首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) forms an inner coat directly underneath the lipid envelope of the virion. The outer surface of the lipid envelope surrounding the capsid is coated by the viral Env glycoproteins. We report here that the HIV-1 capsid-Env glycoprotein association is very sensitive to minor alterations in the MA protein. The results indicate that most of the MA domain of the Gag precursor, except for its carboxy terminus, is essential for this association. Viral particles produced by proviruses with small missense or deletion mutations in the region coding for the amino-terminal 100 amino acids of the MA protein lacked both the surface glycoprotein gp120 and the transmembrane glycoprotein gp41, indicating a defect at the level of Env glycoprotein incorporation. Alterations at the carboxy terminus of the MA domain had no significant effect on the levels of particle-associated Env glycoprotein or on virus replication. The presence of HIV-1 MA protein sequences was sufficient for the stable association of HIV-1 Env glycoprotein with hybrid particles that contain the capsid (CA) and nucleocapsid (NC) proteins of visna virus. The association of HIV-1 Env glycoprotein with the hybrid particles was dependent upon the presence of the HIV-1 MA protein domain, as HIV-1 Env glycoprotein was not efficiently recruited into virus particles when coexpressed with authentic visna virus Gag proteins.  相似文献   

2.
The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.  相似文献   

3.
Incorporation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins into assembling particles is crucial for virion infectivity. Genetic and biochemical data indicate that the matrix (MA) domain of Gag and the cytoplasmic tail of the transmembrane glycoprotein gp41 play an important role in coordinating Env incorporation; however, the molecular mechanism and possible role of host factors in this process remain to be defined. Recent studies suggested that Env incorporation is mediated by interactions between matrix and tail-interacting protein of 47 kDa (TIP47; also known as perilipin-3 and mannose-6-phosphate receptor-binding protein 1), a member of the perilipin, adipophilin, TIP47 (PAT) family of proteins implicated in protein sorting and lipid droplet biogenesis. We have confirmed by nuclear magnetic resonance spectroscopy titration experiments and surface plasmon resonance that MA binds TIP47. We also reevaluated the role of TIP47 in HIV-1 Env incorporation in HeLa cells and in the Jurkat T-cell line. In HeLa cells, TIP47 overexpression or RNA interference (RNAi)-mediated depletion had no significant effect on HIV-1 Env incorporation, virus release, or particle infectivity. Similarly, depletion of TIP47 in Jurkat cells did not impair HIV-1 Env incorporation, virus release, infectivity, or replication. Our results thus do not support a role for TIP47 in HIV-1 Env incorporation or virion infectivity.  相似文献   

4.
Incorporation of envelope glycoproteins into a budding retrovirus is an essential step in the formation of an infectious virus particle. By using site-directed mutagenesis, we identified specific amino acid residues in the matrix domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein that are critical to the incorporation of HIV-1 envelope glycoproteins into virus particles. Pseudotyping analyses were used to demonstrate that two heterologous envelope glycoproteins with short cytoplasmic tails (the envelope of the amphotropic murine leukemia virus and a naturally truncated HIV-2 envelope) are efficiently incorporated into HIV-1 particles bearing the matrix mutations. Furthermore, deletion of the cytoplasmic tail of HIV-1 transmembrane envelope glycoprotein gp41 from 150 to 7 or 47 residues reversed the incorporation block imposed by the matrix mutations. These results suggest the existence of a specific functional interaction between the HIV-1 matrix and the gp41 cytoplasmic tail.  相似文献   

