首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
PKC-alpha regulates cardiac contractility and propensity toward heart failure   总被引:16,自引:0,他引:16  
The protein kinase C (PKC) family of serine/threonine kinases functions downstream of nearly all membrane-associated signal transduction pathways. Here we identify PKC-alpha as a fundamental regulator of cardiac contractility and Ca(2+) handling in myocytes. Hearts of Prkca-deficient mice are hypercontractile, whereas those of transgenic mice overexpressing Prkca are hypocontractile. Adenoviral gene transfer of dominant-negative or wild-type PKC-alpha into cardiac myocytes enhances or reduces contractility, respectively. Mechanistically, modulation of PKC-alpha activity affects dephosphorylation of the sarcoplasmic reticulum Ca(2+) ATPase-2 (SERCA-2) pump inhibitory protein phospholamban (PLB), and alters sarcoplasmic reticulum Ca(2+) loading and the Ca(2+) transient. PKC-alpha directly phosphorylates protein phosphatase inhibitor-1 (I-1), altering the activity of protein phosphatase-1 (PP-1), which may account for the effects of PKC-alpha on PLB phosphorylation. Hypercontractility caused by Prkca deletion protects against heart failure induced by pressure overload, and against dilated cardiomyopathy induced by deleting the gene encoding muscle LIM protein (Csrp3). Deletion of Prkca also rescues cardiomyopathy associated with overexpression of PP-1. Thus, PKC-alpha functions as a nodal integrator of cardiac contractility by sensing intracellular Ca(2+) and signal transduction events, which can profoundly affect propensity toward heart failure.  相似文献   

2.
Although cardiac myocyte apoptosis has been detected in explanted hearts from patients with end-stage dilated and ischemic cardiomyopathy, the relative contribution of apoptotic cell death to left ventricular (LV) remodeling and cardiac decompensation is not known. To determine whether progressive cardiac myocyte apoptosis contributes to the transition from a hypertrophic to a dilated cardiac phenotype that is observed in transgenic myosin heavy chain secreted TNF (MHCsTNF) mice with cardiac restricted overexpression of tumor necrosis factor (TNF), we assessed cardiac myocyte apoptosis (using a DNA ligase technique) in MHCsTNF mice and littermate control mice in relation to serial changes in LV structure, which was assessed using MRI. The prevalence of cardiac myocyte apoptosis increased progressively from 4 to 12 wk as the hearts of the MHCsTNF mice underwent the transition from a concentric hypertrophic to a dilated cardiac phenotype. Treatment of the MHCsTNF mice with the broad-based caspase inhibitor N-[(1,3-dimethylindole-2-carbonyl)-valinyl]-3-amino4-oxo-5-fluoropentanoic acid significantly decreased cardiac myocyte apoptosis and significantly attenuated LV wall thinning and adverse cardiac remodeling. Additional studies suggested that the TNF-induced decrease in Bcl-2 expression and activation of the intrinsic mitochondrial death pathway were responsible for the cardiac myocyte apoptosis observed in the MHCsTNF mice. These studies show that progressive cardiac myocyte apoptosis is sufficient to contribute to adverse cardiac remodeling in the adult mammalian heart through progressive LV wall thinning.  相似文献   

3.
Vasodilator-stimulated phosphoprotein (VASP) and mammalian enabled (Mena) are actin cytoskeleton and signaling modulators. Ena-VASP proteins share an identical domain organization with an NH2-terminal Ena VASP homology (EVH1) domain, which mediates the binding of these proteins to FPPPP-motif containing partners such as zyxin and vinculin. VASP and Mena are abundantly expressed in the heart. However, previous studies showed that disruption by gene targeting of VASP or Mena genes in mice did not reveal any cardiac phenotype, whereas mice lacking both VASP and Mena died during embryonic development. To determine the in vivo function of Ena-VASP proteins in the heart, we used a dominant negative strategy with cardiac-specific expression of the VASP-EVH1 domain. Transgenic mice with cardiac myocyte-restricted, alpha-myosin heavy chain promoter-directed expression of the VASP-EVH1 domain were generated. Overexpression of the EVH1 domain resulted in specific displacement of both VASP and Mena from cardiac intercalated disks. VASP-EVH1 transgenic mice developed dilated cardiomyopathy with myocyte hypertrophy and bradycardia, which resulted in early postnatal lethality in mice with high levels of transgene expression. The results demonstrate that Ena-VASP proteins may play an important role in intercalated disk function at the interface between cardiac myocytes.  相似文献   

