首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA photolyases are enzymes which mediate the light-dependent repair (photoreactivation) of UV-induced damage products in DNA by direct reversal of base damage rather than via excision repair pathways. Arabidopsis thaliana contains two photolyases specific for photoreactivation of either cyclobutane pyrimidine dimers (CPDs) or pyrimidine (6-4)pyrimidones (6-4PPs), the two major UV-B-induced photoproducts in DNA. Reduced FADH and a reduced pterin were identified as cofactors of the native Arabidopsis CPD photolyase protein. This is the first report of the chromophore composition of any native class II CPD photolyase protein to our knowledge. CPD photolyase protein levels vary between tissues and with leaf age and are highest in flowers and leaves of 3-5-week-old Arabidopsis plants. White light or UV-B irradiation induces CPD photolyase expression in Arabidopsis tissues. This contrasts with the 6-4PP photolyase protein which is constitutively expressed and not regulated by either white or UV-B light. Arabidopsis CPD and 6-4PP photolyase enzymes can remove UV-B-induced photoproducts from DNA in planta even when plants are grown under enhanced levels of UV-B irradiation and at elevated temperatures although the rate of removal of CPDs is slower at high growth temperatures. These studies indicate that Arabidopsis possesses the photorepair capacity to respond effectively to increased UV-B-induced DNA damage under conditions predicted to be representative of increases in UV-B irradiation levels at the Earth's surface and global warming in the twenty-first century.  相似文献   

2.
Marine Bacterial Isolates Display Diverse Responses to UV-B Radiation   总被引:13,自引:8,他引:5       下载免费PDF全文
The molecular and biological consequences of UV-B radiation were investigated by studying five species of marine bacteria and one enteric bacterium. Laboratory cultures were exposed to an artificial UV-B source and subjected to various post-UV irradiation treatments. Significant differences in survival subsequent to UV-B radiation were observed among the isolates, as measured by culturable counts. UV-B-induced DNA photodamage was investigated by using a highly specific radioimmunoassay to measure cyclobutane pyrimidine dimers (CPDs). The CPDs determined following UV-B exposure were comparable for all of the organisms except Sphingomonas sp. strain RB2256, a facultatively oligotrophic ultramicrobacterium. This organism exhibited little DNA damage and a high level of UV-B resistance. Physiological conditioning by growth phase and starvation did not change the UV-B sensitivity of marine bacteria. The rates of photoreactivation following exposure to UV-B were investigated by using different light sources (UV-A and cool white light). The rates of photoreactivation were greatest during UV-A exposure, although diverse responses were observed. The differences in sensitivity to UV-B radiation between strains were reduced after photoreactivation. The survival and CPD data obtained for Vibrio natriegens when we used two UV-B exposure periods interrupted by a repair period (photoreactivation plus dark repair) suggested that photoadaptation could occur. Our results revealed that there are wide variations in marine bacteria in their responses to UV radiation and subsequent repair strategies, suggesting that UV-B radiation may affect the microbial community structure in surface water.  相似文献   

3.
4.
Tuteja N  Ahmad P  Panda BB  Tuteja R 《Mutation research》2009,681(2-3):134-149
Plant cells are constantly exposed to environmental agents and endogenous processes that inflict damage to DNA and cause genotoxic stress, which can reduce plant genome stability, growth and productivity. Plants are most affected by solar UV-B radiation, which damage the DNA by inducing the formation of two main UV photoproducts such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). Reactive oxygen species (ROS) are also generated extra- or intra-cellularly, which constitute yet another source of genotoxic stress. As a result of this stress, the cellular DNA-damage responses (DDR) are activated, which transiently arrest the cell cycle and allow cells to repair DNA before proceeding into mitosis. DDR requires the activation of Ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) genes, which regulate the cell cycle and transmit the damage signals to downstream effectors of cell-cycle progression. Since genomic protection and stability are fundamental to ensure and sustain plant diversity and productivity, therefore, repair of DNA damages is essential. In plants the bulky DNA lesions, CPDs and 6-4PPs, are repaired by a simple and error-free mechanism: photoreactivation, which is a light-dependent mechanism and requires CPD or 6-4PP specific photolyases. In addition to this direct repair process, the plants also have sophisticated light-independent general repair mechanisms, such as the nucleotide excision repair (NER) and base excision repair (BER). The completed plant genome sequences reveal that most of the genes involved in NER and BER are present in higher plants, which suggests that the network of in-built DNA-damage repair mechanisms is conserved. This article describes the insight underlying the DNA damage and repair pathways in plants. The comet assay to measure the DNA damage and the role of DNA repair helicases such as XPD and XPB are also covered.  相似文献   

