首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
G Pancino  L Camoin    P Sonigo 《Journal of virology》1995,69(4):2110-2118
In the transmembrane envelope glycoprotein (TM) of lentiviruses, including human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV), two cysteine residues, conserved in most retroviruses, are thought to form a loop containing five to seven amino acids. These elements make up a B-cell epitope recognized by nearly 100% of sera from infected patients or animals, designated the principal immunodominant domain (PID). The PID amino acid sequences are highly conserved between isolates of the same lentivirus but are unrelated, except for the two cysteines, when divergent lentiviruses are compared. The aim of this study was to analyze the relationship between amino acid sequence in the PID and envelope function. We introduced two kinds of mutations in the PID of FIV: mutations which impeded the formation of a loop and mutations which substituted the sequence of FIV with the corresponding sequences from other lentiviruses, HIV-1, visna virus, and equine infectious anemia virus. We analyzed antibody recognition, processing, and fusogenic properties of the modified envelopes, using two methods of Env expression: a cell-free expression system and transfection of a feline fibroblast cell line with gag-pol-deleted FIV proviruses. Most mutations in the PID of FIV severely affected envelope processing and abolished syncytium formation. Only the chimeric envelope containing the HIV-1 PID sequence was correctly processed and maintained the capacity to induce syncytium formation, although less efficiently than the wild-type envelope. We computed three-dimensional structural models of the PID, which were consistent with mutagenesis data and confirmed the similarity of FIV and HIV-1 PID structures, despite their divergence in amino acid sequence. Considering these results, we discussed the respective importance of selection exerted by functional requirements or host antibodies to explain the observed variations of the PIDs in lentiviruses.  相似文献   

2.
Hetero-oligomerization between human immunodeficiency virus type 2 (HIV-2) envelope glycoprotein (Env) truncation mutants and epitope-tagged gp160 is dependent on the presence of gp41 transmembrane protein (TM) amino acids 552 to 589, a putative amphipathic alpha-helical sequence. HIV-2 Env truncation mutants containing this sequence were also able to form cross-type hetero-oligomers with HIV-1 Env. HIV-2/HIV-1 hetero-oligomerization was, however, more sensitive to disruption by mutagenesis or increased temperature. The conservation of the Env oligomerization function of the HIV-1 and HIV-2 alpha-helical sequences suggests that retroviral TM alpha-helical motifs may have a universal role in oligomerization.  相似文献   

3.
The triterpene RPR103611 is an efficient inhibitor of membrane fusion mediated by the envelope proteins (Env, gp120-gp41) of CXCR4-dependent (X4) human immunodeficiency virus type 1 (HIV-1) strains, such as HIV-1(LAI) (LAI). Other X4 strains, such as HIV-1(NDK) (NDK), and CCR5-dependent (R5) HIV-1 strains, such as HIV-1(ADA) (ADA), were totally resistant to RPR103611. Analysis of chimeric LAI-NDK Env proteins identified a fragment of the NDK gp41 ectodomain determining drug resistance. A single difference at position 91, leucine in LAI and histidine in NDK, apparently accounted for their sensitivity or resistance to RPR103611. We had previously identified a mutation of isoleucine 84 to serine in a drug escape LAI variant. Both I84 and L91 are located in the "loop region" of gp41 separating the proximal and distal helix domains. Nonpolar residues in this region therefore appear to be important for the antiviral activity of RPR103611 and are possibly part of its target. However, another mechanism had to be envisaged to explain the drug resistance of ADA, since its gp41 loop region was almost identical to that of LAI. Fusion mediated by chimeric Env consisting of LAI gp120 and ADA gp41, or the reciprocal construct, was fully blocked by RPR103611. The gp120-gp41 complex of R5 strains is stable, relative to that of X4 strains, and this stability could play a role in their drug resistance. Indeed, when the postbinding steps of ADA infection were performed under mildly acidic conditions (pH 6.5 or 6.0), a treatment expected to favor dissociation of gp120, we achieved almost complete neutralization by RPR103611. The drug resistance of NDK was partially overcome by preincubating virus with soluble CD4, a gp120 ligand inducing conformational changes in the Env complex. The antiviral efficacy of RPR103611 therefore depends on the sequence of the gp41 loop and the stability of the gp120-gp41 complex, which could limit the accessibility of this target.  相似文献   

