首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 706 毫秒
1.
BackgroundLung cancer is a significant health concern worldwide due to high mortality and morbidity, despite the advances in diagnosis, treatment, and management. Recent experimental evidence from different models suggested long non-coding RNAs (lncRNAs) as major modulators of cancer stem cells (CSCs) in the tumor microenvironment (TME) to support metastasis and drug resistance in lung cancer. Evidence-based studies demonstrated that natural products interfere with TME functions.Purpose of studyTo establish lncRNAs of TME as novel targets of natural compounds for lung cancer management.Study designCurrent study used a combination of TME and lung CSCs, lncRNAs and enrichment and stemness maintenance, natural products and stem cell management, natural products and lncRNAs, natural products and targeted delivery as keywords to retrieve the literature from Scopus, Web of Science, PubMed, and Google Scholar. This study critically reviewed the current literature and presented cancer stem cells' ability in reprogramming lung TME.ResultsThis review found that TME related oncogenic and tumor suppressor lncRNAs and their signaling pathways control the maintenance of stemness in lung TME. This review explored natural phenolic compounds and found that curcumin, genistein, quercetin epigallocatechin gallate and ginsenoside Rh2 are efficient in managing lung CSCs. They modulate lncRNAs and their upstream mediators by targeting signaling and epigenetic pathways. This review also identified relevant nanotechnology-based phytochemical delivery approaches for targeting lung cancer.ConclusionBy critical literature analysis, TME related lncRNAs were identified as potential therapeutic targets, aiming to develop natural product-based therapeutics to treat metastatic and drug-resistant lung cancers.  相似文献   

2.
3.
Non-coding RNAs (ncRNAs) have emerged as key regulators of gene expression, with growing evidence implicating their involvement in cancer development and progression. The potential of ncRNAs as diagnostic and prognostic biomarkers for cancer is promising, with emphasis on their use in liquid biopsy and tissue-based diagnostics. In a nutshell, the review comprehensively summarizes the diverse classes of ncRNAs implicated in cancer, including microRNAs, long non-coding RNAs, and circular RNAs, and their functions and mechanisms of action. Furthermore, we describe the potential therapeutic applications of ncRNAs, including anti-miRNA oligonucleotides, siRNAs, and other RNA-based therapeutics in cancer treatment. However, significant challenges remain in developing effective ncRNA-based diagnostics and therapeutics, including the lack of specificity, limited understanding of mechanisms, and delivery challenges. This review also covers the current state-of-the-art non-coding RNA research technologies and bioinformatic analysis tools. Lastly, we outline future research directions in non-coding RNA research in cancer, including developing novel biomarkers, therapeutic targets, and modalities. In summary, this review provides a comprehensive understanding of non-coding RNAs in cancer and their potential clinical applications, highlighting both the opportunities and challenges in this rapidly evolving field.  相似文献   

4.
The tumor microenvironment (TME) is cellular environment in addition to harboring carcinoma cells, consists of different components (e.g., blood vessels, immune cells, fibroblasts, bone marrow‐derived inflammatory cells, lymphocytes, signaling molecules, and the extracellular matrix) that have an essential role on drug activity and efficacy. There is growing body of evidence showing its involvement in the progression and metastasis of different cancers, including breast cancer (BC). These observations provide a proof of concept of targeting TME compartments as a novel potential therapeutic approach in treatment of this malignancy, which is the main interested for current review. J. Cell. Biochem. 119: 111–122, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
6.
Cancer stem cells (CSCs), a subpopulation of cancer cells with ability of initiating tumorigenesis, exist in many kinds of tumors including breast cancer. Cancer stem cells contribute to treatment resistance and relapse. Conventional treatments only kill differentiated cancer cells, but spare CSCs. Combining conventional treatments with therapeutic drugs targeting to CSCs will eradicate cancer cells more efficiently. Studying the molecular mechanisms of CSCs regulation is essential for developing new therapeutic strategies. Growing evidences showed CSCs are regulated by non-coding RNA (ncRNA) including microRNAs and long non-coding RNAs (lncRNAs), and histone-modifiers, such as let-7, miR-93, miR-100, HOTAIR, Bmi-1 and EZH2. Herein we review the roles of microRNAs, lncRNAs and histonemodifiers especially Polycomb family proteins in regulating breast cancer stem cells (BCSCs).  相似文献   

7.
Non-coding RNAs regulate tumor cell plasticity   总被引:1,自引:0,他引:1  
Tumor metastasis is one of the most serious challenges for human cancers as the majority of deaths caused by cancer are associated with metastasis, rather than the primary tumor. Recent studies have demonstrated that tumor cell plasticity plays a critical role in tumor metastasis by giving rise to various cell types which is necessary for tumor to invade adjacent tissues and form distant metastasis. These include differentiation of cancer stem cells (CSCs), or epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition (MET). A growing body of evidence has demonstrated that the biology of tumor cell plasticity is tightly linked to functions of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Therefore, understanding the mechanisms how non-coding RNAs regulate tumor cell plasticity is essential for discovery of new diagnostic markers and therapeutic targets to overcome metastasis.  相似文献   

