首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Hydrogen cyanide (HCN) is a broad-spectrum antimicrobial compound involved in biological control of root diseases by many plant-associated fluorescent pseudomonads. The HCN synthase is encoded by three biosynthetic genes (hcnA, hcnB, and hcnC), but little is known about the diversity of these genes in fluorescent Pseudomonas spp. and in other bacteria. Here, the partial hcnBC sequence was determined for a worldwide collection of biocontrol fluorescent Pseudomonas spp. Phylogenies based on hcnBC and deduced protein sequences revealed four main bacterial groups, but topological incongruences were found between hcnBC and rrs-based phylogenies, suggesting past lateral transfer of hcnBC among saprophytic root-colonizing pseudomonads. Three of the four groups included isolates from different countries and host plants. Yet, these groups corresponded to distinct, ecologically-adapted populations of HCN-producing biocontrol fluorescent pseudomonads, as indicated by high hcnBC distinctness ratio values and the differences in production levels of HCN in vitro found between groups. This is in accordance with previous results on catabolic properties and biocontrol abilities of these strains. HCN synthase gene diversity may thus reflect the adaptive radiation of HCN+ biocontrol fluorescent pseudomonads. Positive correlations were found between HCN production in vitro and plant protection in the cucumber/Pythium ultimum and tomato/Fusarium oxysporum f. sp. radicis-lycopersici pathosystems.  相似文献   

2.
Members of the marine actinomycete genus Salinispora constitutively produce a characteristic orange pigment during vegetative growth. Contrary to the understanding of widespread carotenoid biosynthesis pathways in bacteria, Salinispora carotenoid biosynthesis genes are not confined to a single cluster. Instead, bioinformatic and genetic investigations confirm that four regions of the Salinispora tropica CNB‐440 genome, consisting of two gene clusters and two independent genes, contribute to the in vivo production of a single carotenoid. This compound, namely (2′S)‐1′‐(β‐D‐glucopyranosyloxy)‐3′,4′‐didehydro‐1′,2′‐dihydro‐φ,ψ‐caroten‐2′‐ol, is novel and has been given the trivial name ‘sioxanthin’. Sioxanthin is a C40‐carotenoid, glycosylated on one end of the molecule and containing an aryl moiety on the opposite end. Glycosylation is unusual among actinomycete carotenoids, and sioxanthin joins a rare group of carotenoids with polar and non‐polar head groups. Gene sequence homology predicts that the sioxanthin biosynthetic pathway is present in all of the Salinispora as well as other members of the family Micromonosporaceae. Additionally, this study's investigations of clustering of carotenoid biosynthetic genes in heterotrophic bacteria show that a non‐clustered genome arrangement is more common than previously suggested, with nearly half of the investigated genomes showing a non‐clustered architecture.  相似文献   

3.
The ability of bacteria to influence organisms that they associate with via metabolite production is one of the hallmarks of microbial interactions. One metabolite of interest is the metabolic poison cyanide. Production of this metabolite is an unique characteristic of certain bacteria that inhabit a wide array of habitats ranging from the human body to the rhizosphere. This review focuses on four targets of cyanogenic bacteria: the human lung, plant pathogens, plants and invertebrates. For a number of cyanogenic bacteria, the contribution of cyanide to the interaction has been rigorously tested using mutants altered in cyanide production. Both deleterious and stimulatory effects of cyanogenic bacteria on other organisms have been documented. In addition, the HCN synthase‐encoding gene cluster hcnABC has served as a marker of cyanogenic capability in the soil environment revealing both genetic diversity at this locus and regulatory influences by other organisms. The pervasive nature of cyanogenesis in a number of different ecological contexts encourages exploration of this bacterial ability and its possible optimization for improving human health, crop production and pest control.  相似文献   