4.
The V1 and V2 variable regions of the primate immunodeficiency viruses contribute to the trimer association domain of the gp120 exterior envelope glycoprotein. A pair of V2 cysteine residues at 183 and 191 (“twin cysteines”) is present in several simian immunodeficiency viruses, human immunodeficiency virus type 2 (HIV-2) and some SIVcpz lineages, but not in HIV-1. To examine the role of this potentially disulfide-bonded twin-cysteine motif, the cysteine residues in the SIVmac239 envelope glycoproteins were individually and pairwise substituted by alanine residues. All of the twin-cysteine mutants exhibited decreases in gp120 association with the Env trimer, membrane-fusing activity, and ability to support virus entry. Thus, the twin-cysteine motif plays a role in Env trimer stabilization in SIV and may do so in HIV-2 and some SIVcpz as well. This implies that HIV-1 lost the twin-cysteines, and may have relatively unstable Env trimers compared to SIV and HIV-2.  相似文献   

5.
In order to map linear B epitopes in feline immunodeficiency virus (FIV) envelope glycoproteins (Env), a random library of FIV Env polypeptides fused to beta-galactosidase and expressed in Escherichia coli was screened by using sera from experimentally FIV-infected cats. We mapped five antibody-binding domains in the surface envelope glycoprotein (SU1 to SU5) and four in the transmembrane envelope glycoprotein (TM1 to TM4). Immunological analysis with 48 serum samples from naturally or experimentally infected cats of diverse origins revealed a broad group reactivity for epitopes SU2, TM2, and TM3, whereas SU3 appeared as strictly type specific. To study selection pressures acting on the identified immunogenic domains, we analyzed structural constraints and distribution of synonymous and nonsynonymous mutations (amino acids unchanged or changed). Two linear B epitopes (SU3 and TM4) appeared to be submitted to positive selection for change, a pattern of evolution predicting their possible involvement in antiviral protection. These experiments provide a pertinent choice of oligopeptides for further analysis of the protective response against FIV envelope glycoproteins, as a model to understand the role of antibody escape in lentiviral persistence and to design feline AIDS vaccines.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) particles typically contain small amounts of the surface envelope protein (SU), and this is widely believed to be due to shedding of SU from mature virions. We purified proteins from HIV-1 and SIV isolates using procedures which allow quantitative measurements of viral protein content and determination of the ratios of gag- and env-encoded proteins in virions. All of the HIV-1 and most of the SIV isolates examined contained low levels of envelope proteins, with Gag:Env ratios of approximately 60:1. Based on an estimate of 1,200 to 2,500 Gag molecules per virion, this corresponds to an average of between 21 and 42 SU molecules, or between 7 and 14 trimers, per particle. In contrast, some SIV isolates contained levels of SU at least 10-fold greater than SU from HIV-1 isolates. Quantification of relative amounts of SU and transmembrane envelope protein (TM) provides a means to assess the impact of SU shedding on virion SU content, since such shedding would be expected to result in a molar excess of TM over SU on virions that had shed SU. With one exception, viruses with sufficient SU and TM to allow quantification were found to have approximately equivalent molar amounts of SU and TM. The quantity of SU associated with virions and the SU:TM ratios were not significantly changed during multiple freeze-thaw cycles or purification through sucrose gradients. Exposure of purified HIV-1 and SIV to temperatures of 55 degrees C or greater for 1 h resulted in loss of most of the SU from the virus but retention of TM. Incubation of purified virus with soluble CD4 at 37 degrees C resulted in no appreciable loss of SU from either SIV or HIV-1. These results indicate that the association of SU and TM on the purified virions studied is quite stable. These findings suggest that incorporation of SU-TM complexes into the viral membrane may be the primary factor determining the quantity of SU associated with SIV and HIV-1 virions, rather than shedding of SU from mature virions.  相似文献   

