首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches.  相似文献   

3.
好氧氨氧化微生物系统发育及生理生态学差异   总被引:5,自引:0,他引:5  
作为好氧氨氧化的驱动者,氨氧化古菌(Ammonia-oxidizing archaea,AOA)和细菌(Ammonia-oxidizing bacteria,AOB)一直是氮的生物地球化学循环的研究热点之一。由于它们的相对丰度、群落结构和活性因环境而异,目前二者对全球氮循环的相对贡献仍存在争议。对培养物和环境样品的动力学、基因组学等研究结果表明,这种差异主要是由AOA和AOB的生理生态学差异导致的。氨浓度、pH、溶氧、温度等环境因素以及代谢途径等生理因素导致AOA和AOB的生态位分化。通过比较AOA和AOB在系统发育、对环境因子的响应以及代谢途径等方面的差异,对好氧氨氧化微生物相关研究成果进行概括和总结,以便深入了解它们在不同环境中对氮循环的相对贡献;同时对好氧氨氧化微生物今后的研究重点进行了展望。  相似文献   

4.
Biochemical processes relevant to soil nitrogen (N) cycling are performed by soil microorganisms affiliated with diverse phylogenetic groups. For example, the oxidation of ammonia, representing the first step of nitrification, can be performed by ammonia oxidizing bacteria (AOB) and, as recently reported, also by ammonia oxidizing archaea (AOA). However, the contribution to ammonia oxidation of the phylogenetically separated AOA versus AOB and their respective responsiveness to environmental factors are still poorly understood. The present study aims at comparing the capacity of AOA and AOB to momentarily respond to N input and increased soil moisture in two contrasting forest soils. Soils from the pristine Rothwald forest and the managed Schottenwald forest were amended with either NH(4)(+)-N or NO(3)(-)-N and were incubated at 40% and 70% water-filled pore space (WFPS) for four days. Nitrification rates were measured and AOA and AOB abundance and community composition were determined via quantitative PCR (qPCR) and terminal restriction length fragment polymorphism (T-RFLP) analysis of bacterial and archaeal amoA genes. Our study reports rapid and distinct changes in AOA and AOB abundances in the two forest soils in response to N input and increased soil moisture but no significant effects on net nitrification rates. Functional microbial communities differed significantly in the two soils and responded specifically to the treatments during the short-term incubation. In the Rothwald soil the abundance and community composition of AOA were affected by the water content, whereas AOB communities responded to N amendment. In the Schottenwald soil, by contrast, AOA responded to N addition. These results suggest that AOA and AOB may be selectively influenced by soil and management factors.  相似文献   

5.
Thaumarchaeota form a ubiquitously distributed archaeal phylum, comprising both the ammonia-oxidising archaea (AOA) and other archaeal groups in which ammonia oxidation has not been demonstrated (including Group 1.1c and Group 1.3). The ecology of AOA in terrestrial environments has been extensively studied using either a functional gene, encoding ammonia monooxygenase subunit A (amoA) or 16S ribosomal RNA (rRNA) genes, which show phylogenetic coherence with respect to soil pH. To test phylogenetic congruence between these two markers and to determine ecological coherence in all Thaumarchaeota, we performed high-throughput sequencing of 16S rRNA and amoA genes in 46 UK soils presenting 29 available contextual soil characteristics. Adaptation to pH and organic matter content reflected strong ecological coherence at various levels of taxonomic resolution for Thaumarchaeota (AOA and non-AOA), whereas nitrogen, total mineralisable nitrogen and zinc concentration were also important factors associated with AOA thaumarchaeotal community distribution. Other significant associations with environmental factors were also detected for amoA and 16S rRNA genes, reflecting different diversity characteristics between these two markers. Nonetheless, there was significant statistical congruence between the markers at fine phylogenetic resolution, supporting the hypothesis of low horizontal gene transfer between Thaumarchaeota. Group 1.1c Thaumarchaeota were also widely distributed, with two clusters predominating, particularly in environments with higher moisture content and organic matter, whereas a similar ecological pattern was observed for Group 1.3 Thaumarchaeota. The ecological and phylogenetic congruence identified is fundamental to understand better the life strategies, evolutionary history and ecosystem function of the Thaumarchaeota.  相似文献   