5.
6.
The position of nucleosomes on DNA participates in gene regulation and DNA replication. Nucleosomes can be repressors by limiting access of factors to regulatory sequences, or activators by facilitating binding of factors to exposed DNA sequences on the surface of the core histones. The formation of UV induced DNA lesions, like cyclobutane pyrimidine dimers (CPDs), is modulated by DNA bending around the core histones. Since CPDs are removed by nucleotide excision repair (NER) and photolyase repair, it is of paramount importance to understand how DNA damage and repair are tempered by the position of nucleosomes. In vitro, nucleosomes inhibit NER and photolyase repair. In vivo, nucleosomes slow down NER and considerably obstruct photoreactivation of CPDs. However, over-expression of photolyase allows repair of nucleosomal DNA in a second time scale. It is proposed that the intrinsic abilities of nucleosomes to move and transiently unwrap could facilitate damage recognition and repair in nucleosomal DNA.  相似文献   

7.
Nucleotide excision repair (NER) is the most versatile mechanism of DNA repair, recognizing and dealing with a variety of helix-distorting lesions, such as the UV-induced photoproducts cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4 PPs). In this review, we describe the main protein players and the different sequential steps of the eukaryotic NER mechanism in human cells, from lesion recognition to damage removal and DNA synthesis. Studies on the dynamics of protein access to the damaged site, and the kinetics of lesion removal contribute to the knowledge of how the cells respond to genetic insult. DNA lesions as well as NER factors themselves are also implicated in changes in cell metabolism, influencing cell cycle progression or arrest, apoptosis and genetic instability. These changes are related to increased mutagenesis and carcinogenesis. Finally, the recent collection of genomic data allows one to recognize the high conservation and the evolution of eukaryotic NER. The distribution of NER orthologues in different organisms, from archaea to the metazoa, displays challenging observations. Some of NER proteins are widespread in nature, probably representing ancient DNA repair proteins, which are candidates to participate in a primitive NER mechanism.  相似文献   

8.
Nucleotide excision repair (NER) is the only mechanism in humans to repair UV-induced DNA lesions such as pyrimidine (6-4) pyrimidone photoproducts and cyclobutane pyrimidine dimers (CPDs). In response to UV damage, the ataxia telangiectasia mutated and Rad3-related (ATR) kinase phosphorylates and activates several downstream effector proteins, such as p53 and XPA, to arrest cell cycle progression, stimulate DNA repair, or initiate apoptosis. However, following the completion of DNA repair, there must be active mechanisms that restore the cell to a prestressed homeostatic state. An important part of this recovery must include a process to reduce p53 and NER activity as well as to remove repair protein complexes from the DNA damage sites. Since activation of the damage response occurs in part through phosphorylation, phosphatases are obvious candidates as homeostatic regulators of the DNA damage and repair responses. Therefore, we investigated whether the serine/threonine wild-type p53-induced phosphatase 1 (WIP1/PPM1D) might regulate NER. WIP1 overexpression inhibits the kinetics of NER and CPD repair, whereas WIP1 depletion enhances NER kinetics and CPD repair. This NER suppression is dependent on WIP1 phosphatase activity, as phosphatase-dead WIP1 mutants failed to inhibit NER. Moreover, WIP1 suppresses the kinetics of UV-induced damage repair largely through effects on NER, as XPD-deficient cells are not further suppressed in repairing UV damage by overexpressed WIP1. Wip1 null mice quickly repair their CPD and undergo less UV-induced apoptosis than their wild-type counterparts. In vitro phosphatase assays identify XPA and XPC as two potential WIP1 targets in the NER pathway. Thus WIP1 may suppress NER kinetics by dephosphorylating and inactivating XPA and XPC and other NER proteins and regulators after UV-induced DNA damage is repaired.  相似文献   