5.
The incorporation of viral envelope (Env) glycoproteins into nascent particles is an essential step in the production of infectious human immunodeficiency virus type 1 (HIV-1). This process has been shown to require interactions between Env and the matrix (MA) domain of the Gag polyprotein. Previous studies indicate that several residues in the N-terminal region of MA are required for Env incorporation. However, the precise mechanism by which Env proteins are acquired during virus assembly has yet to be fully defined. Here, we examine whether a highly conserved glutamate at position 99 in the C-terminal helix is required for MA function and HIV-1 replication. We analyze a panel of mutant viruses that contain different amino acid substitutions at this position using viral infectivity studies, virus-cell fusion assays, and immunoblotting. We find that E99V mutant viruses are defective for fusion with cell membranes and thus are noninfectious. We show that E99V mutant particles of HIV-1 strains LAI and NL4.3 lack wild-type levels of Env proteins. We identify a compensatory substitution in MA residue 84 and show that it can reverse the E99V-associated defects. Taken together, these results indicate that the C-terminal hydrophobic pocket of MA, which encompasses both residues 84 and 99, has a previously unsuspected and key role in HIV-1 Env incorporation.  相似文献   

6.
Highly conserved amino acids in the second helix structure of the human immunodeficiency virus type 1 (HIV-1) MA protein were identified to be critical for the incorporation of viral Env proteins into HIV-1 virions from transfected COS-7 cells. The effects of these MA mutations on viral replication in the HIV-1 natural target cells, CD4+ T lymphocytes, were evaluated by using a newly developed system. In CD4+ T lymphocytes, mutations in the MA domain of HIV-1 Gag also inhibited the incorporation of viral Env proteins into mature HIV-1 virions. Furthermore, mutations in the MA domain of HIV-1 Gag reduced surface expression of viral Env proteins in CD4+ T lymphocytes. The synthesis of gp160 and cleavage of gp160 to gp120 were not significantly affected by MA mutations. On the other hand, the stability of gp120 in MA mutant-infected cells was significantly reduced compared to that in the parental wild-type virus-infected cells. These results suggest that functional interaction between HIV-1 Gag and Env proteins is not only critical for efficient incorporation of Env proteins into mature virions but also important for proper intracellular transport and stable surface expression of viral Env proteins in infected CD4+ T lymphocytes. A single amino acid substitution in MA abolished virus infectivity in dividing CD4+ T lymphocytes without significantly affecting virus assembly, virus release, or incorporation of Gag-Pol and Env proteins, suggesting that in addition to its functional role in virus assembly, the MA protein of HIV-1 also plays an important role in other steps of virus replication.  相似文献   

7.
Previous studies have shown that the glycoprotein cytoplasmic domains of human immunodeficiency virus type 2 (HIV-2) or simian immunodeficiency virus of macaques modulate biological activities of the viral glycoprotein complex, including syncytium formation, exterior glycoprotein conformation, and glycoprotein incorporation into budding virus particles. We have now utilized a recombinant expression system to study interactions of full-length or truncated HIV-2 glycoproteins with coexpressed HIV-2 Gag proteins which self-assemble and bud as virus-like particles. Interestingly, budding of HIV-2 virus-like particles from cells was enhanced 5- to 24-fold when Gag was coexpressed with the full-length HIV-2 glycoprotein, compared with Gag expressed either alone or with a truncated HIV-2 glycoprotein. The results obtained in this model system indicate that an additional effect of the lengthy cytoplasmic domain of the glycoprotein of HIV-2 is enhancement of particle budding. We speculate that the cytoplasmic domain of the viral glycoprotein of HIV-2 enhances budding by (i) potentiation of Gag structure or function or (ii) membrane modulation.  相似文献   

8.
The matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) forms the outer protein shell directly underneath the lipid envelope of the virion. The MA protein has a key role in different aspects of virus assembly, including the incorporation of the HIV-1 Env protein complex, which contains a transmembrane glycoprotein with an unusually long cytoplasmic tail. In this study, we compared the abilities of HIV-1 MA mutants to incorporate Env protein complexes with long and short cytoplasmic tails. While the mutant particles failed to incorporate the authentic HIV-1 Env protein complex, they retained the ability to efficiently and functionally incorporate the amphotropic murine leukemia virus Env protein complex, which has a short cytoplasmic tail. Moreover, incorporation of the autologous Env protein complex could be restored by a second-site mutation that resulted in the truncation of the cytoplasmic tail of the HIV-1 transmembrane glycoprotein. Remarkably, the second-site mutation also restored the ability of MA mutants to replicate in MT-4 cells. These results imply that the long cytoplasmic tail of the transmembrane glycoprotein is responsible for the exclusion of the HIV-1 Env protein complex from MA mutant particles.  相似文献   