6.
Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers.  相似文献   

7.
Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.  相似文献   

8.
Oxidation of ammonia to nitrite by bacteria and archaea is responsible for global emissions of nitrous oxide directly and indirectly through provision of nitrite and, after further oxidation, nitrate to denitrifiers. Their contributions to increasing N2O emissions are greatest in terrestrial environments, due to the dramatic and continuing increases in use of ammonia‐based fertilizers, which have been driven by requirement for increased food production, but which also provide a source of energy for ammonia oxidizers (AO), leading to an imbalance in the terrestrial nitrogen cycle. Direct N2O production by AO results from several metabolic processes, sometimes combined with abiotic reactions. Physiological characteristics, including mechanisms for N2O production, vary within and between ammonia‐oxidizing archaea (AOA) and bacteria (AOB) and comammox bacteria and N2O yield of AOB is higher than in the other two groups. There is also strong evidence for niche differentiation between AOA and AOB with respect to environmental conditions in natural and engineered environments. In particular, AOA are favored by low soil pH and AOA and AOB are, respectively, favored by low rates of ammonium supply, equivalent to application of slow‐release fertilizer, or high rates of supply, equivalent to addition of high concentrations of inorganic ammonium or urea. These differences between AOA and AOB provide the potential for better fertilization strategies that could both increase fertilizer use efficiency and reduce N2O emissions from agricultural soils. This article reviews research on the biochemistry, physiology and ecology of AO and discusses the consequences for AO communities subjected to different agricultural practices and the ways in which this knowledge, coupled with improved methods for characterizing communities, might lead to improved fertilizer use efficiency and mitigation of N2O emissions.  相似文献   

9.
Tree decline is a global concern and the primary cause is often unknown. Complex interactions between fluctuations in nitrogen (N) and acidifying compounds have been proposed as factors causing nutrient imbalances and decreasing stress tolerance of oak trees. Microorganisms are crucial in regulating soil N available to plants, yet little is known about the relationships between soil N-cycling and tree health. Here, we combined high-throughput sequencing and qPCR analysis of key nitrification and denitrification genes with soil chemical analyses to characterise ammonia-oxidising bacteria (AOB), archaea (AOA) and denitrifying communities in soils associated with symptomatic (declining) and asymptomatic (apparently healthy) oak trees (Quercus robur and Q. petraea) in the United Kingdom. Asymptomatic trees were associated with a higher abundance of AOB that is driven positively by soil pH. No relationship was found between AOA abundance and tree health. However, AOA abundance was driven by lower concentrations of NH4+, further supporting the idea of AOA favouring lower soil NH4+ concentrations. Denitrifier abundance was influenced primarily by soil C:N ratio, and correlations with AOB regardless of tree health. These findings indicate that amelioration of soil acidification by balancing C:N may affect AOB abundance driving N transformations, reducing stress on declining oak trees.Subject terms: Biogeochemistry, Soil microbiology, Microbial ecology  相似文献   

10.
Ammonia oxidation in marine and estuarine sediments plays a pivotal role in the cycling and removal of nitrogen. Recent reports have shown that the newly discovered ammonia-oxidizing archaea can be both abundant and diverse in aquatic and terrestrial ecosystems. In this study, we examined the abundance and diversity of ammonia-oxidizing archaea (AOA) and betaproteobacteria (beta-AOB) across physicochemical gradients in San Francisco Bay--the largest estuary on the west coast of the USA. In contrast to reports that AOA are far more abundant than beta-AOB in both terrestrial and marine systems, our quantitative PCR estimates indicated that beta-AOB amoA (encoding ammonia monooxygenase subunit A) copy numbers were greater than AOA amoA in most of the estuary. Ammonia-oxidizing archaea were only more pervasive than beta-AOB in the low-salinity region of the estuary. Both AOA and beta-AOB communities exhibited distinct spatial structure within the estuary. AOA amoA sequences from the north part of the estuary formed a large and distinct low-salinity phylogenetic group. The majority of the beta-AOB sequences were closely related to other marine/estuarine Nitrosomonas-like and Nitrosospira-like sequences. Both ammonia-oxidizer community composition and abundance were strongly correlated with salinity. Ammonia-oxidizing enrichment cultures contained AOA and beta-AOB amoA sequences with high similarity to environmental sequences. Overall, this study significantly enhances our understanding of estuarine ammonia-oxidizing microbial communities and highlights the environmental conditions and niches under which different AOA and beta-AOB phylotypes may thrive.  相似文献   

