首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Phytoextraction of Risk Elements by Willow and Poplar Trees   总被引:1,自引:0,他引:1  
To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4–2.0 mg Cd.kg?1, 78–313 mg Zn.kg?1, 21.3–118 mg Cu.kg?1). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg?1, 909 mg Zn.kg?1, and 17.7 mg Cu.kg?1) compared to Populus clones (maximum 2.06 mg Cd.kg?1, 463 mg Zn.kg?1, and 11.8 mg Cu.kg?1). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.  相似文献   

2.
The application of chelating agents for phytoextraction has demonstrated that it is an efficient method to activate heavy metals in polluted soil. We conducted pot experiments using soybean, which has been considered an indicator plant, to study the effects of EDTA and EDDS on heavy metals’ activation, and on the soybean. The study results indicated that EDDS decreased the chlorophyll content of the leaves and increased the malondialdehyde (MDA) content of the soybean. EDTA also decreased the chlorophyll content of the leaves. EDDS had a strong influence on activating Cu (2583-8900-fold) and Zn. The addition of 5 mmol kg?1 of EDDS markedly increased the uptake of metals. Compared with the control, EDDS increased the Cu uptake (100-205-fold). EDTA greatly increased the activation of heavy metals; it also increased Cu uptake in a concentration-dependent manner. EDTA also increased the biological concentration factor (BCF) and the transfer factor (TF) in a concentration-dependent manner. The BCF and the TF reached maximum levels when 5 mmol kg?1 EDDS was applied to the pots.  相似文献   

3.
Short rotation coppice (SRC) such as Salix spp. can be grown as an energy crop and offers some potential for economic and practical phytoextraction of marginally contaminated arable soil. This study tested various soil amendments intended to increase soil metal availability to Salix, investigated the distribution of metal between different tree fractions and assessed the viability of phytoextraction using SRC on arable soils. Several Salix genotypes were grown in field trials over 4 years. Cd and Zn concentrations were generally ranked in the order leaves > bark > wood. Metal concentrations in wood increased towards the top of the willow stems, whereas concentrations in leaves showed the opposite trend. None of the amendments significantly increased uptake of Zn by willow. However, in response to a range of soil HCl treatments, mean Cd concentrations in stems and leaves were 112% and 130% of control values. Data from the current experiment, and previous studies, were combined to develop a predictive model of Cd and Zn stem uptake by Salix. The minimum biological concentration factor (BCF) required to achieve a prescribed soil metal target was also calculated based on typical proportions of bioavailable Cd in sludge-amended soils for a 25-year Salix rotation. The best Salix genotypes investigated achieved less than 20% of the uptake rate required to remove one third of the soil Cd content (equivalent to the average isotopically exchangeable Cd fraction in soils at the study site).  相似文献   

4.
Abstract

To evaluate the phytoextraction efficiency of Gypsophila paniculata from Cs-contaminated soils and analyze the mechanism of Cs accumulation in G. paniculata, we analyzed the characteristics of Cs bioaccumulation and subcellular distribution, in addition to its chemical forms in the plant under hydroponic conditions. The results showed that total Cs content in the aboveground parts and the entire plant were as high as 6137.32?mg·kg?1?dry weight and 7338.49?mg·kg?1?dry weight, respectively, after 17?days in the 50?mg·L?1 Cs treatment. The BCF was between 2.35 and 3.38. The TF was between 1.00 and 2.46 in G. paniculata. Subcellular distribution of Cs in the plant was as follows: soluble fraction?>?cell wall?>?organelles. Inorganic Cs (F-ethanol) and water-soluble Cs (F-dH2O) were the main types of Cs in G. paniculata. Further studies show that the phytoextraction efficiency can reach 10.30–11.91% planting a season of G. paniculata under potted conditions. The results suggested that G. paniculata, a perennial, drought-tolerant herb, was a high-accumulator of Cs, which may have potential uses in phytoremediation of Cs-contaminated soil.  相似文献   