9.
The human immunodeficiency virus type 1 transmembrane glycoprotein (TM) is efficiently endocytosed in a clathrin-dependent manner. Internalization is mediated by a tyrosine-containing motif within the cytoplasmic domain, and replacement of the cytoplasmic tyrosine by cysteine or phenylalanine increased expression of mutant glycoprotein on the surface of transfected cells by as much as 2.5-fold. Because interactions between the cytoplasmic domain of Env and the matrix protein (MA) have been suggested to mediate incorporation of Env in virus particles, we examined whether perturbation of endocytosis would alter incorporation. Proviruses were constructed to contain the wild-type or mutant Env in conjunction with point mutations in MA that had previously been shown to block Env incorporation. These constructs were used to evaluate the effect of glycoprotein endocytosis on incorporation into virus particles and to test the necessity for a specific interaction between Env and MA to mediate incorporation. Viruses produced from transfected 293T cells were used to infect various cell lines, including MAGI, H9, and CEMx174. Viruses encoding both a disrupted endocytosis motif signal and mutations within MA were significantly more infectious in MAGI cells than their counterparts encoding a mutant MA and wild-type Env. This complementation of infectivity for the MA incorporation mutant viruses was not due to increased glycoprotein incorporation into particles but instead reflected an enhanced fusogenicity of the mutated Env proteins. Our findings further support the concept that a specific interaction between the long cytoplasmic domain of TM and MA is required for efficient incorporation of Env into assembling virions. Alteration of the endocytosis signal of Env, and the resulting increase in cell surface glycoprotein, has no effect on incorporation despite demonstrable effects on fusion, virus entry, and infectivity.  相似文献   

10.
P P Lee  M L Linial 《Journal of virology》1994,68(10):6644-6654
Lentiviruses, such as human immunodeficiency virus type 1 (HIV-1), assemble at and bud through the cytoplasmic membrane. Both the matrix (MA) domain of Gag and its amino-terminal myristylation have been implicated in these processes. We have created HIV-1 proviruses lacking the entire matrix domain of gag which either lack or contain an amino-terminal myristate addition sequence at the beginning of the capsid domain. Myristate- and matrix-deficient [myr(-)MA(-)] viruses produced after transient transfection are still able to assemble into particles, although the majority do not form at the plasma membrane or bud efficiently. Myristylation of the amino terminus of the truncated Gag precursor permits a much more efficient release of the mutant virions. While myr(-)MA(-) particles were inefficient in proteolytic processing of the Gag precursor, myristylation enabled efficient proteolysis of the mutant Gag. All matrix-deficient viruses are noninfectious. Particles produced by matrix-deficient mutants contain low levels of glycoproteins, indicating the importance of matrix in either incorporation or stable retention of Env. Since matrix-deficient viruses contain a normal complement of viral genomic RNA, a role for MA in genomic incorporation can be excluded. Contrary to previous reports, the HIV-1 genome does not require sequences between the 5' splice donor site and the gag start codon for efficient packaging.  相似文献   

11.
The matrix domain (MA) of the simian immunodeficiency virus (SIV) is encoded by the amino-terminal region of the Gag polyprotein precursor and is the component of the viral capsid that lines the inner surface of the virus envelope. To define domains of the SIV MA protein that are involved in virus morphogenesis, deletion and substitution mutations were introduced in this protein in the context of a gag-protease construct and expressed in the vaccinia virus vector system. The MA mutants were characterized with respect to synthesis and processing of the Gag precursor, assembly and release of virus-like particles, and incorporation of the envelope (Env) glycoprotein into particles. We have identified two regions of the SIV MA which are critical for particle formation. Both domains are located in a central hydrophobic alpha-helix of the SIV MA, according to data on the structure of this protein. In addition, we have characterized a domain whose mutation impairs the incorporation of SIV Env glycoproteins with long transmembrane cytoplasmic tails into particles. Interestingly, these mutant particles retained the ability to associate with SIV Env proteins with short cytoplasmic tails.  相似文献   

