首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oomycete plant pathogen Phytophthora infestans is the causal agent of late blight, one of the most devastating diseases of potato worldwide. As part of efforts to clone avirulence (Avr) genes and pathogenicity factors from P. infestans, we have constructed a bacterial artificial chromosome (BAC) library from an isolate containing six Avr genes. The BAC library comprises clones with an average insert size of 98 kb and represents an estimated 10 genome equivalents. A three-dimensional pooling strategy was developed to screen the BAC library for amplified fragment length polymorphism (AFLP) markers, as this type of marker has been extensively used in construction of a P. infestans genetic map. Multiple positive clones were identified for each AFLP marker tested. The pools were used to construct a contig of 11 BAC clones in a region of the P. infestans genome containing a cluster of three avirulence genes. The BAC contig is predicted to encompass the Avr11 locus but mapping of the BAC ends will be required to determine if the Avr3 and Avr10 loci are also present in the BAC contig. These results are an important step towards the positional cloning of avirulence genes from P. infestans, and the BAC library represents a valuable resource for largescale studies of oomycete genome organisation and gene content.  相似文献   

2.
3.
The R3 locus of potato (Solanum tuberosum L.) confers full resistance to avirulent isolates of Phytophthora infestans, the causal agent of late blight. R3 resides in the distal part of chromosome 11 and segregates in a potato mapping population, from which a well-saturated amplified fragment length polymorphism map is available. Using a population of 1,748 plants, we constructed a high-resolution genetic map at the R3 locus. Using the combination of fine mapping and accurate disease testing with specific P. infestans isolates, we detected that the R3 locus is composed of two genes with distinct specificities. The two genes R3a and R3b are 0.4 cM apart and have both been introgressed from S. demissum, the 'donor' species of most characterized race-specific R genes to P. infestans. A natural recombinant between R3a and R3b was discovered in one accession of S. demissum. The synteny between the R3 locus and the tomato I2 locus is discussed.  相似文献   

4.
In Phytophthora infestans, a cluster of three dominant avirulence genes is located on the distal part of linkage group VIII. In a mapping population from a cross between two Dutch field isolates, probe M5.1, derived from an amplified fragment length polymorphism (AFLP) marker linked to the Avr3-Avr10-Avr11 cluster, hybridized only to DNA from the parent and F1 progeny that is avirulent on potato lines carrying the R3, R10, and R11 resistance gene. In the virulent parent and the virulent progeny, no M5.1 homologue was detected, demonstrating a deletion on that part of linkage group VIII. P. infestans is diploid, so the avirulent strains must be hemizygous for the region concerned. A similar situation was found in another mapping population from two Mexican strains. The deletion was also found to occur in many field isolates. In a large set of unique isolates collected in The Netherlands from 1980 to 1991, 37% had no M5.1 homologue and the deletion correlated strongly with gain of virulence on potato lines carrying R3, R10, and R11. Also, in some old isolates that belong to a single clonal lineage (US-1) and are thus highly homogenous, deletions at the M5.1 locus were detected, indicating that this region is unstable.  相似文献   

5.
Late blight is the most devastating potato disease and it also causes serious yield loss in tomato.Several disease resistance genes (R genes) to late blight have been cloned from potato in the past decade.However,the resistance mechanisms remain elusive.Tomato and potato belong to the botanical family Solanaceace and share remarkably conserved genome structure.Since tomato is a model system in genetic and plant pathology research,we used tomato to develop a powerful mutant screening system that will greatly facilitate the analysis of the signaling pathway of resistance to Phytophthora infestans.First we proved that the R3a transgenic tomatoes developed specific hypersensitive cell death response (HR) to P.infestans strains carrying the corresponding avirulence gene Avr3a,indicating that the signaling pathway from the R3a-Avr3a recognition to HR is conserved between potato and tomato.Second,we generated transgenic tomatoes carrying both R3a and Avr3a genes,with the latter under the control of a glucocorticiod-inducible promoter.Dexamethasone induced expression of Avr3a and resulted in localized HR.This versatile system can be used to construct a mutant library to screen surviving mutants whose resistance signal transduction was interrupted,providing the basis to identify key genes involved in the resistance to late blight in Solanaceae.  相似文献   