5.
The effect of Neotyphodium endophytes on growth parameters and zinc (Zn) tolerance and uptake was studied in two grass species of Festuca arundinacea and Lolium perenne. Plants were grown under different Zn concentrations (control, 200, 400, 800, and 1800 mg kg?1) in potted soil for 5 months. The results showed that the number of plant tillers was 85 and 51% greater in endophyte infected Festuca (FaEI) and Lolium (LpEI), respectively, compared to their endophyte free (EF) plants. Roots and shoots dry weights in infected Festuca were 87 and 9% greater than non-infected counterparts but in opposite, EF Lolium had 47 and 8% greater root and shoot dry weights than LpEI. Endophyte infected Festuca and Lolium improved chlorophyll fluorescence as Fv/Fm at high concentrations of Zn, showing their better chlorophyll functions and significant reduction of Zn stress in endophyte infected plants. Shoots of endophyte infectedFestuca had 82% greater concentration of Zn than EF Festuca when grown in soil containing 1800 mg kg?1 Zn. Festuca and Lolium may tolerate high Zn concentration in soil without reduction in shoot and root growth. Endophyte infection in Festuca may help the grass accumulate and transport more Zn in aboveground parts under Zn-stress, thereby aiding phytoremediation of contaminated soils.  相似文献   

6.
Contamination of agricultural topsoils with Cd above guideline values is of concern in many countries throughout the world. Extraction of metals from contaminated soils using high-biomass, metal-accumulating Salix sp. has been proposed as a low-cost, gentle remediation strategy, but reasonable phytoextraction rates remain to be demonstrated. In an outdoor pot experiment we assessed the phytoextraction potential for Cd and Zn of four willow species (Salix caprea, S. fragilis, S. × smithiana, S. × dasyclados) and intercropping of S. caprea with the hyperaccumulator Arabidopsis halleri on three moderately contaminated, agricultural soils. Large concentrations of Cd (250 mg kg−1) and Zn (3,300 mg kg−1) were determined in leaves of Salix × smithiana grown on a soil containing 13.4 mg kg−1 Cd and 955 mg kg−1 Zn, resulting in bioaccumulation factors of 27 (Cd) and 3 (Zn). Total removal of up to 20% Cd and 5% Zn after three vegetation periods were shown for Salix × smithiana closely followed by S. caprea, S. fragilis and S. × dasyclados. While total Cd concentrations in soils were reduced by up to 20%, 1 M NH4NO3-extractable metal concentrations did not significantly decrease within 3 years. Intercropping of S. caprea and A. halleri partly increased total removal of Zn, but did not enhance total Cd extraction compared to single plantings of S. caprea after two vegetation periods.  相似文献   

7.
The aim of this study was to assess EDTA-assisted Pb and Cd phytoextraction potential of locally grown Pelargonium hortorum and Pelargonium zonale. Plants were exposed to different levels of Pb (0–1500?mg kg?1) and Cd (0–150?mg kg?1) in the absence or presence of EDTA (0–5?mmol kg?1). P. hortorum and P. zonale accumulated 50.9% and 42.2% higher amount of Pb in shoots at 1500?mg kg?1 Pb upon addition of 5?mmol kg?1 EDTA. Plant dry biomass decreased 46.8% and 64.3% for P. hortorum and P. zonale, respectively at the combination of 1500?mg kg?1 Pb and 5?mmol kg?1 EDTA. In Cd and EDTA-treated groups, P. hortorum and P. zonale accumulated 2.7 and 1.6-folds more Cd in shoots at 4 and 2?mmol kg?1 EDTA, respectively, in 150?mg Cd kg?1 treatment. Plant dry biomass of P. hortorum and P. zonale was reduced by 46.3% and 71.3%, respectively, in soil having 150?mg Cd kg?1 combined with 5?mmol kg?1 EDTA. Translocation factor and enrichment factor of both plant cultivars at all treatment levels were >1. Overall, the performance of P. hortorum was better than that of P. zonale for EDTA-assisted phytoextraction of Pb and Cd.  相似文献   