12.
Matrix (MA), a major structural protein of retroviruses, is thought to play a critical role in several steps of the HIV-1 replication cycle, including the plasma membrane targeting of Gag, the incorporation of envelope (Env) glycoproteins into nascent particles, and the nuclear import of the viral genome in non-dividing cells. We now show that the entire MA protein is dispensable for the incorporation of HIV-1 Env glycoproteins with a shortened cytoplasmic domain. Furthermore, efficient HIV-1 replication in the absence of up to 90% of MA was observed in a cell line in which the cytoplasmic domain of Env is not required. Additional compensatory changes in Gag permitted efficient virus replication even if all of MA was replaced by a heterologous membrane targeting signal. Viruses which lacked the globular domain of MA but retained its N-terminal myristyl anchor exhibited an increased ability to form both extracellular and intracellular virus particles, consistent with a myristyl switch model of Gag membrane targeting. Pseudotyped HIV-1 particles that lacked the structurally conserved globular head of MA efficiently infected macrophages, indicating that MA is dispensable for nuclear import in terminally differentiated cells.  相似文献   

13.
Chan WE  Wang YL  Lin HH  Chen SS 《Journal of virology》2004,78(10):5157-5169
The biological significance of the presence of a long cytoplasmic domain in the envelope (Env) transmembrane protein gp41 of human immunodeficiency virus type 1 (HIV-1) is still not fully understood. Here we examined the effects of cytoplasmic tail elongation on virus replication and characterized the role of the C-terminal cytoplasmic tail in interactions with the Gag protein. Extensions with six and nine His residues but not with fewer than six His residues were found to severely inhibit virus replication through decreased Env electrophoretic mobility and reduced Env incorporation compared to the wild-type virus. These two mutants also exhibited distinct N glycosylation and reduced cell surface expression. An extension of six other residues had no deleterious effect on infectivity, even though some mutants showed reduced Env incorporation into the virus and/or decreased cell surface expression. We further show that these elongated cytoplasmic tails in a format of the glutathione S-transferase fusion protein still interacted effectively with the Gag protein. In addition, the immediate C terminus of the cytoplasmic tail was not directly involved in interactions with Gag, but the region containing the last 13 to 43 residues from the C terminus was critical for Env-Gag interactions. Taken together, our results demonstrate that HIV-1 Env can tolerate extension at its C terminus to a certain degree without loss of virus infectivity and Env-Gag interactions. However, extended elongation in the cytoplasmic tail may impair virus infectivity, Env cell surface expression, and Env incorporation into the virus.  相似文献   

14.
Assembly of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein on budding virus particles is important for efficient infection of target cells. In infected cells, lipid rafts have been proposed to form platforms for virus assembly and budding. Gag precursors partly associate with detergent-resistant membranes (DRMs) that are believed to represent lipid rafts. The cytoplasmic domain of the envelope gp41 usually carries palmitate groups that were also reported to confer DRM association. Gag precursors confer budding and carry envelope glycoproteins onto virions via specific Gag-envelope interactions. Thus, specific mutations in both the matrix domain of the Gag precursor and gp41 cytoplasmic domain abrogate envelope incorporation onto virions. Here, we show that HIV-1 envelope association with DRMs is directly influenced by its interaction with Gag. Thus, in the absence of Gag, envelope fails to associate with DRMs. A mutation in the p17 matrix (L30E) domain in Gag (Gag L30E) that abrogates envelope incorporation onto virions also eliminated envelope association with DRMs in 293T cells and in the T-cell line, MOLT 4. These observations are consistent with a requirement for an Env-Gag interaction for raft association and subsequent assembly onto virions. In addition to this observation, we found that mutations in the gp41 cytoplasmic domain that abrogated envelope incorporation onto virions and impaired infectivity of cell-free virus also eliminated envelope association with DRMs. On the basis of these observations, we propose that Gag-envelope interaction is essential for efficient envelope association with DRMs, which in turn is essential for envelope budding and assembly onto virus particles.  相似文献   