4.
The tylosin-biosynthetic genes of Streptomyces fradiae   总被引:3,自引:0,他引:3  
The tylosin-biosynthetic (tyl) gene cluster occupies about 1% of the genome of Streptomyces fradiae and includes at least 43 open reading frames. In addition to structural genes required for tylosin production, the tylcluster contains three resistance determinants and several regulatory genes. Tylosin production is evidently controlled by pathway-specific and pleiotropic regulators with the likely involvement of -butyrolactone signalling factors. Accumulation of the polyketide aglycone is controlled by glycosylated macrolides and optimal performance of the complex polyketide synthase enzyme requires the activity of an editing thioesterase.  相似文献   

5.
Streptomyces arenae produces at least four different isochromanequinone antibiotics, the naphthocyclinones, of which the - and -form are active against Gram-positive bacteria. The naphthocyclinone biosynthesis gene cluster was isolated from Streptomyces arenae DSM 40737 and by sequence analysis the minimal polyketide synthase genes and several genes encoding tailoring enzymes were identified. Southern blot analysis of the naphthocyclinone gene cluster indicated that a 3.5 kb BamHI fragment located approximately 9 kb downstream of the minimal PKS genes hybridizes to the schC hydroxylase DNA probe isolated from S. halstedii. Two complete and one incomplete open reading frames were identified on this fragment. Sequence analysis revealed strong homology to the genes of the actVA region of S. coelicolor, to several (suggested) hydroxylases and a putative FMN-dependent monooxygenase. The proposed hydroxylase, encoded by ncnH, could hydroxylate aloesaponarin II, a molecule that is produced by the actinorhodin minimal polyketide synthase in combination with the actinorhodin ketoreductase, aromatase and cyclase. Furthermore, this enzyme is capable of accepting additional polyketide core structures that contain a 5-hydroxy-1,4-naphthoquinone moiety as substrates which makes it an interesting tailoring enzyme for the modification of polyketide structures.  相似文献   

6.
Cyclopiazonic acid (CPA), an indole-tetramic acid mycotoxin, is produced by many species of Aspergillus and Penicillium. In addition to CPA Aspergillus flavus produces polyketide-derived carcinogenic aflatoxins. Aflatoxin biosynthesis genes form a gene cluster in a subtelomeric region. Isolates of A. flavus lacking aflatoxin production due to the loss of the entire aflatoxin gene cluster and portions of the subtelomeric region are often unable to produce CPA, which suggests a physical link of genes involved in CPA biosynthesis to the aflatoxin gene cluster. Examining the subtelomeric region in A. flavus isolates of different chemotypes revealed a region possibly associated with CPA production. Disruption of three of the four genes present in this region predicted to encode a monoamine oxidase, a dimethylallyl tryptophan synthase, and a hybrid polyketide non-ribosomal peptide synthase abolished CPA production in an aflatoxigenic A. flavus strain. Therefore, some of the CPA biosynthesis genes are organized in a mini-gene cluster that is next to the aflatoxin gene cluster in A. flavus.  相似文献   

7.
8.
9.
Malate synthase is an essential metabolic enzyme of the glyoxylate bypass that makes possible the replenishment of carbon intermediates to cells grown on acetate. A polymerase chain reaction (PCR)-based molecular screening investigation of full-length malate synthase genes from Streptomyces spp. was initiated by our group. To this end, consensus primers were designed based on known streptomycete malate synthase sequences and successful amplification was obtained for Streptomyces griseus, S. fimbriatus and S. lipmanii. The putative full-length malate synthase gene from S. griseus was subsequently cloned, sequenced and expressed. Sequence analysis of this gene showed very high identity with other streptomycete malate synthase genes. Furthermore, high malate synthase activity was detected after heterologous expression in Escherichia coli, thus demonstrating successfully the rapid cloning and functional verification of a streptomycete malate synthase gene. Growth studies of S. griseus revealed that malate synthase activity was induced by the presence of acetate, which is a two-carbon source. Interestingly, the activity peaked during late growth phase when the biomass was declining, suggesting that the enzyme may have a late role in metabolism.  相似文献   