11.
Whether niche processes, like environmental filtering, or neutral processes, like dispersal limitation, are the primary forces driving community assembly is a central question in ecology. Here, we use a natural experimental system of isolated tree “islands” to test whether environment or geography primarily structures fungal community composition at fine spatial scales. This system consists of isolated pairs of two distantly related, congeneric pine trees established at varying distances from each other and the forest edge, allowing us to disentangle the effects of geographic distance vs. host and edaphic environment on associated fungal communities. We identified fungal community composition with Illumina sequencing of ITS amplicons, measured all relevant environmental parameters for each tree—including tree age, size and soil chemistry—and calculated geographic distances from each tree to all others and to the nearest forest edge. We applied generalized dissimilarity modelling to test whether total and ectomycorrhizal fungal (EMF) communities were primarily structured by geographic or environmental filtering. Our results provide strong evidence that as in many other organisms, niche and neutral processes both contribute significantly to turnover in community composition in fungi, but environmental filtering plays the dominant role in structuring both free‐living and symbiotic fungal communities at fine spatial scales. In our study system, we found pH and organic matter primarily drive environmental filtering in total soil fungal communities and that pH and cation exchange capacity—and, surprisingly, not host species—were the largest factors affecting EMF community composition. These findings support an emerging paradigm that pH may play a central role in the assembly of all soil‐mediated systems.  相似文献   

12.
Aims:  Characterization of the ammonia-oxidizing archaea (AOA) community in activated sludge from a nitrogen removal bioreactor and wastewater treatment plants (WWTPs).
Methods and Results:  Three primer sets specific for ammonia mono-oxygenase α -subunit ( amoA ) were used to construct clone libraries for activated sludge sample from a nitrogen removal bioreactor. One primer set resulted in strong nonspecific PCR products. The other two clone libraries retrieved both shared and unique AOA amoA sequences. One primer set was chosen to study the AOA communities of activated sludge samples from Shatin and Stanley WWTPs. In total, 18 AOA amoA sequences were recovered and compared to the previous reported sequences. A phylogenetic analysis indicated that sequences found in this study fell into three clusters.
Conclusions:  Different primers resulted in varied AOA communities from the same sample. The AOA found from Hong Kong WWTPs were closely similar to those from sediment and soil, but distinct from those from activated sludge in other places. A comparison of clone libraries between Shatin WWTP and bioreactor indicated the AOA community significantly shifted only after 30-day enrichment.
Significance and Impact of the Study:  This study confirmed the occurrence of AOA in a laboratory scale nitrogen removal bioreactor and Hong Kong WWTPs treating saline or freshwater wastewater. AOA communities found in this study were significantly different from those found in other places. To retrieve diverse AOA communities from environmental samples, a combination of different primers for the amoA gene is needed.  相似文献   

13.
Microbial communities transform nitrogen (N) compounds, thereby regulating the availability of N in soil. The N cycle is defined by interacting microbial functional groups, as inorganic N‐products formed in one process are the substrate in one or several other processes. The nitrification pathway is often a two‐step process in which bacterial or archaeal communities oxidize ammonia to nitrite, and bacterial communities further oxidize nitrite to nitrate. Little is known about the significance of interactions between ammonia‐oxidizing bacteria (AOB) and archaea (AOA) and nitrite‐oxidizing bacterial communities (NOB) in determining the spatial variation of overall nitrifier community structure. We hypothesize that nonrandom associations exist between different AO and NOB lineages that, along with edaphic factors, shape field‐scale spatial patterns of nitrifying communities. To address this, we sequenced and quantified the abundance of AOA, AOB, and Nitrospira and Nitrobacter NOB communities across a 44‐hectare site with agricultural fields. The abundance of Nitrobacter communities was significantly associated only with AOB abundance, while that of Nitrospira was correlated to AOA. Network analysis and geostatistical modelling revealed distinct modules of co‐occurring AO and NOB groups occupying disparate areas, with each module dominated by different lineages and associated with different edaphic factors. Local communities were characterized by a high proportion of module‐connecting versus module‐hub nodes, indicating that nitrifier assemblages in these soils are shaped by fluctuating conditions. Overall, our results demonstrate the utility of network analysis in accounting for potential biotic interactions that define the niche space of nitrifying communities at scales compatible to soil management.  相似文献   