4.
The strength and duration of mitogen-activated protein kinase signaling is regulated through phosphorylation and dephosphorylation by dedicated dual-specificity kinases and phosphatases, respectively. Here we investigated the physiological role that extracellular signal-regulated kinases 1/2 (ERK1/2) dephosphorylation plays in vivo through targeted disruption of the gene encoding dual-specificity phosphatase 6 (Dusp6) in the mouse. Dusp6(-/-) mice, which were viable, fertile, and otherwise overtly normal, showed an increase in basal ERK1/2 phosphorylation in the heart, spleen, kidney, brain, and fibroblasts, but no change in ERK5, p38, or c-Jun N-terminal kinases activation. However, loss of Dusp6 did not increase or prolong ERK1/2 activation after stimulation, suggesting that its function is more dedicated to basal ERK1/2 signaling tone. In-depth analysis of the physiological effect associated with increased baseline ERK1/2 signaling was performed in cultured mouse embryonic fibroblasts (MEFs) and the heart. Interestingly, mice lacking Dusp6 had larger hearts at every age examined, which was associated with greater rates of myocyte proliferation during embryonic development and in the early postnatal period, resulting in cardiac hypercellularity. This increase in myocyte content in the heart was protective against decompensation and hypertrophic cardiomyopathy following long term pressure overload and myocardial infarction injury in adult mice. Dusp6(-/-) MEFs also showed reduced apoptosis rates compared with wild-type MEFs. These results demonstrate that ERK1/2 signaling is physiologically restrained by DUSP6 in coordinating cellular development and survival characteristics, directly impacting disease-responsiveness in adulthood.  相似文献   

5.
Receptors coupled to Galpha q play a key role in the development of heart failure. Studies using genetically modified mice suggest that Galpha q mediates a hypertrophic response in cardiac myocytes. Galpha q signaling in these models is modified during early growth and development, whereas most heart failure in humans occurs after cardiac damage sustained during adulthood. To determine the phenotype of animals that express increased Galpha q signaling only as adults, we generated transgenic mice that express a silent Galpha q protein (Galpha qQ209L-hbER) in cardiac myocytes that can be activated by tamoxifen. Following drug treatment to activate Galpha q Q209L-hbER, these mice rapidly develop a dilated cardiomyopathy and heart failure. This phenotype does not appear to involve myocyte hypertrophy but is associated with dephosphorylation of phospholamban (PLB), decreased sarcoplasmic reticulum Ca2+-ATPase activity, and a decrease in L-type Ca2+ current density. Changes in Ca2+ handling and decreased cardiac contractility are apparent 1 week after Galpha qQ209L-hbER activation. In contrast, transgenic mice that express an inducible Galpha q mutant that cannot activate phospholipase Cbeta (PLCbeta) do not develop heart failure or changes in PLB phosphorylation, but do show decreased L-type Ca2+ current density. These results demonstrate that activation of Galpha q in cardiac myocytes of adult mice causes a dilated cardiomyopathy that requires the activation of PLCbeta. However, increased PLCbeta signaling is not required for all of the Galpha q-induced cardiac abnormalities.  相似文献   

6.
7.
Diabetic cardiomyopathy is characterized, in part, by calcium handling imbalances associated with ventricular dysfunction. The cardiac Na(+)/Ca(2+) exchanger 1 (NCX1) has been implicated as a compensatory mechanism in response to reduced contractility in the heart; however, its role in diabetic cardiomyopathy remains unknown. We aimed to fully characterize the Akita(ins2) murine model of type 1 diabetes through assessing cardiac function and NCX1 regulation. The CXCL12/CXCR4 chemokine axis is well described in its cardioprotective effects via progenitor cell recruitment postacute myocardial infarction; however, it also functions in regulating calcium dependent processes in the cardiac myocyte. We therefore investigated the potential impact of CXCR4 in diabetic cardiomyopathy. Cardiac performance in the Akita(ins2) mouse was monitored using echocardiography and in vivo pressure-volume analysis. The Akita(ins2) mouse is protected against ventricular systolic failure evident at both 5 and 12 mo of age. However, the preserved contractility was associated with a decreased sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a)/phospholamban ratio and increased NCX1 content. Direct myocardial injection of adenovirus encoding anti-sense NCX1 significantly decreased NCX1 expression and induced systolic failure in the Akita(ins2) mouse. CXCL12 and CXCR4 were both upregulated in the Akita(ins2) heart, along with an increase in IκB-α and NF-κB p65 phosphorylation. We demonstrated that CXCR4 activation upregulates NCX1 expression through a NF-κB-dependent signaling pathway in the cardiac myocyte. In conclusion, the Akita(ins2) type 1 diabetic model is protected against systolic failure due to increased NCX1 expression. In addition, our studies reveal a novel role of CXCR4 in the diabetic heart by regulating NCX1 expression via a NF-κB-dependent mechanism.  相似文献   