10.
Summary In bacteria 5-aminolevulinate, the universal precursor in the biosynthesis of the porphyrin nucleus of hemes, chlorophylls and bilins is synthesised by two different pathways: in non-sulphur purple bacteria (Rhodobacter) or Rhizobium 5-aminolevulinate synthase condenses glycine and succinyl-CoA into 5-aminolevulinate as is the case in mammalian cells and yeast. In cyanobacteria, green and purple sulphur bacteria, as in chloroplasts of higher plants and algae a three step pathway converts glutamate into 5-aminolevulinate. The last step is the conversion of glutamate 1-semialdehyde into 5-aminolevulinate. Using a cDNA clone encoding glutamate 1-semialdehyde aminotransferase from barley, genes for this enzyme were cloned from Synechococcus PCC6301 and Escherichia coli and sequenced. The popC gene of E. coli, previously considered to encode 5-aminolevulinate synthase, appears to be a structural gene for glutamate 1-semialdehyde aminotransferase. Domains with identical amino acid sequences comprise 48% of the primary structure of the barley, cyanobacterial and putative E. coli glutamate 1-semialdehyde aminotransferases. The cyanobacterial and barley enzymes share 72% identical residues. The peptide containing a likely pyridoxamine phosphate binding lysine is conserved in all three protein sequences.  相似文献   

11.
In anoxic environments, microbial activation of alkanes for subsequent metabolism occurs most commonly through the addition of fumarate to a subterminal carbon, producing an alkylsuccinate. Alkylsuccinate synthases are complex, multi-subunit enzymes that utilize a catalytic glycyl radical and require a partner, activating enzyme for hydrogen abstraction. While many genes encoding putative alkylsuccinate synthases have been identified, primarily from nitrate- and sulfate-reducing bacteria, few have been characterized and none have been reported to be functionally expressed in a heterologous host. Here, we describe the functional expression of the (1-methylalkyl)succinate synthase (Mas) system from Azoarcus sp. strain HxN1 in recombinant Escherichia coli. Mass spectrometry confirms anaerobic biosynthesis of the expected products of fumarate addition to hexane, butane, and propane. Maximum production of (1-methylpentyl)succinate is observed when masC, masD, masE, masB, and masG are all present on the expression plasmid; omitting masC reduces production by 66% while omitting any other gene eliminates production. Meanwhile, deleting iscR (encoding the repressor of the E. coli iron–sulfur cluster operon) improves product titer, as does performing the biotransformation at reduced temperature (18°C), both suggesting alkylsuccinate biosynthesis is largely limited by functional expression of this enzyme system.  相似文献   

12.
Han SE  Seo YS  Kim D  Sung SK  Kim WT 《Plant cell reports》2007,26(8):1321-1331
Fruit ripening involves complex biochemical and physiological changes. Ethylene is an essential hormone for the ripening of climacteric fruits. In the process of ethylene biosynthesis, cyanide (HCN), an extremely toxic compound, is produced as a co-product. Thus, most cyanide produced during fruit ripening should be detoxified rapidly by fruit cells. In higher plants, the key enzyme involved in the detoxification of HCN is β-cyanoalanine synthase (β-CAS). As little is known about the molecular function of β-CAS genes in climacteric fruits, we identified two homologous genes, MdCAS1 and MdCAS2, encoding Fuji apple β-CAS homologs. The structural features of the predicted polypeptides as well as an in vitro enzyme activity assay with bacterially expressed recombinant proteins indicated that MdCAS1 and MdCAS2 may indeed function as β-CAS isozymes in apple fruits. RNA gel-blot studies revealed that both MdCAS1 and MdCAS2 mRNAs were coordinately induced during the ripening process of apple fruits in an expression pattern comparable with that of ACC oxidase and ethylene production. The MdCAS genes were also activated effectively by exogenous ethylene treatment and mechanical wounding. Thus, it seems like that, in ripening apple fruits, expression of MdCAS1 and MdCAS2 genes is intimately correlated with a climacteric ethylene production and ACC oxidase activity. In addition, β-CAS enzyme activity was also enhanced as the fruit ripened, although this increase was not as dramatic as the mRNA induction pattern. Overall, these results suggest that MdCAS may play a role in cyanide detoxification in ripening apple fruits.  相似文献   