14.
The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems.  相似文献   

15.
The microbial ecology of the nitrogen cycle in agricultural soils is an issue of major interest. We hypothesized a major effect by farm management systems (mineral versus organic fertilizers) and a minor influence of soil texture and plant variety on the composition and abundance of microbial nitrifiers. We explored changes in composition (16S rRNA gene) of ammonia-oxidizing archaea (AOA), bacteria (AOB), and nitrite-oxidizing bacteria (NOB), and in abundance of AOA and AOB (qPCR of amoA genes) in the rhizosphere of 96 olive orchards differing in climatic conditions, agricultural practices, soil properties, and olive variety. Majority of archaea were 1.1b thaumarchaeota (soil crenarchaeotic group, SCG) closely related to the AOA genus Nitrososphaera. Most AOB (97%) were identical to Nitrosospira tenuis and most NOB (76%) were closely related to Nitrospira sp. Common factors shaping nitrifiers assemblage composition were pH, soil texture, and olive variety. AOB abundance was positively correlated with altitude, pH, and clay content, whereas AOA abundances showed significant relationships with organic nitrogen content and exchangeable K. The abundances of AOA differed significantly among soil textures and olive varieties, and those of AOB among soil management systems and olive varieties. Overall, we observed minor effects by orchard management system, soil cover crop practices, plantation age, or soil organic matter content, and major influence of soil texture, pH, and olive tree variety.  相似文献   

16.
利用荧光定量PCR、末端限制性片段长度多样性(T-RFLP)和基因克隆文库技术,比较了4种施氮水平(不施氮肥,0 kg N/hm~2,CK;施低水平氮肥,75 kg N/hm~2,N1;施中水平氮肥,150 kg N/hm~2,N2;施高水平氮肥,225 kg N/hm~2,N3)下华北平原地区小麦季表层(0—20 cm)土壤总细菌、氨氧化细菌(AOB)和氨氧化古菌(AOA)的丰度和群落结构。结果表明,土壤总细菌、AOB和AOA数量分别在每克干土5.74×10~9—7.50×10~9、8.89×10~6—2.66×10~7和3.83×10~8—7.78×10~8之间。不同施氮量土壤AOA数量均高于AOB数量,AOA/AOB值在81.72—14.38之间。增施氮肥显著显著提高AOB数量(P0.05),对总细菌和AOA数量的影响不显著(P0.05)。与CK相比,处理N1、N2和N3中AOB数量分别提高了0.64、1.50和1.99倍。增施氮肥显著改变了AOB和AOA的群落结构,且不同施氮量处理中AOB群落结构差异更大。系统进化分析显示,施氮肥小麦土壤AOB主要为Nitrosospira属类群,分布在Cluster 3的两个分支中;AOA分布在Cluster S的4个分支中。相关性分析显示,AOB数量与全氮和铵态氮含量呈显著正相关关系,与土壤pH和碳氮比呈显著负相关关系(P0.05);AOA数量与硝态氮含量和土壤pH呈显著正相关关系,与铵态氮含量呈显著负相关关系(P0.05)。研究结果表明:增施氮肥可显著改变华北平原地区碱性土壤AOB数量与群落结构,该地区小麦土壤中AOB比AOA对氮肥响应更敏感。  相似文献   

17.
Next-generation sequencing technologies with markers covering the full Glomeromycota phylum were used to uncover phylogenetic community structure of arbuscular mycorrhizal fungi (AMF) associated with Festuca brevipila. The study system was a semi-arid grassland with high plant diversity and a steep environmental gradient in pH, C, N, P and soil water content. The AMF community in roots and rhizosphere soil were analyzed separately and consisted of 74 distinct operational taxonomic units (OTUs) in total. Community-level variance partitioning showed that the role of environmental factors in determining AM species composition was marginal when controlling for spatial autocorrelation at multiple scales. Instead, phylogenetic distance and spatial distance were major correlates of AMF communities: OTUs that were more closely related (and which therefore may have similar traits) were more likely to co-occur. This pattern was insensitive to phylogenetic sampling breadth. Given the minor effects of the environment, we propose that at small scales closely related AMF positively associate through biotic factors such as plant-AMF filtering and interactions within the soil biota.  相似文献   

