   

10.
Protein-tyrosine phosphatases and the regulation of insulin action.   总被引:3,自引:0,他引:3  
Protein-tyrosine phosphatases (PTPases) play an important role in the regulation of insulin action by dephosphorylating the active (autophosphorylated) form of the insulin receptor and attenuating its tyrosine kinase activity. PTPases can also modulate post-receptor signalling by catalyzing the dephosphorylation of cellular substrates of the insulin receptor kinase. Dramatic advances have recently been made in our understanding of PTPases as an extensive family of transmembrane and intracellular proteins that are involved in a number of pathways of cellular signal transduction. Identification of the PTPase(s) which act on various components of the insulin action cascade will not only enhance our understanding of insulin signalling but will also clarify the potential involvement of PTPases in the pathophysiology of insulin-resistant disease states. This brief review provides a summary of reversible tyrosine phosphorylation events in insulin action and available data on candidate PTPases in liver and skeletal muscle that may be involved in the regulation of insulin action.  相似文献   

11.
Tyrosine phosphorylation of the insulin receptor is the initial event following receptor binding to insulin, and it induces further tyrosine phosphorylation of various intracellular molecules. This signaling is countered by protein tyrosine phosphatases (PTPases), which reportedly are associated with insulin resistance that can be reduced by regulation of PTPases. Protein tyrosine phosphatase 1B (PTP1B) and leukocyte antigen-related PTPase (LAR) are the PTPases implicated most frequently in insulin resistance and diabetes mellitus. Here, we show that PTP1B and LAR are expressed in human fibroblasts, and we examine the regulation of PTPase activity in fibroblasts from patients with an insulin receptor gene mutation as an in vitro model of insulin resistance. Total PTPase activity was significantly lower in the cytosolic and membrane fractions of fibroblasts with mutations compared with controls (p<0.05). Insulin stimulation of fibroblasts with mutations resulted in a significantly smaller increase in PTP1B activity compared with stimulation of wild-type fibroblasts (p<0.05). This indicates that insulin receptor gene mutations blunt increases in PTPase activity in response to insulin, possibly via a negative feedback mechanism. Our data suggest that the PTPase activity in patients with insulin receptor gene mutation and severe insulin resistance may differ from that in ordinary type 2 diabetes.  相似文献   

12.
The protein tyrosine phosphatases (PTPases) are a group of regulatory enzymes that are critically important to a wide variety of cellular functions. A number of these PTPases have significant potential as targets for therapeutic intervention, for instance, in diabetes and autoimmune disease treatment. The hydroxylamine complex, bis(N,N-dimethylhydroxamido)hydroxooxovanadate (DMHAV), is an excellent inhibitor of the two PTPases, protein tyrosine phosphatase 1B (PTP1B) and leucocyte common antigen related phosphatase (LAR). However, because of the similarity of the active site architecture within the group of known PTPases, DMHAV is probably an effective inhibitor of most PTPases. Information gleaned from studies of the mechanism of inhibition of PTPases by peptide-derived inhibitors, together with information from comparative protein modelling and studies of the aqueous chemistry of DMHAV, has provided insights for the development of selective PTPase inhibitors. In cell cultures, DMHAV is effective in increasing phosphotyrosine levels on the insulin receptor and greatly facilitates glucose transport and glycogen synthesis. Selective PTPase inhibitors that are developed from the basis of the hydroxylamine motif may lead to effective vanadate-based complexes that have potential as therapeutic agents.  相似文献   

13.
Using in vitro protein tyrosine phosphatase (PTPase) assays, we found that sodium stibogluconate, a drug used in treatment of leishmaniasis, is a potent inhibitor of PTPases Src homology PTPase1 (SHP-1), SHP-2, and PTP1B but not the dual-specificity phosphatase mitogen-activated protein kinase phosphatase 1. Sodium stibogluconate inhibited 99% of SHP-1 activity at 10 micrograms/ml, a therapeutic concentration of the drug for leishmaniasis. Similar degrees of inhibition of SHP-2 and PTP1B required 100 micrograms/ml sodium stibogluconate, demonstrating differential sensitivities of PTPases to the inhibitor. The drug appeared to target the SHP-1 domain because it showed similar in vitro inhibition of SHP-1 and a mutant protein containing the SHP-1 PTPase domain alone. Moreover, it forms a stable complex with the PTPase: in vitro inhibition of SHP-1 by the drug was not removed by a washing process effective in relieving the inhibition of SHP-1 by the reversible inhibitor suramin. The inhibition of cellular PTPases by the drug was suggested by its rapid induction of tyrosine phosphorylation of cellular proteins in Baf3 cells and its augmentation of IL-3-induced Janus family kinase 2/Stat5 tyrosine phosphorylation and proliferation of Baf3 cells. The augmentation of the opposite effects of GM-CSF and IFN-alpha on TF-1 cell growth by the drug indicated its broad activities in the signaling of various cytokines. These data represent the first evidence that sodium stibogluconate inhibits PTPases and augments cytokine responses. Our results provide novel insights into the pharmacological effects of the drug and suggest potential new therapeutic applications.  相似文献   