13.
A 6.5 kb DNA fragment containing the gene (thrC) encoding threonine synthase, the last enzyme of the threonine biosynthetic pathway, has been cloned from the DNA ofBacillus sp. ULM1 by complementation ofEscherichia coli andBrevibacterium lactofermentum thrC auxotrophs. Complementation studies showed that thethrB gene (encoding homoserine kinase) is found downstream from thethrC gene, and analysis of nucleotide sequences indicated that thehom gene (encoding homoserine dehydrogenase) is located upstream of thethrC gene. The organization of this cluster of genes is similar to theBacillus subtilis threonine operon (hom—thrC—thrB). An 1.9 kbBclI, fragment from theBacillus sp. ULM1 DNA insert that complementedthrC mutations both inE. coli and in corynebacteria was sequenced, and an ORF encoding a protein of 351 amino acids was found corresponding to a protein of 37462 Da. ThethrC gene showed a low G+C content (39.4%) and the encoded threonine synthase is very similar to theB. subtilis enzyme. Expression of the 1.9 kbBclI DNA fragment inE. coli minicells resulted in the formation of a 37 kDa protein. The upstream region of this gene shows promoter activity inE. coli but not in corynebacteria. A peptide sequence, including a lysine that is known to bind the pyridoxal phosphate cofactor, is conserved in all threonine synthase sequences and also in the threonine and serine dehydratase genes. Amino acid comparison of nine threonine synthases revealed evolutionary relationships between different groups of bacteria. Dedicated to Dr. J. Spížek on the occasion of his 60th birthday  相似文献   

14.
A generic design of Type I polyketide synthase genes has been reported in which modules, and domains within modules, are flanked by sets of unique restriction sites that are repeated in every module [1]. Using the universal design, we synthesized the six-module DEBS gene cluster optimized for codon usage in E. coli, and cloned the three open reading frames into three compatible expression vectors. With one correctable exception, the amino acid substitutions required for restriction site placements were compatible with polyketide production. When expressed in E. coli the codon-optimized synthetic gene cluster produced significantly more protein than did the wild-type sequence. Indeed, for optimal polyketide production, PKS expression had to be down-regulated by promoter attenuation to achieve balance with expression of the accessory proteins needed to support polyketide biosynthesis.  相似文献   

15.
The chromosome of Streptomyces coelicolor A3(2), a model organism for the genus Streptomyces, contains a cryptic type I polyketide synthase (PKS) gene cluster which was revealed when the genome was sequenced. The ca. 54-kb cluster contains three large genes, cpkA, cpkB and cpkC, encoding the PKS subunits. In silico analysis showed that the synthase consists of a loading module, five extension modules and a unique reductase as a terminal domain instead of a typical thioesterase. All acyltransferase domains are specific for a malonyl extender, and have a B-type ketoreductase. Tailoring and regulatory genes were also identified within the gene cluster. Surprisingly, some genes show high similarity to primary metabolite genes not commonly identified in any antibiotic biosynthesis cluster. Using western blot analysis with a PKS subunit (CpkC) antibody, CpkC was shown to be expressed in S. coelicolor at transition phase. Disruption of cpkC gave no obvious phenotype.  相似文献   