15.
The vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a virion-associated regulatory protein. Mutagenesis has shown that the virion association of Vpr requires sequences near the C terminus of the HIV-1 Gag polyprotein Pr55gag. To investigate whether Vpr incorporation is mediated by a specific domain of Pr55gag, we examined the ability of chimeric HIV-1/Moloney murine leukemia virus (MLV) Gag polyproteins to direct the incorporation of Vpr. Vpr expressed in trans did not associate with particles formed by the authentic MLV Gag polyprotein or with particles formed by chimeric Gag polyproteins that had the matrix (MA) or capsid (CA) domain of MLV precisely replaced by the corresponding domain of HIV-1HXB2. By contrast, Vpr was efficiently incorporated upon replacement of the C-terminal nucleocapsid (NC) domain of the MLV Gag polyprotein with HIV-1 p15 sequences. Vpr was also efficiently incorporated into particles formed by a MLV Gag polyprotein that had the HIV-1 p6 domain fused to its C terminus. Furthermore, a deletion analysis revealed that a conserved region near the C terminus of the p6 domain is essential for Vpr incorporation, whereas sequences downstream of the conserved region are dispensable. These results show that a virion association motif for Vpr is located within residues 1 to 46 of p6.  相似文献   

16.
The mechanisms involved in the incorporation of viral glycoproteins into virions are incompletely understood. For retroviruses, incorporation may involve interactions between the Gag proteins of these viruses and the cytoplasmic domains of the relevant envelope (Env) glycoproteins. Recent studies have identified within the cytoplasmic tail of the human immunodeficiency virus type 1 (HIV-1) Env protein a tyrosine-containing internalization motif similar to those found in the cytoplasmic domains of certain cell surface proteins that undergo rapid constitutive endocytosis in clathrin-coated pits. Given that surface expression of the HIV-1 Env protein is essential for the production of infectious virus, the presence of this internalization motif is surprising. We show here that in contrast to the rapid rate of Env protein internalization observed in cells expressing the Env protein in the absence of other HIV-1 proteins, the rate of internalization of Env protein from the surfaces of HIV-1-infected cells is extremely slow. The presence of the Pr55gag precursor protein is necessary and sufficient for inhibition of Env protein internalization, while a mutant Pr55-gag that is incapable of mediating Env incorporation into virions is also unable to inhibit endocytosis of the Env protein. The failure of the Env protein to undergo endocytosis from the surface of an HIV-1-infected cell may reflect the fact that the proposed interaction of the matrix domain of the Gag protein with Env during assembly prevents the interaction of Env with host adaptin molecules that recruit plasma membrane molecules such as the transferrin receptor into clathrin-coated pits. When the normal ratio of Gag and Env proteins in the infected cells is altered by overexpression of Env protein, this mechanism allows removal of excess Env protein from the cell surface. Taken together, these results suggest that a highly conserved system to reduce surface levels of the Env protein functions to remove Env protein that is not associated with Gag and that is therefore not destined for incorporation into virions. This mechanism for the regulation of surface levels of Env protein may protect infected cells from Env-dependent cytopathic effects or Env-specific immune responses.  相似文献   

17.
The incorporation of envelope (Env) glycoproteins into virions is an essential step in the retroviral replication cycle. Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), encode Env glycoproteins with unusually long cytoplasmic tails, the functions of which have not been fully elucidated. In this study, we examine the effects on virus replication of a number of mutations in a helical motif (alpha-helix 2) located near the center of the HIV-1 gp41 cytoplasmic tail. We find that, in T-cell lines, small deletions in this domain disrupt the incorporation of Env glycoproteins into virions and markedly impair virus infectivity. Through the analysis of viral revertants, we demonstrate that a single amino acid change (34VI) in the matrix domain of Gag reverses the Env incorporation and infectivity defect imposed by a small deletion near the C terminus of alpha-helix 2. These results provide genetic evidence, in the context of infected T cells, for an interaction between HIV-1 matrix and the gp41 cytoplasmic tail and identify domains of both proteins involved in this putative interaction.  相似文献   