9.
10.
Häder DP  Sinha RP 《Mutation research》2005,571(1-2):221-233
Continuing depletion of stratospheric ozone and subsequent increases in deleterious ultraviolet (UV) radiation at the Earth's surface have fueled the interest in its ecological consequences for aquatic ecosystems. The DNA is certainly one of the key targets for UV-induced damage in a variety of aquatic organisms. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine pyrimidone photoproducts (6-4PPs) and their Dewar valence isomers. However, aquatic organisms have developed a number of repair and tolerance mechanisms to counteract the damaging effects of UV on DNA. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also play an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with the UV-induced DNA damage and repair in a number of aquatic organisms as well as methods of detecting DNA damage.  相似文献   

11.
12.
The most prevalent DNA lesions induced by UVB are the cyclobutane pyrimidine dimers (CPDs) and the pyrimidine (6-4) pyrimidone photoproducts ((6-4)PPs). It has been a long standing controversy as to which of these photoproduct is responsible for mutations in mammalian cells. Here we have introduced photoproduct-specific DNA photolyases into a mouse cell line carrying the transgenic mutation reporter genes lacI and cII. Exposure of the photolyase-expressing cell lines to photoreactivating light resulted in almost complete repair of either CPDs or (6-4)PPs within less than 3 h. The mutations produced by the remaining, nonrepaired photoproducts were scored. The mutant frequency in the cII gene after photoreactivation by CPD photolyase was reduced from 127 x 10(-5) to 34 x 10(-5) (background, 8-10 x 10(-5)). Photoreactivation with (6-4) photolyase did not lower the mutant frequency appreciably. In the lacI gene the mutant frequency after photoreactivation repair of CPDs was reduced from 148 x 10(-5) to 28 x 10(-5) (background, 6-10 x 10(-5)). Mutation spectra obtained with and without photoreactivation by CPD photolyase indicated that the remaining mutations were derived from background mutations, unrepaired CPDs, and other DNA photopoducts including perhaps a small contribution from (6-4)PPs. We conclude that CPDs are responsible for at least 80% of the UVB-induced mutations in this mammalian cell model.  相似文献   

13.
Solar UV radiation induces significant levels of DNA damage in living things. This damage, if left unrepaired, is lethal in humans. Recent work has demonstrated that plants possess several repair pathways for UV-induced DNA damage, including pathways for the photoreactivation of both 6-4 products and cyclobutane pyrimidine dimers (CPDs), the two lesions most frequently induced by UV. Plants also possess the more general nucleotide excision repair (NER) pathway as well as bypass polymerases that enable the plant to replicate its DNA in the absence of DNA repair.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

14.
Phytoplankton such as Euglena are constantly exposed to solar light which is used for photosynthesis. Although the solar ultraviolet (UV) induces DNA damage such as cyclobutane-pyrimidine dimers (CPDs), many kinds of living organisms can repair CPDs by photoreactivation (PR) utilizing the near-UV/blue light component in sunlight. Euglena cells are known to possess such PR activity. In the present paper, the formation of CPDs induced by UV-C exposure and the photoreactivation PR repair of these CPDs by UV-A are demonstrated. To clarify the adaptive responses prior UV-B irradiation on PR activity, cells were cultured in the dark or under UV-B light. When the cells were cultured in the dark for 3 d prior to UV-C exposure, PR activity decreased. When the cells were cultured under UV-B light, however, PR activity increased. These results suggest that exposing the cells to UV-B prior to exposure to UV-C induced an adaptive response towards DNA damage caused by UV-C exposure, and this UV-C induced damage was repaired through PR activity.  相似文献   