14.
M Streuli  N X Krueger  T Thai  M Tang    H Saito 《The EMBO journal》1990,9(8):2399-2407
Protein tyrosine phosphorylation is regulated by both protein tyrosine kinases and protein tyrosine phosphatases (PTPases). Recently, the structures of a family of PTPases have been described. In order to study the structure-function relationships of receptor-linked PTPases, we analyzed the effects of deletion and point mutations within the cytoplasmic region of the receptor-linked PTPases, LCA and LAR. We show that the first of the two domains has enzyme activity by itself, and that one cysteine residue in the first domain of both LCA and LAR is absolutely required for activity. The second PTPase like domains do not have detectable catalytic activity using a variety of substrates, but sequences within the second domains influence substrate specificity. The functional significance of a stretch of 10 highly conserved amino acid residues surrounding the critical cysteine residue located in the first domain of LAR was assessed. At most positions, any substitution severely reduced enzyme activity, while missense mutations at the other positions tested could be tolerated to varying degrees depending on the amino acid substitution. It is suggested that this stretch of amino acids may be part of the catalytic center of PTPases.  相似文献   

15.
Protein tyrosine dephosphorylation and signal transduction   总被引:13,自引:0,他引:13  
The protein tyrosine phosphatases comprise a family of enzymes that specifically dephosphorylate tyrosyl residues. Determination of the amino acid sequence of a major low molecular mass form isolated from human placenta (PTPase 1B) provided the basis for the first identification of transmembrane proteins that bear intracellular phosphatase domains. The existence of such molecules, bearing the hallmarks of receptors, raises the exciting possibility of a novel mechanism of signal transduction in which the early events involve the ligand-induced dephosphorylation of tyrosyl residues in proteins.  相似文献   

16.
Most receptor-like, transmembrane protein tyrosine phosphatases (PTPases), such as CD45 and the leukocyte common antigen-related (LAR) molecule, have two tandemly repeated PTPase domains in the cytoplasmic segment. The role of each PTPase domain in mediating PTPase activity remains unclear; however, it has been proposed that PTPase activity is associated with only the first of the two domains, PTPase domain 1, and the membrane-distal PTPase domain 2, which has no catalytic activity, would regulate substrate specificity. In this paper, we examine the function of each PTPase domain of LAR in vivo using a potential physiological substrate, namely insulin receptor, and LAR mutant proteins in which the conserved cysteine residue was changed to a serine residue in the active site of either or both PTPase domains. LAR associated with and preferentially dephosphorylated the insulin receptor that was tyrosine phosphorylated by insulin stimulation. Its association was mediated by PTPase domain 2, because the mutation of Cys-1813 to Ser in domain 2 resulted in weakening of the association. The Cys-1522 to Ser mutant protein, which is defective in the LAR PTPase domain 1 catalytic site, was tightly associated with tyrosine-phosphorylated insulin receptor, but failed to dephosphorylate it, indicating that LAR PTPase domain 1 is critical for dephosphorylation of tyrosine-phosphorylated insulin receptor. This hypothesis was further confirmed by using LAR mutants in which either PTPase domain 1 or domain 2 was deleted. Moreover, the association of the extracellular domains of both LAR and insulin receptor was supported by using the LAR mutant protein without the two PTPase domains. LAR was phosphorylated by insulin receptor tyrosine kinase and autodephosphorylated by the catalytic activity of the PTPase domain 1. These results indicate that each domain of LAR plays distinct functional roles through phosphorylation and dephosphorylation in vivo.  相似文献   

17.
Eukaryotic cells respond to various stimuli by an increase or decrease in levels of phosphoproteins. Phosphotyrosine levels on eukaryotic cellular proteins are tightly regulated by the opposing actions of protein-tyrosine kinases and protein-tyrosine phosphatases (PTPases, EC 3.1.3.48). Studies on permeabilized mast cells suggest that the enabling reaction for exocytosis might involve protein dephosphorylation. In the present studies, a recombinant form of rat brain PTPase (rrbPTP-1) has been used to examine the potential role of PTPases in Ca(2+)-dependent amylase secretion from permeabilized rat pancreatic acini. Additionally, the concentrations and subcellular distributions of endogenous PTPase activity in rat pancreas were determined. The results from these experiments indicate that addition of exogenous PTPase stimulated Ca(2+)-dependent amylase secretion from pancreatic acinar cells and that endogenous PTPase activity was associated with the postgranule supernatant, zymogen granules, and in particular zymogen granule membranes. Our data suggest that protein tyrosine dephosphorylation is potentially involved in regulated secretion at a site(s) distal to receptor-mediated elevation of intracellular second messengers.  相似文献   