6.
In this study we investigated the genetic control of avirulence in the diploid oomycete pathogen Phytophthora infestans, the causal agent of late blight on potato. The dominant avirulence (Avr) genes matched six race-specific resistance genes introgressed in potato from a wild Solanum species. AFLP markers linked to Avr genes were selected by bulked segregant analysis and used to construct two high-density linkage maps, one containing Avr4 (located on linkage group A2-a) and the other containing a cluster of three tightly linked genes, Avr3, Avr10, and Avr11 (located on linkage group VIII). Bulked segregant analysis also resulted in a marker linked to Avr1 and this allowed positioning of Avr1 on linkage group IV. No bulked segregant analysis was performed for Avr2, but linkage to a set of random markers placed Avr2 on linkage group VI. Of the six Avr genes, five were located on the most distal part of the linkage group, possibly close to the telomere. The high-density mapping was initiated to facilitate future positional cloning of P. infestans Avr genes.  相似文献   

7.
Late blight, caused by Phytophthora infestans, is one of the most devastating diseases in cultivated potato. Breeding of new potato cultivars with high levels of resistance to P. infestans is considered the most durable strategy for future potato cultivation. In this study, we report the identification of a new late-blight resistance (R) locus from the wild potato species Solanum bulbocastanum. Using several different approaches, a high-resolution genetic map of the new locus was generated, delimiting Rpi-blb3 to a 0.93 cM interval on chromosome 4. One amplification fragment length polymorphism marker was identified that cosegregated in 1,396 progeny plants of an intraspecific mapping population with Rpi-blb3. For comparative genomics purposes, markers linked to Rpi-blb3 were tested in mapping populations used to map the three other late-blight R loci Rpi-abpt, R2, and R2-like also to chromosome 4. Marker order and allelic conservation suggest that Rpi-blb3, Rpi-abpt, R2, and R2-like reside in the same R gene cluster on chromosome 4 and likely belong to the same gene family. Our findings provide novel insights in the evolution of R gene clusters conferring late-blight resistance in Solanum spp.  相似文献   

8.
Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R) genes into potato (Solanum tuberosum) is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity) on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR) in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.  相似文献   

9.
Potato defends against Phytophthora infestans infection by resistance (R)-gene-based qualitative resistance as well as a quantitative field resistance. R genes are renowned to be rapidly overcome by this oomycete, and potato cultivars with a decent and durable resistance to current P. infestans populations are hardly available. However, potato cultivar Sarpo Mira has retained resistance in the field over several years. We dissected the resistance of 'Sarpo Mira' in a segregating population by matching the responses to P. infestans RXLR effectors with race-specific resistance to differential strains. The resistance is based on the combination of four pyramided qualitative R genes and a quantitative R gene that was associated with field resistance. The qualitative R genes include R3a, R3b, R4, and the newly identified Rpi-Smira1. The qualitative resistances matched responses to avirulence (AVR)3a, AVR3b, AVR4, and AVRSmira1 RXLR effectors and were overcome by particular P. infestans strains. The quantitative resistance was determined to be conferred by a novel gene, Rpi-Smira2. It was only detected under field conditions and was associated with responses to the RXLR effector AvrSmira2. We foresee that effector-based resistance breeding will facilitate selecting and combining qualitative and quantitative resistances that may lead to a more durable resistance to late blight.  相似文献   