15.
16.
Monoclonal antibodies were used in an enzyme-linked immunosorbent assay (ELISA) to detect the induction and removal of cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA isolated from ultraviolet B (UV-B)-exposed primary wheat (Triticum aestivum L. cv. Chinese Spring) leaf tissue. The accumulation of lesions in the primary leaves of 6-d-old wheat seedlings was followed during the exposure of the leaf to an approximate dose of 3.6×10?1 W m?2 UV-B (Caldwell weighting). Significant increases in the levels of both CPDs and (6-4) photoproducts were detected in wheat leaves exposed to UV-B in the absence of other light However, only an increase in (6-4) photoproduct levels could be measured in wheat leaves exposed to the same UV-B source in the presence of supplemental white light. The removal of CPD antibody binding sites in the DNA after irradiation was rapid under conditions of high light intensity in contrast to the removal of (6-4) photoproduct antibody binding sites, which was significantly slower. The removal of CPDs appeared to be light dependent, this rate of removal decreasing with decreasing light fluences. The removal of (6-4) photoproducts also appeared light dependent, but to a lesser extent than the removal of CPDs, under the conditions studied here. Gene expression in the primary wheat leaf was measured and showed an up-regulation of chalcone synthase expression and a reduction in expression of chlorophyll a/b-binding protein (cab) in response to supplementary UV-B. No effect was seen on the expression of the other photosynthetic genes studied (the genes coding for the enzymes sedoheptu-lose 1,7-bisphosphatase and fructose 1,6-bisphosphatase). Measurement of the levels of DNA lesions in this same tissue showed that the observed changes in gene expression accompanied the appearance of UV-B induced lesions in the form of (6-4) photoproducts in the wheat leaf genome.  相似文献   

17.
Enzymatic photoreactivation: 50 years and counting   总被引:8,自引:0,他引:8  
Sancar GB 《Mutation research》2000,451(1-2):25-37
  相似文献   

18.
Ultraviolet-B (UV-B, 280–320 nm) radiation may have severe negative effects on plants including damage to their genetic information. UV protection and DNA-repair mechanisms have evolved to either avoid or repair such damage. Since autotrophic plants are dependent on sunlight for their energy supply, an increase in the amount of UV-B reaching the earth’s surface may affect the integrity of their genetic information if DNA damage is not repaired efficiently and rapidly. Here we show that overexpression of cyclobutane pyrimidine dimer (CPD) photolyase (EC 4.1.99.3) in Arabidopsis thaliana (L.), which catalyses the reversion of the major UV-B photoproduct in DNA (CPDs), strongly enhances the repair of CPDs and results in a moderate increase of biomass production under elevated UV-B.  相似文献   

19.
Ultraviolet-B (UV-B) irradiation of DNA generates mutagenic photoproducts such as cyclobutane pyrimidine dimers (CPDs) which can affect the growth and development of amphibian embryos. Differential ability to repair UV-B-induced DNA damage may be␣responsible for differences in population stability between␣some amphibian species. Photoreactivation via the enzyme photolyase is a major mechanism used to remove CPDs from DNA. The aim of this study was to determine if photolyase activity differed in three sympatric Australian amphibian species, one of which has suffered marked population declines (Litoria aurea) and two whose populations do not appear to be in decline (L. dentata and L. peronii). The specific activity of photolyase was measured in each species and compared to the hatching success of their eggs under unfiltered summer sunlight. The mean specific activities of photolyase were 1.10 ± 0.18 × 1011, 5.76 ± 1.01 × 1011, and 2.66 ± 0.15 × 1011 CPDs repaired per hour per microgram of egg protein extract, for L. aurea, L. dentata and L. peronii, respectively. When intrinsic differences in hatching success between species were controlled for, the relative percentage hatching success under unfiltered sunlight of L. aurea (77%) was lower than that of L.␣peronii (91%) and L. dentata (98%); however, these values did not differ significantly. L. aurea had the lowest photolyase activity of the three species and showed a non-significant trend of reduced hatching success under UV-B exposure. Received: 15 December 1997 / Accepted: 9 March 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号