16.
Aims: The aims of this study are to obtain the draft genome sequence of Streptomyces coelicoflavus ZG0656, which produces novel acarviostatin family α‐amylase inhibitors, and then to reveal the putative acarviostatin‐related gene cluster and the biosynthetic pathway. Methods and Results: The draft genome sequence of S. coelicoflavus ZG0656 was generated using a shotgun approach employing a combination of 454 and Solexa sequencing technologies. Genome analysis revealed a putative gene cluster for acarviostatin biosynthesis, termed sct‐cluster. The cluster contains 13 acarviostatin synthetic genes, six transporter genes, four starch degrading or transglycosylation enzyme genes and two regulator genes. On the basis of bioinformatic analysis, we proposed a putative biosynthetic pathway of acarviostatins. The intracellular steps produce a structural core, acarviostatin I00‐7‐P, and the extracellular assemblies lead to diverse acarviostatin end products. Conclusions: The draft genome sequence of S. coelicoflavus ZG0656 revealed the putative biosynthetic gene cluster of acarviostatins and a putative pathway of acarviostatin production. Significance and Impact of the Study: To our knowledge, S. coelicoflavus ZG0656 is the first strain in this species for which a genome sequence has been reported. The analysis of sct‐cluster provided important insights into the biosynthesis of acarviostatins. This work will be a platform for producing novel variants and yield improvement.  相似文献   

17.
Penicillium roqueforti produces several prenylated indole alkaloids, including roquefortine C and clavine alkaloids. The first step in the biosynthesis of roquefortine C is the prenylation of tryptophan-derived dipeptides by a dimethylallyltryptophan synthase, specific for roquefortine biosynthesis (roquefortine prenyltransferase). A second dimethylallyltryptophan synthase, DmaW2, different from the roquefortine prenyltransferase, has been studied in this article. Silencing the gene encoding this second dimethylallyltryptophan synthase, dmaW2, proved that inactivation of this gene does not prevent the production of roquefortine C, but suppresses the formation of other indole alkaloids. Mass spectrometry studies have identified these compounds as isofumigaclavine A, the pathway final product and prenylated intermediates. The silencing does not affect the production of mycophenolic acid and andrastin A. A bioinformatic study of the genome of P. roqueforti revealed that DmaW2 (renamed IfgA) is a prenyltransferase involved in isofumigaclavine A biosynthesis encoded by a gene located in a six genes cluster (cluster A). A second three genes cluster (cluster B) encodes the so-called yellow enzyme and enzymes for the late steps for the conversion of festuclavine to isofumigaclavine A. The yellow enzyme contains a tyrosine-181 at its active center, as occurs in Neosartorya fumigata, but in contrast to the Clavicipitaceae fungi. A complete isofumigaclavines A and B biosynthetic pathway is proposed based on the finding of these studies on the biosynthesis of clavine alkaloids.  相似文献   

18.
Tetrahydromethanopterin (H4MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5′-phosphate synthase (RFAP synthase). Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies inEscherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase fromArchaeoglobus fulgidus was produced inE. coli and purified to homogeneity. The production of active RFAP synthase fromMethanothermobacter thermautotrophicus was achieved by coexpression of the geneMTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase. Florida Agricultural Experiment Station Journal Series no. R-09353 Published: March 4, 2003  相似文献   

19.
20.
Recent biochemical and genetic studies on hydrogen cyanide (HCN) metabolism and function in plants were reviewed. The potential sources of endogenous cyanide and the pathways of its detoxification are outlined and the possible signaling routes by which cyanide exerts its physiological effects are discussed. Cyanide is produced in plant tissues as the result of hydrolysis of cyanogenic compounds and is also released as a co-product of ethylene biosynthesis. Most cyanide produced in plants is detoxified primarily by the key enzyme β-cyanoalanine synthase. The remaining HCN at non-toxic concentration may play a role of signaling molecule involved in the control of some metabolic processes in plants. So, HCN may play a dual role in plants, depending on its concentration. It may be used in defense against herbivores at high toxic concentration and may have a regulatory function at lower concentration. Special attention is given to the action of HCN during biotic and abiotic stresses, nitrate assimilation and seed germination. Intracellular signaling responses to HCN involve enhancement of reactive oxygen species (ROS) generation and the expression of cyanide-insensitive alternative oxidase (AOX) and ACC synthase (ACS) genes. The biochemical and cellular mechanisms of these responses are, however, not completely understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号