7.
The external domain of the envelope glycoprotein, gp120, of simian immunodeficiency virus (SIV) has been expressed as a mature secreted product using recombinant baculoviruses and the expressed protein, which has an observed molecular mass of 110 kDa, was purified by monoclonal antibody (MAb) affinity chromatography. N-terminal sequence analysis showed a signal sequence cleavage identity similar to that of the gp120s of both human immunodeficiency virus type 1 (HIV-1) and HIV type 2. The expressed molecule bound to soluble CD4 with an affinity that was approximately 10-fold lower than that of gp120 from HIV-1. A screening of the ability of SIV envelope MAbs to inhibit CD4 binding revealed two groups of inhibitory MAbs. One group is dependent on conformation, while the second group maps to a discrete epitope near the amino terminus. The particular role of the V3 loop region of the molecule in CD4 binding was investigated by the construction of an SIV-HIV hybrid in which the V3 loop of SIV was precisely replaced with the equivalent domain from HIV-1 MN. The hybrid glycoprotein bound HIV-1 V3 loop MAbs and not SIV V3 MAbs but continued to bind conformational SIV MAbs and soluble CD4 as well as the parent molecule.  相似文献   

8.
9.
The trimeric envelope glycoprotein (Env) spikes displayed on the surfaces of simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) virions are composed of three heterodimers of the viral glycoproteins gp120 and gp41. Although binding of gp120 to cell surface CD4 and a chemokine receptor is known to elicit conformational changes in gp120 and gp41, changes in quaternary structure of the trimer have only recently been elucidated. For the HIV-1 BaL isolate, CD4 attachment results in a striking rearrangement of the trimer from a "closed" to an "open" conformation. The effect of CD4 on SIV trimers, however, has not been described. Using cryo-electron tomography, we have now determined molecular architectures of the soluble CD4 (sCD4)-bound states of SIV Env trimers for three different strains (SIVmneE11S, SIVmac239, and SIV CP-MAC). In marked contrast to HIV-1 BaL, SIVmneE11S and SIVmac239 Env showed only minor conformational changes following sCD4 binding. In SIV CP-MAC, where trimeric Env displays a constitutively "open" conformation similar to that seen for HIV-1 BaL Env in the sCD4-complexed state, we show that there are no significant further changes in conformation upon the binding of either sCD4 or 7D3 antibody. The density maps also show that 7D3 and 17b antibodies target epitopes on gp120 that are on opposites sides of the coreceptor binding site. These results provide new insights into the structural diversity of SIV Env and show that there are strain-dependent variations in the orientation of sCD4 bound to trimeric SIV Env.  相似文献   

10.
To study the intracellular transport and biological properties of the human immunodeficiency virus type 1 (HIV-1) transmembrane glycoprotein (TM; gp41), we constructed a truncated envelope gene in which the majority of the coding sequences for the surface glycoprotein (SU; gp120) were deleted. Transient expression of this truncated env gene in primate cells resulted in the biosynthesis of two proteins with M(r)s of 52,000 and 41,000, respectively. Immunofluorescence studies with antibodies to the HIV-1 TM protein indicated that the intracellular and surface localization of these proteins were indistinguishable from those of the native HIV-1 gp120-gp41 complex. These results indicate that the oligosaccharide processing and cell surface transport of the HIV-1 TM protein were not dependent on the presence of the receptor binding subunit, gp120. Syncytium formation was readily detected upon expression of the deleted HIV-1 env gene into COS and CD4+ HeLa cell lines, suggesting that in the absence of gp120, the TM protein retained biological activity. This observation was confirmed by infection of primate and mouse cell lines with a recombinant vaccinia virus (vvgp41) expressing the truncated HIV-1 env gene. These results strongly suggest that (i) the two biological activities of the HIV-1 envelope glycoprotein can occur independently and (ii) the association of the two glycoprotein subunits may restrict the fusion activity of the transmembrane component to CD4+ cells.  相似文献   

11.
The envelope proteins (Env) of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) form homo-oligomers in the endoplasmic reticulum. The oligomeric structure of Env is maintained, but is less stable, after cleavage in a Golgi compartment and transport to the surface of infected cells. Functional, virion-associated HIV-1 and SIV Env have an almost exclusively trimeric structure. In addition, a soluble form of SIV Env (gp140) forms a nearly homogeneous population of trimers. Here, we describe the oligomeric structure of soluble, uncleaved HIV-1 gp140 and modifications that promote a stable trimeric structure. Biochemical and biophysical analyses, including sedimentation equilibrium and scanning transmission electron microscopy, revealed that unmodified HIV-1 gp140 purified as a heterogeneous range of oligomeric species, including dimers and aggregates. Deletion of the V2 domain alone or, especially, both the V1 and V2 domains reduced dimer formation but promoted aggregation rather than trimerization. Expressing gp140 with mannose-only oligosaccharides did not eliminate heterogeneity. Replacement of the entire gp41 segment of HIV-1 gp140 or just the N-terminal half (85 amino acids) of this segment with the corresponding region of SIV was sufficient to confer efficient trimerization for gp140 derived from clade B and C isolates. Importantly, the relatively small segment of the HIV Env replaced by SIV sequences contains no known targets of neutralizing antibody. The soluble trimeric form of HIV-1 Env should prove useful for assessment of antigenic structure and immunogenicity.  相似文献   