18.
The reaction mechanism of protein tyrosine phosphatases (PTPases) and dual-specificity protein phosphatases is thought to involve a catalytic aspartic acid residue. This residue was recently identified by site-directed mutagenesis in Yersinia PTPase, VHR protein phosphatase, and bovine low molecular weight protein phosphatase. Herein we identify aspartic acid 383 as a potential candidate for the catalytic acid in human Cdc25A protein phosphatase, using sequence alignment, structural information, and site-directed mutagenesis. The D383N mutant enzyme exhibits a 150-fold reduction in kcat, with Kw only slightly changed. Analysis of sequence homologies between several members of the Cdc25 family and deletion mutagenesis substantiate the concept of a two-domain structure for Cdc25, with a regulatory N-terminal and a catalytic C-terminal domain. Based on the alignment of catalytic residues and secondary structure elements, we present a three-dimensional model for the core region of Cdc25. By comparing this three-dimensional model to the crystal structures of PTP1b, Yersinia PTPase, and bovine low molecular weight PTPase, which share only very limited amino acid sequence similarities, we identify a general architecture of the protein phosphatase core region, encompassing the active site loop motif HCXXXXXR and the catalytic aspartic acid residue.  相似文献   

19.
Protein tyrosine phosphorylation is thought to be a unique feature of multicellular animals. Interestingly, the genome of the unicellular protist Monosiga brevicollis reveals a surprisingly high number and diversity of protein tyrosine kinases, protein tyrosine phosphatases (PTPs), and phosphotyrosine-binding domains. Our study focuses on a hypothetical SH2 domain-containing PTP (SHP), which interestingly has a predicted structure that is distinct from SHPs found in animals. In this study, we isolated cDNA of the enzyme and discovered that its actual sequence was different from the predicted sequence as a result of non-consensus RNA splicing. Contrary to the predicted structure with one SH2 domain and a disrupted phosphatase domain, Monosiga brevicollis SHP (MbSHP) contains two SH2 domains and an intact PTP domain, closely resembling SHP enzymes found in animals. We further expressed the full-length and SH2 domain-truncated forms of the enzyme in Escherichiacoli cells and characterized their enzymatic activities. The double-SH2 domain-truncated form of the enzyme effectively dephosphorylated a common PTP substrate with a specific activity among the highest in characterized PTPs, while the full-length and the N-terminal SH2 domain-truncated forms of the enzyme showed much lower activity with altered pH dependency and responses to ionic strength and common PTP inhibitors. This indicates that SH2 domains suppress the catalytic activity. SHP represents a highly conserved ancient PTP, and studying MbSHP should provide a better understanding about the evolution of tyrosine phosphorylation.  相似文献   

20.
Lu W  Shen K  Cole PA 《Biochemistry》2003,42(18):5461-5468
The regulation of the protein tyrosine phosphatase (PTPase) SHP-2 by tyrosine phosphorylation has been difficult to elucidate because of the intrinsic instability of the phosphoprotein. In the past, expressed protein ligation has been used to site-specifically incorporate the phosphotyrosine mimic Pmp (phosphonomethylene phenylalanine) into the two tyrosine phosphorylation sites (542, 580) of SHP-2 one at a time to analyze the effects on catalytic behavior. In this study, we have incorporated two Pmps into the phosphorylation sites simultaneously and examined the effects of double SHP-2 tyrosine phosphorylation. We have found that the Pmp groups show close to additive effects on PTPase stimulation, suggesting dual SH2 domain occupancy. The relative effects of the phosphotyrosine analogue difluoromethylene phosphonophenylalanine (F(2)Pmp) compared to those of Pmp were also examined. It was found that the F(2)Pmp analogue showed slightly enhanced PTPase stimulation compared with the Pmp analogue, consistent with its higher affinity for SH2 domains. Taken together with the bis-Pmp studies, these data suggest that double phosphorylation of the SHP-2 C-terminus could give rise to a 9-fold overall PTPase activation, 30-50% of the value associated with deletion of the SH2 domains. Catalytically inactive forms of phosphorylated SHP-2 proteins were also produced by expressed protein ligation. This allowed for a systematic analysis of intermolecular autodephosphorylation of SHP-2, which revealed how conformational plasticity can modulate phosphotyrosine stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号