8.
Regulation of cardiac myocyte apoptosis by the GATA-4 transcription factor   总被引:8,自引:0,他引:8  
Suzuki YJ  Evans T 《Life sciences》2004,74(15):1829-1838
  相似文献   

9.
Dilated cardiomyopathy and end-stage heart failure result in multiple defects in cardiac excitation-contraction coupling. Via complementation of a genetically based mouse model of dilated cardiomyopathy, we now provide evidence that progressive chamber dilation and heart failure are dependent on a Ca2+ cycling defect in the cardiac sarcoplasmic reticulum. The ablation of a muscle-specific sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) inhibitor, phospholamban, rescued the spectrum of phenotypes that resemble human heart failure. Inhibition of phospholamban-SERCA2a interaction via in vivo expression of a phospholamban point mutant dominantly activated the contractility of ventricular muscle cells. Thus, interfering with phospholamban-SERCA2a interaction may provide a novel therapeutic approach for preventing the progression of dilated cardiomyopathy.  相似文献   

10.
Calcineurin is a protein phosphatase that is uniquely regulated by sustained increases in intracellular Ca2+ following signal transduction events. Calcineurin controls cellular proliferation, differentiation, apoptosis, and inducible gene expression following stress and neuroendocrine stimulation. In the adult heart, calcineurin regulates hypertrophic growth of cardiomyocytes in response to pathologic insults that are associated with altered Ca2+ handling. Here we determined that calcineurin signaling is directly linked to the proper control of cardiac contractility, rhythm, and the expression of Ca2+-handling genes in the heart. Our approach involved a cardiomyocyte-specific deletion using a CnB1-LoxP-targeted allele in mice and three different cardiac-expressing Cre alleles/transgenes. Deletion of calcineurin with the Nkx2.5-Cre knock-in allele resulted in lethality at 1 day after birth due to altered right ventricular morphogenesis, reduced ventricular trabeculation, septal defects, and valvular overgrowth. Slightly later deletion of calcineurin with the α-myosin heavy chain Cre transgene resulted in lethality in early mid adulthood that was characterized by substantial reductions in cardiac contractility, severe arrhythmia, and reduced myocyte content in the heart. Young calcineurin heart-deleted mice died suddenly after pressure overload stimulation or neuroendocrine agonist infusion, and telemetric monitoring of older mice showed arrhythmia leading to sudden death. Mechanistically, loss of calcineurin reduced expression of key Ca2+-handling genes that likely lead to arrhythmia and reduced contractility. Loss of calcineurin also directly impacted cellular proliferation in the postnatal developing heart. These results reveal multiple mechanisms whereby calcineurin regulates cardiac development and myocyte contractility.  相似文献   

11.
In many types of heart failure cardiac myocyte Ca(2+) handling is abnormal because of downregulation of key Ca(2+) - handling proteins like sarco(endo)plasmic reticulum Ca(2+) - ATPase (SERCA)2a and ryanodine receptor (RyR)2. The alteration in SERCA2a and RyR2 expression results in altered cytosolic Ca(2+) transients, leading to abnormal contraction. Sorcin is an EF-hand protein that confers the property of caffeine-activated intracellular Ca(2+) release in nonmuscle cells by interacting with RyR2. To determine whether sorcin could improve the contractile function of the heart, we overexpressed sorcin in the heart of either normal or diabetic mice and in adult rat cardiomyocytes with an adenoviral gene transfer approach. Sorcin overexpression was associated with an increase in cardiac contractility of the normal heart and dramatically rescued the abnormal contractile function of the diabetic heart. These effects could be attributed to an improvement of the Ca(2+) transients found in the cardiomyocyte after sorcin overexpression. Viral vector-mediated delivery of sorcin to cardiac myocytes is beneficial, resulting in improved contractile function in diabetic cardiomyopathy.  相似文献   