12.
The expression of human immunodeficiency virus Nef increases the viral infectivity through mechanisms still not fully elucidated. Here we report that wild-type (wt) human immunodeficiency virus, type 1 (HIV-1), particles were neutralized by higher concentrations of either anti-Env glycoprotein (gp) 41 antibodies or recombinant soluble human CD4 compared with Deltanef HIV-1. This appeared to be the result of a Nef-induced increase of virion incorporation of both gp41 (transmembrane (TM)) and surface gp120 Env products likely originating from enhanced steady-state levels of cell membrane-associated Env products. This, in turn, seemed to be the consequence of a reduced retention of the Env precursor. Most interesting, we found that both the Nef-directed increase of Env membrane expression and the Nef-induced enhancement of HIV-1 infectivity relied on the presence of the intracytoplasmic domain of TM, supporting the hypothesis of a functional correlation between these effects. Mutagenesis studies allowed us to establish that the two leucine residues at the TM C terminus, which are part of a sorting motif involved in the control of Env membrane expression, and the 181-210-residue Nef C-terminal region were critically involved in the Nef/Env functional interaction. In conclusion, we propose that Nef increases the infectivity of HIV-1 at least in part by enhancing the amounts of Env products incorporated into virus particles.  相似文献   

13.
Expression of the human immunodeficiency virus type 1 (HIV-1) Env glycoprotein is stringently regulated in infected cells. The majority of the glycoprotein does not reach the cell surface but rather is retained in the endoplasmic reticulum or a cis-Golgi compartment and subsequently degraded. We here report that Env of various HIV-1 isolates is ubiquitinated at the extracellular domain of gp41 and that Env expression could be increased by lactacystin, a specific proteasome inhibitor, suggesting that the ubiquitin/proteasome system is involved in control of expression and degradation.  相似文献   

14.
The foamy virus (FV) glycoprotein precursor gp130(Env) undergoes a highly unusual biosynthesis, resulting in the generation of three particle-associated, mature subunits, leader peptide (LP), surface (SU), and transmembrane (TM). Little structural and functional information on the extracellular domains of FV Env is available. In this study, we characterized the prototype FV (PFV) Env receptor-binding domain (RBD) by flow cytometric analysis of recombinant PFV Env immunoadhesin binding to target cells. The extracellular domains of the C-terminal TM subunit as well as targeting of the recombinant immunoadhesins by the cognate LP to the secretory pathway were dispensable for target cell binding, suggesting that the PFV Env RBD is contained within the SU subunit. N- and C-terminal deletion analysis of the SU domain revealed a minimal continuous RBD spanning amino acids (aa) 225 to 555; however, internal deletions covering the region from aa 397 to 483, but not aa 262 to 300 or aa 342 to 396, were tolerated without significant influence on host cell binding. Analysis of individual cysteine point mutants in PFV SU revealed that only most of those located in the nonessential region from aa 397 to 483 retained residual binding activity. Interestingly, analysis of various N-glycosylation site mutants suggests an important role of carbohydrate chain attachment to N391, either for direct interaction with the receptor or for correct folding of the PFV Env RBD. Taken together, these results suggest that a bipartite sequence motif spanning aa 225 to 396 and aa 484 to 555 is essential for formation of the PFV Env RBD, with N-glycosylation site at position 391 playing a crucial role for host cell binding.  相似文献   