10.
The RXLR cytoplasmic effector AVR3a of Phytophthora infestans confers avirulence on potato plants carrying the R3a gene. Two alleles of Avr3a encode secreted proteins that differ in only three amino acid residues, two of which are in the mature protein. Avirulent isolates carry the Avr3a allele, which encodes AVR3aKI (containing amino acids C19, K80 and I103), whereas virulent isolates express only the virulence allele avr3a, encoding AVR3aEM (S19, E80 and M103). Only the AVR3aKI protein is recognized inside the plant cytoplasm where it triggers R3a-mediated hypersensitivity. Similar to other oomycete avirulence proteins, AVR3aKI carries a signal peptide followed by a conserved motif centered on the consensus RXLR sequence that is functionally similar to a host cell-targeting signal of malaria parasites. The interaction between Avr3a and R3a can be reconstructed by their transient co-expression in Nicotiana benthamiana. We exploited the N. benthamiana experimental system to further characterize the Avr3a-R3a interaction. R3a activation by AVR3aKI is dependent on the ubiquitin ligase-associated protein SGT1 and heat-shock protein HSP90. The AVR3aKI and AVR3aEM proteins are equally stable in planta, suggesting that the difference in R3a-mediated death cannot be attributed to AVR3aEM protein instability. AVR3aKI is able to suppress cell death induced by the elicitin INF1 of P. infestans, suggesting a possible virulence function for this protein. Structure-function experiments indicated that the 75-amino acid C-terminal half of AVR3aKI, which excludes the RXLR region, is sufficient for avirulence and suppression functions, consistent with the view that the N-terminal region of AVR3aKI and other RXLR effectors is involved in secretion and targeting but is not required for effector activity. We also found that both polymorphic amino acids, K80 and I103, of mature AVR3a contribute to the effector functions.  相似文献   

11.
Comparative genomics provides a tool to utilize the exponentially increasing sequence information from model plants to clone agronomically important genes from less studied crop species. Plant disease resistance (R) loci frequently lack synteny between related species of cereals and crucifers but appear to be positionally well conserved in the Solanaceae. In this report, we adopted a local RGA approach using genomic information from the model Solanaceous plant tomato to isolate R3a, a potato gene that confers race-specific resistance to the late blight pathogen Phytophthora infestans. R3a is a member of the R3 complex locus on chromosome 11. Comparative analyses of the R3 complex locus with the corresponding I2 complex locus in tomato suggest that this is an ancient locus involved in plant innate immunity against oomycete and fungal pathogens. However, the R3 complex locus has evolved after divergence from tomato and the locus has experienced a significant expansion in potato without disruption of the flanking colinearity. This expansion has resulted in an increase in the number of R genes and in functional diversification, which has probably been driven by the co-evolutionary history between P. infestans and its host potato. Constitutive expression was observed for the R3a gene, as well as some of its paralogues whose functions remain unknown.  相似文献   

12.
We have used map-based approaches to clone a locus containing two genes, Avr1b-1 and Avr1b-2, required for avirulence of the oomycete pathogen Phytophthora sojae (Kaufmann & Gerdemann) on soybean plants carrying resistance gene Rps1b. Avr1b-1 was localized to a single 60-kb bacterial artificial chromosome (BAC) clone by fine-structure genetic mapping. Avr1b-1 was localized within the 60-kb region by identification of an mRNA that is expressed in a race-specific and infection-specific manner and that encodes a small secreted protein. When the Avr1b-1 protein was synthesized in the yeast Pichia pastoris and the secreted protein infiltrated into soybean leaves, it triggered a hypersensitive response specifically in host plants carrying the Rps1b resistance gene. This response eventually spread to the entire inoculated plant. In some isolates of P. sojae virulent on Rps1b-containing cultivars, such as P7081 (race 25) and P7076 (race 19), the Avr1b-1 gene had numerous substitution mutations indicative of strong divergent selection. In other isolates, such as P6497 (race 2) and P9073 (race 25), there were no substitutions in Avr1b-1, but Avr1b-1 mRNA did not accumulate. Genetic complementation experiments with P6497 revealed the presence of a second gene, Avr1b-2, required for the accumulation of Avr1b-1 mRNA. Avr1b-2 was genetically mapped to the same BAC contig as Avr1b-1, using a cross between P7064 (race 7) and P6497. The Avr1k gene, required for avirulence on soybean cultivars containing Rps1k, was mapped to the same interval as Avr1b-1.  相似文献   

13.
Solanum is a diverse genus with over 200 species occupying a range of habitats from the Southwestern United States to Central Chile. Germplasm evaluations have focused on species that can be crossed with S. tuberosum, while Mexican diploid (2n = 2x = 24) Solanum species with an Endosperm Balance Number (EBN) of 1 have received less attention because of poor crossability due to their ploidy and EBN. Recent changes in Phytophthora infestans populations have increased the need for new sources of genetic resistance to this fungus. We have characterized resistance to P. infestans in the Mexican 2x(1EBN) species S. pinnatisectum. An interspecific hybrid between resistant S. pinnatisectum and susceptible S. cardiophyllum plants was backcrossed to S. cardiophyllum to generate a family segregating for late-blight resistance. The diploid (1EBN) genetic map generated with 99 RFLP markers revealed extensive synteny with previously published potato maps. A single dominant late-blight resistance locus (Rpi1) from S. pinnatisectum was mapped to chromosome 7, a region previously not associated with late-blight resistance. Characterization of the P.infestans isolate used for disease evaluations revealed that it possessed the avirulence gene corresponding to the R9 resistance locus, indicating that Rpi1 could possibly correspond to R9.  相似文献   