8.
Recent studies have revealed that non-coding regions comprise the vast majority of the human genome and long non-coding RNAs (lncRNAs) are a diverse class of non-coding RNAs that has been implicated in a variety of biological processes. Abnormal expression of lncRNAs has also been linked to different human diseases including cancers, yet the regulatory mechanisms and functional effects of lncRNAs are still ambiguous, and the molecular details also need to be confirmed. Unlike protein-coding gene, it is much more challenging to unravel the roles of lncRNAs owing to their unique and complex features such as functional diversity and low conservation among species, which greatly hamper their experimental characterization. In this review, we summarize and discuss both conventional and advanced approaches for the identification and functional characterization of lncRNAs related to hematological malignancies. In particular, the utility and advancement of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system as gene-editing tools are envisioned to facilitate the molecular dissection of lncRNAs via different knock-in/out strategies. Besides experimental considerations specific to lncRNAs, the roles of lncRNAs in the pathogenesis and progression of leukemia are also highlighted in the review. We expect that these insights may ultimately lead to clinical applications including development of biomarkers and novel therapeutic approaches targeting lncRNAs.  相似文献   

9.
Breast cancer is the major cause of cancer death worldwide in women. Patients with metastasis have poor prognosis and the mechanisms of breast cancer metastasis are not completely understood. Long non-coding RNAs (lncRNAs) have been shown to have crucial roles in breast cancer development and progression. However, the underlying mechanisms by which lncRNA-driven breast cancer metastasis are unknown. The main objective of this paper is to explore a functional lncRNA and its mechanisms in breast cancer. Here we identified a novel lncRNA AC073352.1 that was significantly upregulated in breast cancer tissues and was associated with advanced TNM stages and poor prognosis in breast cancer patients. In addition, AC073352.1 was found to promote the migration and invasion of breast cancer cells in vitro and enhance breast cancer metastasis in vivo. Mechanistically, we elucidated that AC073352.1 interacted with YBX1 and stabilized its protein expression. Knock down of YBX1 reduced breast cancer cell migration and invasion and could partially reverse the stimulative effects of AC073352.1 overexpressed on breast cancer metastasis. Moreover, AC073352.1 might be packaged into exosomes by binding to YBX1 in breast cancer cells resulting in angiogenesis. Collectively, our results demonstrated that AC073352.1 promoted breast cancer metastasis and angiogenesis via binding YBX1, and it could serve as a promising, novel biomarker for prognosis and a therapeutic target in breast cancer.Subject terms: Breast cancer, Cell invasion, Long non-coding RNAs  相似文献   

10.
11.
Triple negative breast cancer (TNBC) is the most aggressive and challenging form of breast cancers. Tumor microenvironment (TME) of TNBC is associated with induction of metastasis, immune system suppression, escaping immune detection and drug resistance. TME is highly complex and heterogeneous, consists of tumor cells, stromal cells and immune cells. The rapid expansion of tumors induce hypoxia, which concerns the reprogramming of TME components. The reciprocal communication of tumor cells and TME cells predisposes cancer cells to metastasis by modulation of developmental pathways, Wnt, notch, hedgehog and their related mechanisms in TME. Dietary phytochemicals are non-toxic and associated with various human health benefits and remarkable spectrum of biological activities. The phytochemicals serve as vital resources for drug discovery and also as a source for breast cancer therapy. The novel properties of dietary phytochemicals propose platform for modulation of tumor signaling, overcoming drug resistance, and targeting TME. Therefore, TME could serve as promising target for the treatment of TNBC. This review presents current status and implications of experimentally evaluated therapeutic phytochemicals as potential targeting agents of TME, potential nanosystems for targeted delivery of phytochemicals and their current challenges and future implications in TNBC treatment. The dietary phytochemicals especially curcumin with significant delivery system could prevent TNBC development as it is considered safe and well tolerated in phase II clinical trials.  相似文献   

12.
Gastric cancer (GC) is one of the major public health concerns. Long non-coding RNAs (lncRNAs) have been increasingly demonstrated to possess a strong correlation with GC and play a critical role in GC occurrence, progression, metastasis and drug resistance. Many studies have shed light on the understanding of the underlying mechanisms of lncRNAs in GC. In this review, we summarized the updated research about lncRNAs in GC, focusing on their roles in Helicobacter pylori infection, GC metastasis, tumor microenvironment regulation, drug resistance and associated signaling pathways. LncRNAs may serve as novel biomarkers for diagnosis and prognosis of GC and potential therapeutic targets. The research gaps and future directions were also discussed.  相似文献   