18.
X Yu  X Yuan  Z Matsuda  T H Lee    M Essex 《Journal of virology》1992,66(8):4966-4971
Accumulating evidence suggests that the matrix (MA) protein of retroviruses plays a key role in virus assembly by directing the intracellular transport and membrane association of the Gag polyprotein. In this report, we show that the MA protein of human immunodeficiency virus type 1 is also critical for the incorporation of viral Env proteins into mature virions. Several deletions introduced in the MA domain (p17) of human immunodeficiency virus type 1 Gag polyprotein did not greatly affect the synthesis and processing of the Gag polyprotein or the formation of virions. Analysis of the viral proteins revealed normal levels of Gag and Pol proteins in these mutant virions, but the Env proteins, gp120 and gp41, were hardly detectable in the mutant virions. Our data suggest that an interaction between the viral Env protein and the MA domain of the Gag polyprotein is required for the selective incorporation of Env proteins during virus assembly. Such an interaction appears to be very sensitive to conformational changes in the MA domain, as five small deletions in two separate regions of p17 equally inhibited viral Env protein incorporation. Mutant viruses were not infectious in T cells. When mutant and wild-type DNAs were cotransfected into T cells, the replication of wild-type virus was also hindered. These results suggest that the incorporation of viral Env protein is a critical step for replication of retroviruses and can be a target for the design of antiviral strategies.  相似文献   

19.
We and others have presented evidence for a direct interaction between the matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein and the cytoplasmic tail of the transmembrane envelope (Env) glycoprotein gp41. In addition, it has been postulated that the MA domain of Gag undergoes a conformational change following Gag processing, and the cytoplasmic tail of gp41 has been shown to modulate Env-mediated membrane fusion activity. Together, these results raise the possibility that the interaction between the gp41 cytoplasmic tail and MA is regulated by protease (PR)-mediated Gag processing, perhaps affecting Env function. To examine whether Gag processing affects Env-mediated fusion, we compared the ability of wild-type (WT) HIV-1 Env and a mutant lacking the gp41 cytoplasmic tail to induce fusion in the context of an active (PR(+)) or inactive (PR(-)) viral PR. We observed that PR(-) virions bearing WT Env displayed defects in cell-cell fusion. Impaired fusion did not appear to be due to differences in the levels of virion-associated Env, in CD4-dependent binding to target cells, or in the formation of the CD4-induced gp41 six-helix bundle. Interestingly, truncation of the gp41 cytoplasmic tail reversed the fusion defect. These results suggest that interactions between unprocessed Gag and the gp41 cytoplasmic tail suppress fusion.  相似文献   

20.
The matrix domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein contains a highly basic region near its amino terminus. It has been proposed that this basic domain, in conjunction with the HIV-1 accessory protein Vpr, is responsible for the localization of the HIV-1 preintegration complex to the nucleus in nondividing cells. It has also been postulated that the matrix basic domain assists in the targeting of the HIV-1 Gag precursor Pr55Gag to the plasma membrane during virus assembly. To evaluate the role of this highly basic sequence during infection of primary human monocyte-derived macrophages, single- and double-amino-acid-substitution mutations were introduced, and the effects on virus particle production, Gag protein processing, envelope glycoprotein incorporation into virus particles, and virus infectivity in the CEM(12D-7) T-cell line, peripheral blood mononuclear cells, and primary human monocyte-derived macrophages were analyzed. Although modest effects on virus particle production were observed with some of the mutants, none abolished infectivity in primary human monocyte-derived macrophages. In contrast with previously reported studies involving some of the same matrix basic domain mutants, infectivity in monocyte-derived macrophages was retained even when combined with a vpr mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号