8.
The aim of the study was to estimate the efficiency of copper (Cu), lead (Pb) and zinc (Zn) phytoextraction by 145 Salix taxa cultivated in an area affected by industrial activity. Survivability and biomass of plants were also analyzed. The highest Cu, Pb and Zn content in shoots was 33.38 ± 2.91 (S. purpurea × viminalis 8), 24.64 ± 1.97 (S. fragilis 1) and 58.99 ± 4.30 (S. eriocephala 7) mg kg?1 dry weight, respectively. In the case of unwashed leaves, the highest content of these metals was 135.06 ± 8.14 (S. purpurea 26), 67.98 ± 5.27 (S. purpurea 45) and 142.56 ± 12.69 (S. alba × triandra 2) mg kg?1 dw, while in washed leaves it was 106.02 ± 11.12 (S. purpurea 45), 55.06 ± 5.75 (S. purpurea 45) and 122.87 ± 12.33 (S. alba × triandra 2) mg kg?1 dw, respectively. The differences between the highest and lowest values for Cu, Pb and Zn were 545%, 20500% and 535% in shoots; 2692%, 2560% and 7500% in unwashed leaves; and 3286%, 2221% and 6950% in washed leaves, respectively. S. acutifolia was able to effectively accumulate all three metals jointly, producing shoots that were well developed in both length and diameter when compared with the other tested willows—an ability that would suggest its high suitability for practical application.  相似文献   

9.
The effects of Ethylenediamine disuccinic acid (EDDS) (0 and 5?mmol·kg?1) as a synthetic chemical amendment, vermicompost (0 and 5%w/w) as an organic amendment and their combined application were evaluated for the phytoextraction by sunflower (Helianthus annuus L.) of cadmium (Cd) and lead (Pb) at three artificial contamination levels in soils (0, 50, and 100?mg·kg?1 for Cd and 0, 100, and 200?mg·kg?1 for Pb). The results showed that the application of EDDS was the most effective method to increase Pb and Cd concentrations in both parts of the plant. The results also showed that the application of EDDS increased 9.27% shoot Pb content at 200?mg·kg?1 but decreased 15.95% shoot Cd content at 100?mg·kg?1 contamination level with respect to the respective controls. The bioavailable concentrations of Cd at 100?mg·kg?1 and Pb at 200?mg·kg?1 contamination level in the soil at the end of experiment increased 25% and 26%, respectively after the application of EDDS but vermicompost decreased 43.28% the bioavailable Pb concentration relative to their controls. Vermicompost increased the remediation factor index of Cd, thus making it the best treatment for the phytoextraction of Cd. The combined application of EDDS and vermicompost was the best amendment for Pb phytoextraction.  相似文献   

10.
Cadmium (Cd) is a health hazard, and up to 43% of human Cd intake comes from wheat products, since Cd accumulates in wheat grains. Salix spp. are high-accumulators of Cd and is suggested for Cd phytoextraction from agricultural soils. We demonstrate, in field, that Salix viminalis can remove Cd from agricultural soils and thereby reduce Cd accumulation in grains of wheat subsequently grown in a Salix-treated field. Four years of Salix cultivation reduce Cd concentration in the soil by up to 27% and in grains of the post-cultivated wheat by up to 33%. The higher the plant density of the Salix, the greater the Cd removal from the soil and the lower the Cd concentration in the grains of post-cultivated wheat, the Cd reduction remaining stable several years after Salix cultivation. The effect occurred in both sandy and clayey soil and in winter and spring bread wheat cultivars. Already one year of Salix cultivation significantly decrease Cd in post grown wheat grains. With this field experiment we have demonstrated that phytoextraction can reduce accumulation of a pollutant in post-cultivated wheat and that phytoextraction has no other observed effect on post-cultivated crops than reduced uptake of the removed pollutant.  相似文献   