15.
The persistence of human immunodeficiency virus type 1 (HIV-1) infection in the presence of robust host immunity has been associated in part with variation in viral envelope proteins leading to antigenic variation and escape from neutralizing antibodies. Previous studies of natural neutralization escape mutants have predominantly focused on gp120 and gp41 ectodomain sequence variations that alter antibody binding via changes in conformation or glycosylation pattern of the Env, likely due to the immune pressure exerted on the exposed ectodomain component of the glycoprotein. Here, we show for the first time a novel mechanism by which point mutations in the intracytoplasmic tail of the transmembrane component (gp41) of envelope can render the virus resistant to neutralization by monoclonal antibodies and broadly neutralizing polyclonal serum antibodies. Point mutations in a highly conserved structural motif within the intracytoplasmic tail resulted in decreased binding of neutralizing antibodies to the Env ectodomain, evidently due to allosteric changes both in the gp41 ectodomain and in gp120. While receptor binding and infectivity of the mutant virus remained unaltered, the changes in Env antigenicity were associated with an increase in neutralization resistance of the mutant virus. These studies demonstrate the structurally integrated nature of gp120 and gp41 and underscore a previously unrecognized potentially critical role for even minor sequence variation of the intracytoplasmic tail in modulating the antigenicity of the ectodomain of HIV-1 envelope glycoprotein complex.  相似文献   

16.
The human immunodeficiency virus (HIV) envelope (Env) protein is incorporated into HIV virions or virus-like particles (VLPs) at very low levels compared to the glycoproteins of most other enveloped viruses. To test factors that influence HIV Env particle incorporation, we generated a series of chimeric gene constructs in which the coding sequences for the signal peptide (SP), transmembrane (TM), and cytoplasmic tail (CT) domains of HIV-1 Env were replaced with those of other viral or cellular proteins individually or in combination. All constructs tested were derived from HIV type 1 (HIV-1) Con-S DeltaCFI gp145, which itself was found to be incorporated into VLPs much more efficiently than full-length Con-S Env. Substitution of the SP from the honeybee protein mellitin resulted in threefold-higher chimeric HIV-1 Env expression levels on insect cell surfaces and an increase of Env incorporation into VLPs. Substitution of the HIV TM-CT with sequences derived from the mouse mammary tumor virus (MMTV) envelope glycoprotein, influenza virus hemagglutinin, or baculovirus (BV) gp64, but not from Lassa fever virus glycoprotein, was found to enhance Env incorporation into VLPs. The highest level of Env incorporation into VLPs was observed in chimeric constructs containing the MMTV and BV gp64 TM-CT domains in which the Gag/Env molar ratios were estimated to be 4:1 and 5:1, respectively, compared to a 56:1 ratio for full-length Con-S gp160. Electron microscopy revealed that VLPs with chimeric HIV Env were similar to HIV-1 virions in morphology and size and contained a prominent layer of Env spikes on their surfaces. HIV Env specific monoclonal antibody binding results showed that chimeric Env-containing VLPs retained conserved epitopes and underwent conformational changes upon CD4 binding.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the surface-exposed envelope protein (SU) gp120, which binds to cellular CD4 and chemokine receptors, triggering the membrane fusion activity of the transmembrane (TM) protein gp41. The core of gp41 comprises an N-terminal triple-stranded coiled coil and an antiparallel C-terminal helical segment which is packed against the exterior of the coiled coil and is thought to correspond to a fusion-activated conformation. The available gp41 crystal structures lack the conserved disulfide-bonded loop region which, in human T-lymphotropic virus type 1 (HTLV-1) and murine leukemia virus TM proteins, mediates a chain reversal, connecting the antiparallel N- and C-terminal regions. Mutations in the HTLV-1 TM protein gp21 disulfide-bonded loop/chain reversal region adversely affected fusion activity without abolishing SU-TM association (A. L. Maerz, R. J. Center, B. E. Kemp, B. Kobe, and P. Poumbourios, J. Virol. 74:6614-6621, 2000). We now report that in contrast to our findings with HTLV-1, conservative substitutions in the HIV-1 gp41 disulfide-bonded loop/chain reversal region abolished association with gp120. While the mutations affecting gp120-gp41 association also affected cell-cell fusion activity, HIV-1 glycoprotein maturation appeared normal. The mutant glycoproteins were processed, expressed at the cell surface, and efficiently immunoprecipitated by conformation-dependent monoclonal antibodies. The gp120 association site includes aromatic and hydrophobic residues on either side of the gp41 disulfide-bonded loop and a basic residue within the loop. The HIV-1 gp41 disulfide-bonded loop/chain reversal region is a critical gp120 contact site; therefore, it is also likely to play a central role in fusion activation by linking CD4 plus chemokine receptor-induced conformational changes in gp120 to gp41 fusogenicity. These gp120 contact residues are present in diverse primate lentiviruses, suggesting conservation of function.  相似文献   