12.
Multiple factors lead to the development and maintenance of chronic heart failure. Blockade of ErbB-2 or ErbB-4 tyrosine kinase receptor signaling leads to dilated cardiomyopathy. ErbB-1 may protect the heart against stress-induced injury and its ligand; epidermal growth factor (EGF) increases myocardial contractility, whereas heparin-binding EGF is essential for normal cardiac function. However, the role of ErbB-1 in control of cardiac function is not clear. We hypothesized that ErbB-1 is essential for maintaining adult cardiac function. Using the ecdysone-inducible gene expression system, we expressed humanized cardiomyocyte-specific dominant-negative ErbB-1 mutant receptors (hErbB-1-mut) in young adult mice that block endogenous cardiac ErbB-1 signaling. Molecular, morphological, and physiological tests (under anesthesia) were performed. As a result, hErbB-1-mut was expressed selectively in cardiomyocytes leading to the blockade of endogenous ErbB-1 phosphorylation and ErbB-2 transphosphorylation. An increase in left ventricular mass, atrial natriuretic factor expression, and histological changes were indicative of cardiac hypertrophy. Cardiac dilation, numerous cardiac lesions, and the loss of the clear boundary between cardiac fibrils were noted histologically. Early and long-term hErbB-1-mut induction led to a significant decrease in fractional shortening and to significant increases in left ventricular end-systolic diameter and volume. The treatment of adenylyl cyclase activator (forskolin analog) normalized the depressed cardiac function. Resting cardiac function returned to normal after reversing mutant expression. A 4-day survival rate of transverse-aortic constricted hErbB-1-mut mice was only 20% compared with 100% in controls. In conclusion, these observations indicate that the blockade of cardiac ErbB-1 signaling leads to the blockade of ErbB-2 signaling and that together they result in cardiac dysfunction.  相似文献   

13.
SIRT1,a mammalian ortholog of yeast silent information regulator 2(Sir2),is an NAD+-dependent protein deacetylase that plays a critical role in the regulation of vascular function.The current study aims to investigate the functional significance of deacetylase activity of SIRT1 in heart.Here we show that the early postnatal hearts expressed the highest level of SIRT1deacetylase activity compared to adult and aged hearts.We generated transgenic mice with cardiac-specific expression of a dominant-negative form of the human SIRT1(SIRT1H363Y),which represses endogenous SIRT1 activity.The transgenic mice displayed dilated atrial and ventricular chambers,and died early in the postnatal period.Pathological,echocardiographic and molecular phenotype confirmed the presence of dilated cardiomyopathy.Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling analysis revealed a greater abundance of apoptotic nuclei in the hearts of transgenic mice.Furthermore,we show that cardiomyocyte apoptosis caused by suppression of SIRT1 activity is,at least in part,due to increased p53acetylation and upregulated Bax expression.These results indicate that dominant negative form of SIRT1(SIRT1H363Y)overexpression in mouse hearts causes cardiomyocyte apoptosis and early-onset heart failure,suggesting a critical role of SIRT1 in preserving normal cardiac development during the early postnatal period.  相似文献   

14.
Structural remodeling of the myocardium, including myocyte hypertrophy, myocardial fibrosis, and dilatation, drives functional impairment in various forms of acquired and hereditary cardiomyopathy. Using cardiomyopathic Syrian hamsters with a genetic defect in delta-sarcoglycan, we investigated the potential involvement of hepatocyte growth factor (HGF) in the pathophysiology and therapeutics related to dilated cardiomyopathy, because HGF has previously been shown to be cytoprotective and to have benefits in acute heart injury. Late-stage TO-2 cardiomyopathic hamsters showed severe cardiac dysfunction and fibrosis, accompanied by increases in myocardial expression of transforming growth factor-beta1 (TGF-beta1), a growth factor responsible for tissue fibrosis. Conversely, HGF was downregulated in late-stage myopathic hearts. Treatment with recombinant human HGF for 3 wk suppressed cardiac fibrosis, accompanied by a decreased expression of TGF-beta1 and type I collagen. Suppression of TGF-beta1 and type I collagen by HGF was also shown in cultured cardiac myofibroblasts. Likewise, HGF suppressed myocardial hypertrophy, apoptosis in cardiomyocytes, and expression of atrial natriuretic polypeptide, a molecular marker of hypertrophy. Importantly, downregulation of the fibrogenic and hypertrophic genes by HGF treatment was associated with improved cardiac function. Thus the decrease in endogenous HGF levels may participate in the susceptibility of cardiac tissue to hypertrophy and fibrosis, and exogenous HGF led to therapeutic benefits in case of dilated cardiomyopathy in this model, even at the late-stage treatment.  相似文献   