11.
为探究中国沙棘对土壤镉(Cd)胁迫的性别响应差异,该研究以中国沙棘2年生幼苗为材料,利用盆栽试验研究在不同浓度Cd处理下(0(CK)、25、50、100和200 mg·kg-1)雌、雄株幼苗的生长、叶片生理特性以及Cd富集特征的差异。结果表明:(1)Cd处理下中国沙棘幼苗雌、雄株的株高和基径生长以及各器官生物量均表现出低浓度(<50 mg·kg-1)促进,高浓度(> 100 mg·kg-1)抑制的现象;低浓度Cd处理下雌株的株高、基径增长率和生物量的增幅均高于雄株;高浓度Cd处理下(200 mg·kg-1)雄株株高增长率、叶生物量和总生物量分别较CK显著降低,而雌株均未显著下降。(2)随着Cd浓度升高,雌、雄株叶片光合色素含量和抗氧化酶活性呈先升后降的变化趋势,丙二醛(MDA)和渗透调节物质含量呈上升趋势;Cd浓度为50~200 mg·kg-1时,雌株叶片的光合色素含量、抗氧化酶活性和渗透调节物质含量均高于雄株,而MDA含量始终低于雄株。(3)随着Cd浓度升高,雌、...  相似文献   

12.
This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg−1, respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg−1 of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha−1. Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.  相似文献   

13.
The resistance of Salix to Cu, Cd, Ni, and Zn was investigated in hydroponic culture, with phytoextraction potential evaluated for Cu. Root elongation (indicative of resistance level) was significantly affected, with considerable variation between and within individual clones. Resistance appeared to be clone- or hybrid-specific, rather than species-specific. S. caprea clones (and hybrids) were among the most resistant, but a secondary S. caprea clone from a different provenance was much less tolerant. S. viminalis and S. triandra clones were the most sensitive. Highest resistance was found in response to Cd, while Cu and Ni were extremely toxic. A resistant S. caprea ecotype originating from a metalliferous mine spoil was identified using this technique. Copper concentration reached a maximum of 2000, 400, and 82 μg g-1 (d.wt) in roots, wood, and foliage, respectively, after 1 month in hydroponic culture. The level of variation in the response of Salix to metals may cause difficulties in phytoremediation screening programs, but may be essential in providing genetic variation for selection of metal resistance traits, where the contaminant profile is heterogeneous, mixed, or subject to change. Clone selection for metal phytoextraction is feasible, but a longer field-scale study on metal-contaminated soils is needed before their role in phytoremediation can be confirmed.  相似文献   

14.
Trace metals (Cd, Cu, Pb and Zn) were analysed in crustaceans collected on Polarstern cruises ANT XVI/2 (1999) and ANT XXI/2 (2003/04, BENDEX) to the Weddell Sea. Our study provides further evidence for the frequently reported “Cd anomaly” in polar crustaceans, with data ranging from 1.2 (Ceratoserolis trilobitoides) to 6.2 mg Cd kg–1 DW (Notocrangon antarcticus) in 1999 and from 1.2 (Waldeckia obesa) to 20.3 mg Cd kg–1 (Tryphosella murrayi) in 2003. Pb concentrations well below 1 mg kg–1 in most of the samples analysed might serve as a regional or even global background value for comparison in biomonitoring studies. Increasing Cu concentrations from eggs of decapods (e.g., 5 vs. 51 mg kg–1 in N. antarcticus) or juveniles in the brood pouch of an amphipod species to adult females indicate that the enzymatic requirements and haemocyanin component demand for Cu in early life‐history stages is probably not met without a distinct bioaccumulation of this essential element after hatching. Most interestingly, Cd also increases (<0.1 vs. 6.2 mg kg–1 in N. antarcticus). This could be the consequence of efficient uptake mechanisms for Cu that cannot discriminate between this element and Cd. Cu and Zn concentrations in decapods of this study are largely within the range reported worldwide (40–90 mg Cu kg–1 and 40–80 mg Zn kg–1), indicating that these elements are regulated. The enormous heterogeneity of Cd and Zn in many amphipod species investigated (e.g., from 0.6 in Gnathiphimedia mandibularis to 34.4 mg Cd kg–1 in Orchomenopsis acanthura and from 41 in Eusirus antarcticus to 1244 mg Zn kg–1 in Iphimediella bransfieldi) supports the hypothesis of the “Cd anomaly” and suggests that there is probably no consistent metabolic demand for the essential element Zn in this taxonomic group. The heterogeneity of Cu in amphipods is less pronounced. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The present study was undertaken to assess the non-carcinogenic human health risk of heavy metals through the ingestion of locally grown and commonly used vegetables viz. Raphanus sativus (root vegetable), Daucus carota (root vegetable), Benincasa hispida (fruit vegetable) and Brassica campestris leaves (leafy vegetable) in a semi-urbanized area of Haryana state, India. Heavy metal quantification of soil and vegetable samples was done using flame atomic absorption spectrophotometer. Lead, cadmium and nickel concentration in vegetable samples varied in range of 0.12–6.54 mg kg?1, 0.02–0.67 mg kg?1 and <0.05–0.41 mg kg?1, respectively. Cadmium and lead concentration in some vegetable samples exceeded maximum permissible limit given by World Health Organization/Food and Agriculture Organization and Indian standards. Much higher concentrations of Pb (40–190.5 mg kg?1), Cd (0.56–9.85 mg kg-1) and Ni (3.21–45.87 mg kg?1) were reported in corresponding vegetable fields’ soils. Correlation analysis revealed the formation of three primary clusters, i.e. Cu–Cd, Cd–Pb and Ni–Zn in vegetable fields’ soils further supported by cluster analysis and principal component analysis. Bioconcentration factor revealed that heavy metals’ uptake was more by leafy vegetable than root and fruit vegetables. Hazard index of all the vegetables was less than unity; thus, the ingestion of these vegetables is unlikely to pose health risks to the target population.  相似文献   