18.
Hötzel I  Cheevers WP 《Journal of virology》2003,77(21):11578-11587
A sequence similarity between surface envelope glycoprotein (SU) gp135 of the lentiviruses maedi-visna virus and caprine arthritis-encephalitis virus (CAEV) and human immunodeficiency virus type 1 (HIV-1) gp120 has been described. The regions of sequence similarity are in the second and fifth conserved regions of gp120, and the similarity is highest in sequences coinciding with beta-strands 4 to 8 and 25, which are located in the most virion-proximal region of the gp120 inner domain. A subset of this structure, formed by gp120 beta-strands 4, 5, and 25, is conserved in most or all lentiviruses. Because of the orientation of gp120 on the virion, this highly conserved virion-proximal region of the gp120 core may interact with the transmembrane glycoprotein (TM) together with the amino and carboxy termini of full-length gp120. Therefore, interactions between SU and TM of lentiviruses may be structurally related. Here we tested whether the amino acid residues in the putative virion-proximal region of CAEV gp135 comprising putative beta-strands 4, 5, and 25, as well as its amino and carboxy termini, are important for stable interactions with TM. An amino acid change at gp135 position 119 or 521, located in the turn between putative beta-strands 4 and 5 and near beta-strand 25, respectively, specifically disrupted the epitope recognized by monoclonal antibody 29A. Thus, similar to the corresponding gp120 regions, these gp135 residues are located in close proximity to each other in the folded protein, supporting the hypothesis of a structural similarity between the gp120 virion-proximal inner domain and gp135. Amino acid changes in the amino- and carboxy-terminal and putative virion-proximal regions of gp135 increased gp135 shedding from the cell surface, indicating that these gp135 regions are involved in interactions with TM. Our results indicate structural and functional parallels between CAEV gp135 and HIV-1 gp120 that may be more broadly applicable to the SU of other lentiviruses.  相似文献   

19.
The matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) forms the outer protein shell directly underneath the lipid envelope of the virion. The MA protein has a key role in different aspects of virus assembly, including the incorporation of the HIV-1 Env protein complex, which contains a transmembrane glycoprotein with an unusually long cytoplasmic tail. In this study, we compared the abilities of HIV-1 MA mutants to incorporate Env protein complexes with long and short cytoplasmic tails. While the mutant particles failed to incorporate the authentic HIV-1 Env protein complex, they retained the ability to efficiently and functionally incorporate the amphotropic murine leukemia virus Env protein complex, which has a short cytoplasmic tail. Moreover, incorporation of the autologous Env protein complex could be restored by a second-site mutation that resulted in the truncation of the cytoplasmic tail of the HIV-1 transmembrane glycoprotein. Remarkably, the second-site mutation also restored the ability of MA mutants to replicate in MT-4 cells. These results imply that the long cytoplasmic tail of the transmembrane glycoprotein is responsible for the exclusion of the HIV-1 Env protein complex from MA mutant particles.  相似文献   

20.
The matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) forms an inner coat directly underneath the lipid envelope of the virion. The outer surface of the lipid envelope surrounding the capsid is coated by the viral Env glycoproteins. We report here that the HIV-1 capsid-Env glycoprotein association is very sensitive to minor alterations in the MA protein. The results indicate that most of the MA domain of the Gag precursor, except for its carboxy terminus, is essential for this association. Viral particles produced by proviruses with small missense or deletion mutations in the region coding for the amino-terminal 100 amino acids of the MA protein lacked both the surface glycoprotein gp120 and the transmembrane glycoprotein gp41, indicating a defect at the level of Env glycoprotein incorporation. Alterations at the carboxy terminus of the MA domain had no significant effect on the levels of particle-associated Env glycoprotein or on virus replication. The presence of HIV-1 MA protein sequences was sufficient for the stable association of HIV-1 Env glycoprotein with hybrid particles that contain the capsid (CA) and nucleocapsid (NC) proteins of visna virus. The association of HIV-1 Env glycoprotein with the hybrid particles was dependent upon the presence of the HIV-1 MA protein domain, as HIV-1 Env glycoprotein was not efficiently recruited into virus particles when coexpressed with authentic visna virus Gag proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号