14.
15.
16.
17.
Oomycete RXLR-dEER effector proteins are rapidly evolving proteins with the selective pressure targeted predominantly at their C-terminal ends. The majority of RXLR-dEER proteins have recognizable motifs of 21–30 amino acids in the C-terminal domain that are named after conserved amino acid residues at fixed positions within the respective motifs. In this article, it is reported that the Phytophthora infestans RXLR-dEER protein Avr4 contains three W motifs and one Y motif in its C-terminal domain. Agroinfection assays using constructs encoding modified forms of PiAvr4 have shown that the region containing the W2 motif, in combination with either the W1 or W3 motif, triggers a necrotic response in potato plants carrying the resistance gene R4 . By mining the superfamily of avirulence homologues (Avh) deduced from three sequenced Phytophthora genomes, several Avh proteins were identified as homologues of PiAvr4: six in P. infestans , one in P. ramorum and seven in P. sojae . One very close homologue of PiAvr4 was cloned from the sibling species, P. mirabilis. This species is not pathogenic on potato but, similar to PiAvr4, PmirAvh4 triggered a necrotic response on potato clones carrying R4 , but not on clones lacking R4 . Genes encoding RXLR-dEER effectors are often located in regions showing genome rearrangements. Alignment of the genomic region harbouring PiAvr4 with syntenic regions in P. sojae and P. ramorum revealed that PiAvr4 is located on a 100-kb indel block and is surrounded by transposable elements.  相似文献   

18.
Nb is a single dominant gene in potato that confers hypersensitive resistance to potato virus X (PVX) isolates from strain groups 1 and 2. Genetic and molecular analyses showed that Nb is located on the upper arm of chromosome V and forms part of a cluster of resistance genes encoding specificities to many different pathogens. We describe the genetical localisation of molecular markers tightly linked to the Nb locus and the development PCR-based markers suitable for isolation of the Nb resistance gene by positional cloning. A bulked segregant approach was applied to identify polymorphic AFLP markers tightly linked to the Nb locus. These markers were mapped in a population of segregating S1 progeny (1,300 plants) from a self-pollinated potato cultivar, Pentland Ivory. From this analysis, Nb was placed in an interval of 0.76 cM, flanked by the AFLP markers GM339 and GM637. Recombinant PVX strains carrying different combinations of avirulence genes were used in biological assays to show that Nb was also present in potato cv. Cara but was masked by the extreme PVX resistance conferred by the Rx gene. PCR-based screening of a Cara genomic BAC library with markers closest to the Nb locus identified a new marker tightly linked to Nb.  相似文献   

19.
Late blight caused by the oomycete Phytophthora infestans is the most destructive disease in potato cultivation worldwide. New, more virulent P. infestans strains have evolved which overcome the genetic resistance that has been introgressed by conventional breeding from wild potato species into commercial varieties. R genes (for single-gene resistance) and genes for quantitative resistance to late blight are present in the germplasm of wild and cultivated potato. The molecular basis of single-gene and quantitative resistance to late blight is unknown. We have cloned R1, the first gene for resistance to late blight, by combining positional cloning with a candidate gene approach. The R1 gene is member of a gene family. It encodes a protein of 1293 amino acids with a molecular mass of 149.4 kDa. The R1 gene belongs to the class of plant genes for pathogen resistance that have a leucine zipper motif, a putative nucleotide binding domain and a leucine-rich repeat domain. The most closely related plant resistance gene (36% identity) is the Prf gene for resistance to Pseudomonas syringae of tomato. R1 is located within a hot spot for pathogen resistance on potato chromosome V. In comparison to the susceptibility allele, the resistance allele at the R1 locus represents a large insertion of a functional R gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号