16.
Willows (Salix spp.) can be used to phytoremediate soils contaminated by Zn and Cd under certain conditions. In this study, the ability of 14 Salix cultivars to concentrate Cd, Zn and S in leaves was measured in hydroponic culture with 10 and 200 µM Cd and Zn, respectively, in the nutrient medium. The cultivars showed a wide range of biomass yields, tolerance to metals, and foliar concentrations of Zn and Cd, with some cultivars accumulating up to 1000 mg kg?1 Zn, 70 mg kg?1 Cd and 10,000 mg kg?1 S with only mild phytotoxicity symptoms attributable to excess Zn. Cultivars with higher foliar Zn concentrations tended to have higher foliar Cd concentrations as well, and competition between Zn and Cd for uptake was observed. Exposure of Salix cultivars to Cd and Zn did not affect foliar concentrations of secondary metabolites such as polyphenols, but trace metal concentrations in leaves were significantly reduced (Fe and Cu) or increased (Mn) by exposure to excess Zn and Cd. Sulfur-XANES spectroscopy showed foliar S to be predominantly in highly oxidized (sulfate plus sulfonate) and reduced (thiol) forms, with oxidized S more prevalent in willows with the highest total S content.  相似文献   

17.
The variations of Cd accumulation in three rootstalk crop species (radish, carrot and potato) were investigated by using twelve cultivars grown in acidic Ferralsols and neutral Cambisols under two Cd treatments (0.3 and 0.6 mg kg?1) in a pot experiment. The result showed that the total Cd uptake was significantly affected by genotype, soil type and interaction between them, suggesting the importance of selecting proper cultivars for phytoextraction in a given soil type. Among the cultivars tested, potato cultivar Luyin No.1 in Ferralsols and radish cultivar Zhedachang in Cambisols exhibited the highest Cd phytoextraction efficiency in aerial parts (4.45% and 0.59%, respectively) under 0.6 mg kg?1Cd treatment. Furthermore, the Cd concentrations in their edible parts were below the National Food Hygiene Standard of China (0.1 mg kg?1, fresh weight). Therefore, phytomanagement of slightly Cd-contaminated soils using rootstalk crops for safe food production combined with long-term phytoextraction was feasible, and potato cultivar Luyin No.1 for Ferralsols and radish cultivar Zhedachang for Cambisols were promising candidates for this approach.  相似文献   