13.
上皮细胞转分化现象及其与疾病发生发展的关系,近年已成为细胞生物学、免疫学等多学科关注的聚焦点。转分化作为细胞分化发育的基本生物学现象,存在于机体诸多生理病理过程,也受表观遗传学的调控。相对于经典遗传学而言,表观遗传学作为一门新兴学科,其为生物体的基因表达调控及遗传现象提供了新的理论阐释。现知,DNA甲基化、组蛋白修饰及非编码RNA等均可导致上皮细胞基因发生表观遗传改变,与上皮细胞转分化的发生发展密切相关,并在该过程中发挥重要的调控作用。进一步阐明细胞转分化的分子基础及其表观遗传学调控机制,将有助于认识生命现象基本过程,并可为炎症性疾病、自身免疫病、器官纤维化,以及肿瘤发生与转移等机制的研究与防治,提供新的思路和应对策略。对上皮细胞转分化与表观遗传学调控关系作一简述。  相似文献   

14.
15.
16.
Scutellarin, an active component of flavonoid, displays a variety of physiological actions and has been applied for the treatment of diverse diseases including hypertension and cerebral infarction as well as cerebral thrombosis. In recent time, Scutellarin has been demonstrated to possess the anticancer activity. But the biological significance of Scutellarin in bladder cancer (BC) remains to be elucidated. In the current study, we explored the specific effect of Scutellarin on BC progression. We found that Scutellarin inhibited hypoxia-induced BC cell migration and invasion in vitro as well as suppressed hypoxia-induced BC metastasis in vivo. Moreover, Scutellarin significantly reversed hypoxia-promoted epithelial-mesenchymal transition (EMT) in BC cells and the PI3K/Akt and MAPK pathways were implicated in the suppressive effect. Taken together, we suggested the potential value of Scutellarin as a novel anticancer agent for BC treatment.  相似文献   

17.
Abstract

The past two decades have seen an explosion in research on non-coding RNAs and their physiological and pathological functions. Several classes of small (20–30 nucleotides) and long (>200 nucleotides) non-coding RNAs have been firmly established as key regulators of gene expression in myriad processes ranging from embryonic development to innate immunity. In this review, we focus on our current understanding of the molecular mechanisms underlying the biogenesis and function of small interfering RNAs (siRNAs), microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs). In addition, we briefly review the relevance of small and long non-coding RNAs to human physiology and pathology and their potential to be exploited as therapeutic agents.  相似文献   

18.
Breast cancer (BC) is the most frequently occurring malignancy in women worldwide. Despite the substantial advancement in understanding the molecular mechanisms and management of BC, it remains the leading cause of cancer death in women. One of the main reasons for this obstacle is that we have not been able to find the Achilles heel for the BC as a highly heterogeneous disease. Accumulating evidence has revealed that noncoding RNAs (ncRNAs), play key roles in the development of BC; however, the involving of complex regulatory interactions between the different varieties of ncRNAs in the development of this cancer has been poorly understood. In the recent years, the newly discovered mechanism in the RNA world is “competing endogenous RNA (ceRNA)” which proposes regulatory dialogues between different RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). In the latest BC research, various studies have revealed that dysregulation of several ceRNA networks (ceRNETs) between these ncRNAs has fundamental roles in establishing the hallmarks of BC development. And it is thought that such a discovery could open a new window for a better understanding of the hidden aspects of breast tumors. Besides, it probably can provide new biomarkers and potential efficient therapeutic targets for BC. This review will discuss the existing body of knowledge regarding the key functions of ceRNETs and then highlights the emerging roles of some recently discovered ceRNETs in several hallmarks of BC. Moreover, we propose for the first time the “ceRnome” as a new term in the present article for RNA research.  相似文献   

19.
MicroRNAs (miRNAs) are a class of short non-coding RNAs of approximately 22 nucleotides in length, which function by binding to the 3'' UTR sequences of their target mRNAs. It has been reported that dysregulated miRNAs play pivotal roles in numerous diseases, including cancers, such as gastric, breast, colorectal, ovarian, and other cancers. Recent research efforts have been devoted to translating these basic discoveries into clinical applications that could improve the therapeutic outcome in patients with cancer. Early studies have shown that miR-340 may act either as an oncogene or a tumor suppressor by targeting genes related to proliferation, apoptosis, and metastasis, as well as those associated with diagnosis, treatment, chemoresistance, and prognosis. miR-340 has been shown to have a role in other diseases, such as autoimmune diseases, acute stroke, and alcoholic steatohepatitis. Nevertheless, the roles of miR-340 in human malignancies are still unclear, and the associated mechanisms are complex, involving a variety of signaling pathways, such as Wnt/β-catenin and the JAK-STAT pathways. Herein, we review the crucial roles of miR-340 in human cancers through the analysis of the latest research studies, with the aim of clarifying miR-340 function in malignant disease diagnosis, treatment, and prognosis, and to propose further investigations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号