15.
Kindlin-2, a member of the Kindlin family focal adhesion proteins, plays an important role in cardiac development. It is known that defects in the Z-disc proteins lead to hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM). Our previous investigation showed that Kindlin-2 is mainly localized at the Z-disc and depletion of Kindlin-2 disrupts the structure of the Z-Disc. Here, we reported that depletion of Kindlin-2 leads to the disordered myocardial fibers, fractured and vacuolar degeneration in myocardial fibers. Interestingly, depletion of Kindlin-2 in mice induced cardiac myocyte hypertrophy and increased the heart weight. Furthermore, decreased expression of Kindlin-2 led to cardiac dysfunction and also markedly impairs systolic function. Our data indicated that Kindlin-2 not only maintains the cardiac structure but also is required for cardiac function.  相似文献   

16.
17.
Recent awareness of cardiovascular diseases as a number one killer of the middle-aged women has prompted interest in sex differences leading to heart failure (HF). Therefore, we evaluated cardiac function in female and male mice following myocardial infarction (MI) using the Millar pressure-volume (P-V) conductance system in vivo, at time points corresponding to early (2 wk), late compensatory hypertrophy (4 wk), and decompensation (10 wk) to HF. A significant deterioration of the load dependent and independent hemodynamic measurements occurred in both female and male mice during the early phase of hypertrophy. Later, compensatory hypertrophy was marked by a normalization of volumes to control levels in females compared with males. The most notable differences between sexes occurred in the measurements of cardiac contractility during the decompensation to HF. In females, there was a significant improvement in contractility compared with males, which was apparent in the load-independent measurements of preload recruitable stroke work (10 wk post-MI, female=48.7+/-8.0 vs. male=25.2+/-1.8 mmHg, P<0.05) and maximum dP/dt vs. maximum end-diastolic volume (10 wk post-MI, female=359+/-58 vs. male=149+/-28 mmHg.s(-1).microl(-1), P<0.05). Despite these differences, there were no differences in the heart weight to body weight ratio and infarct size between the sexes. These data demonstrate that compensatory hypertrophy is associated with an improvement in contractility and a delayed decompensation to HF in females. However, compensatory hypertrophy in males appears to be undermined by a steady decline in contractility associated with decompensation to HF.  相似文献   

18.
19.
ErbB2 is essential in the prevention of dilated cardiomyopathy   总被引:22,自引:0,他引:22  
Amplification of the gene encoding the ErbB2 (Her2/neu) receptor tyrosine kinase is critical for the progression of several forms of breast cancer. In a large-scale clinical trial, treatment with Herceptin (trastuzumab), a humanized blocking antibody against ErbB2, led to marked improvement in survival. However, cardiomyopathy was uncovered as a mitigating side effect, thereby suggesting an important role for ErbB2 signaling as a modifier of human heart failure. To investigate the physiological role of ErbB2 signaling in the adult heart, we generated mice with a ventricular-restricted deletion of Erbb2. These ErbB2-deficient conditional mutant mice were viable and displayed no overt phenotype. However, physiological analysis revealed the onset of multiple independent parameters of dilated cardiomyopathy, including chamber dilation, wall thinning and decreased contractility. Additionally, cardiomyocytes isolated from these conditional mutants were more susceptible to anthracycline toxicity. ErbB2 signaling in cardiomyocytes is therefore essential for the prevention of dilated cardiomyopathy.  相似文献   

20.
Phospholamban: a crucial regulator of cardiac contractility   总被引:1,自引:0,他引:1  
Heart failure is a major cause of death and disability. Impairments in blood circulation that accompany heart failure can be traced, in part, to alterations in the activity of the sarcoplasmic reticulum Ca2+ pump that are induced by its interactions with phospholamban, a reversible inhibitor. If phospholamban becomes superinhibitory or chronically inhibitory, contractility is diminished, inducing dilated cardiomyopathy in mice and humans. In mice, phospholamban seems to encumber an otherwise healthy heart, but humans with a phospholamban-null genotype develop early-onset dilated cardiomyopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号