18.
  • Development of alleviation strategies, which enhance plant growth under heavy metal stress, is important. Inorganic (zeolite) and organic (diethylene triamine penta‐acetic acid, DTPA) amendments affecting the alleviation of lead (Pb) stress in a calcareous soil were tested by investigating leaf nutrient uptake of tomato (Lycopersicon esculentum L.) plants.
  • Experimental quantities of lead (Pb) at 0, 50, 100 and 150 mg·kg?1 soil, zeolite (clinoptilolite) at 0%, 0.5% and 1%, and DTPA at 0, 50 and 100 mg·kg?1 soil were tested in a factorial experiment with three plant replicates.
  • According to the anova , Pb, zeolite, DTPA and their interactions significantly affected plant concentrations of nitrogen (N), potassium (K), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and lead (Pb). With increasing DTPA concentration at different levels of zeolite and Pb, plant concentrations of macro‐ and micronutrients significantly increased. Increasing soil Pb increased leaf Pb concentration and decreased the uptake of N, K, Fe, Zn, Cu and Mn. Although with increasing Pb concentration the uptake of macro‐ and micronutrients decreased in tomato, the use of zeolite and DTPA alleviated this stress by increasing nutrient uptake compared to the control. Interestingly, however, increased levels of zeolite and DTPA led to a decreased uptake of nutrients by plants (compared with control), indicating the absorption of such nutrients by the two amendments and their partial release for further plant use.
  • Zeolite and DTPA may alleviate the negative effects of soil Pb on tomato growth by decreasing nutrient leaching and increasing plant nutrient uptake.
  相似文献   

19.

Aims

The current study aimed to assess the potential of peanut (Arachis hypogaea L.) for bioenergy production via phytoextraction in cadmium (Cd) -contaminated soils and screen appropriate cultivars for this approach.

Methods

A life-cycle pot experiment was conducted to determine the biomass, seed yield, oil content and Cd accumulation of seven peanut cultivars under Cd concentration gradients of 0, 2, and 4 mg kg?1.

Results

Peanut exhibits genotypic variations in Cd tolerance, seed production, oil content, and Cd accumulation. Exposure of plants to 2 and 4 mg kg?1 Cd did not inhibit shoot biomass, seed yield, and oil content for most of the cultivars tested. There are large amounts of Cd accumulated in the shoots. Although the seed Cd concentration of peanut was relatively high, the Cd concentration in seed oils was very low (0.04-0.08 mg kg?1). Among the cultivars, Qishan 208 showed significant Cd tolerance, high shoot biomass, high pod and seed yield, high seed oil content, considerable shoot Cd concentration, and the largest translocation factor and total Cd in shoots.

Conclusions

The cultivation of peanut in Cd-contaminated farmland was confirmed to be feasible for bioenergy production via phytoextraction, and Qishan 208 is a good candidate for this approach.  相似文献   

20.
  • Excess salt affects about 955 million ha of arable land worldwide, and 49% of agricultural land is Zn‐deficient. Soil salinity and zinc deficiency can intensify plant abiotic stress. The mechanisms by which Zn can mitigate salinity effects on plant functions are not well understood.
  • We conducted an experiment to determine how Zn and salinity effects on rice plant retention of Zn, K+ and the salt ion Na+ affect chlorophyll formation, leaf cell membrane stability and grain yield. We examined the mechanisms of Zn nutrition in mitigating salinity stress by examining plant physiology and nutrition. We used native Zn‐deficient soils (control), four salinity (EC ) and Zn treatments – Zn 10 mg·kg?1 (Zn10), EC 5 dS ·m?1 (EC 5), Zn10+EC 5 and Zn15+EC 5, a coarse rice (KS ‐282) and a fine rice (Basmati‐515) in the study.
  • Our results showed that Zn alone (Zn10) significantly increased rice tolerance to salinity stress by promoting Zn/K+ retention, inhibiting plant Na+ uptake and enhancing leaf cell membrane stability and chlorophyll formation in both rice cultivars in native alkaline, Zn‐deficient soils (<  0.05). Further, under the salinity treatment (EC 5), Zn inputs (10–15 mg·kg?1) could also significantly promote rice plant Zn/K+ retention and reduce plant Na+ uptake, and thus increased leaf cell membrane stability and grain yield. Coarse rice was more salinity‐tolerant than fine rice, having significantly higher Zn/K+ nutrient retention.
  • The mechanistic basis of Zn nutrition in mitigating salinity impacts was through promoting plant Zn/K+ uptake and inhibiting plant Na+ uptake, which could result in increased plant physiological vigour, leaf cell membrane stability and rice productivity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号