18.
Mounting evidence suggests that ammonia-oxidizing archaea (AOA) may play important roles in nitrogen cycling in geothermal environments. In this study, the diversity, distribution and ecological significance of AOA in terrestrial hot springs in Kamchatka (Far East Russia) were explored using amoA genes complemented by analysis of glycerol dialkyl glycerol tetraethers (GDGTs) of archaea. PCR amplification of functional genes (amoA) from AOA and ammonia-oxidizing bacteria (AOB) was performed on microbial mats/streamers and sediments collected from three hot springs (42°C to 87°C and pH 5.5-7.0). No amoA genes of AOB were detected. The amoA genes of AOA formed three distinct phylogenetic clusters with Cluster 3 representing the majority (~59%) of OTUs. Some of the sequences from Cluster 3 were closely related to those from acidic soil environments, which is consistent with the predominance of low pH (<7.0) in these hot springs. Species richness (estimated by Chao1) was more frequently higher at temperatures below 75°C than above it, indicating that AOA may be favored in the moderately high temperature environments. Quantitative PCR of 16S rRNA genes showed that crenarchaeota counted for up to 80% of total archaea. S-LIBSHUFF separated all samples into two phylogenetic groups. The profiles of GDGTs were well separated among the studied springs, suggesting a spatial patterning of archaeal lipid biomarkers. However, this patterning did not correlate significantly with variation in archaeal amoA, suggesting that AOA are not the predominant archaeal group in these springs producing the observed GDGTs.  相似文献   

19.
Forest fertilization in British Columbia is increasing, to alleviate timber shortfalls resulting from the mountain pine beetle epidemic. However, fertilization effects on soil microbial communities, and consequently ecosystem processes, are poorly understood. Fertilization has contrasting effects on ammonia-oxidizing bacteria and archaea (AOB and AOA) in grassland and agricultural ecosystems, but there are no studies on AOB and AOA in forests. We assessed the effect of periodic (6-yearly application 200 kg N ha?1) and annual (c. 75 kg N ha?1) fertilization of lodgepole pine and spruce stands at five long-term maximum productivity sites on potential nitrification (PN), and the abundance and diversity of AOB, AOA and Nitrobacter and Nitrospira-like nitrite-oxidizing bacteria (NOB). Fertilization increased AOB and Nitrobacter-like NOB abundances at some sites, but did not influence AOA and Nitrospira-like NOB abundances. AOB and Nitrobacter-like NOB abundances were correlated with PN and soil nitrate concentration; no such correlations were observed for AOA and Nitrospira-like NOB. Autotrophic nitrification dominated (55–97%) in these forests and PN rates were enhanced for up to 2 years following periodic fertilization. More changes in community composition between control and fertilized plots were observed for AOB and Nitrobacter-like NOB than AOA. We conclude that fertilization causes rapid shifts in the structure of AOB and Nitrobacter-like NOB communities that dominate nitrification in these forests.  相似文献   

20.
Elucidating how evolutionary and ecological factors drive the assemblage of communities in biodiversity hotspots remains an important challenge. This currently impedes our ability to predict the responses of communities to the ongoing global changes in these major world’s biodiversity reservoirs. Here, we focus on the Sierra Nevada mountain range, a core region of the Baetic-Rifan biodiversity hotspot in the western Mediterranean, and explore the relative importance of soil properties and elevation in shaping phylogenetic and functional diversity of shrub communities. We recorded the total number of each species in community transects across elevation gradients and contrasting soil conditions, and measured some ecologically relevant functional traits (specific leaf area, leaf carbon:nitrogen ratio, plant height and blooming duration). Phylogenetic distances among species were inferred from a genus-level time-calibrated molecular phylogeny. Elevation was the main factor predicting phylogenetic and functional alpha diversity of plant communities. Species in high-elevation communities were phylogenetically distant but functionally similar, being relatively smaller and having relatively short blooming durations, whilst species in low-elevation communities showed the opposite pattern. Beta diversity in SLA and leaf C:N ratio based on species incidences were positively correlated with a soil pH and micronutrient gradient. Specifically, communities that develop on soils of high pH and low micronutrient concentrations showed low SLA values and high leaf C:N ratios, whilst communities on soils of lower pH and high micronutrient concentrations showed the opposite pattern. We conclude that soil properties and elevation simultaneously shape the structure of Mediterranean shrub communities by differentially acting on the different dimensions of the species niches. Elevation seems to filter plant height and phenology-related traits whereas nutrient-related functional traits are more related to soil properties. Our study illustrates the primary role of environmental heterogeneity for the maintenance of diversity in Mediterranean mountain ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号