首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
SYNOPSIS. The first pair of thoracic limbs in many crustaceansis elaborated into claws in which the principal muscle is thecloser. Changes in the fiber composition of the closer muscleduring claw development, regeneration and reversal are reviewedhere and the hypothesis is advanced that such changes are nerve-dependent.In adult lobsters, Homarus amencanus, the paired claws and closermuscles are bilaterally asymmetric, consisting of a minor orcutter claw with predominantly fast fibers and a small ventralband of slow and a major or crusher claw with 100% slow fibers.Yet in the larval and early juvenile stages the paired clawsand closer muscles are symmetric consisting of a central bandof fast fibers sandwiched by slow. Differentiation into a cutteror crusher muscle during subsequent juvenile development isby appropriate fiber type transformation. Experimental manipulationof the claws or the environment in early juvenile stages whenthe claws are equipotent revealed that the determination ofclaw and closer muscle asymmetry is dependent on the convergenceof neural input from the paired claws: the point of convergencemost likely being the CNS. Bilaterally symmetrical input resultsin the development of paired cutter claws while bilaterallyasymmetric input gives rise to dimorphic, cutter and crusherclaws. In the northern crayfish, Orconectes rusticus, wherethe paired claws are bilaterally similar, the closer muscletransforms its central band of fast fibers to slow, both duringprimary development and regeneration. Whether these fiber typetransformations are nerve-dependent is unknown. In adult snappingshrimps, Alpheus sp., the paired claws and closer muscles areasymmetric: the minor or pincer claw has a central band of fastfibers flanked by slow while the major or snapper claw has 100%slow fibers. Claw reversal occurs with removal of the snapperresulting in the transformation of the existing pincer to asnapper and the regeneration of a new pincer at the old snappersite. Transformation of the closer muscle from pincer to snappertype is by degeneration of the fast fiber band and hypertrophyof the slow fibers. Claw transformation can be either preventedif the pincer nerve is sectioned at the time of snapper removalor promoted if the snapper nerve is sectioned: both resultsimplicating a neural basis for muscle transformation.  相似文献   

2.
Myosin types in human skeletal muscle fibers   总被引:2,自引:0,他引:2  
By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

3.
Summary By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

4.
Muscle fiber typing is conventionally performed using mATPase enzyme histochemistry on cryostat sections. After pre-incubation of sections at pH 4.3, 4.6 and 10.3, based on the pattern of enzyme reactivity, the fibers can be classified in types I, II (subtypes A, AB and B) and the intermediate C (I and II) fibers. We have attempted to perform fiber typing of human psoas muscle by immunohistochemistry, using monoclonal antibodies R11D10 (specific for cardiac and type I skeletal myosin) and MY-32 (specific for fast muscle fibers) on cryostat as well as on paraffin sections. Staining of consecutive cryostat sections showed that type I fibers are R11D10 reactive whereas type II fibers are MY-32 reactive. Subtyping of type II fibers could not be performed by immunohistochemistry. Quantitative analysis of type I and II fibers showed that enzyme histochemical and immunohistochemical analysis are in close agreement.  相似文献   

5.
骨骼肌由异质性的肌纤维组成,不同类型的肌纤维具有不同的形态、代谢、生理和生化特性.根据不同肌纤维中表达的特异肌球蛋白重链亚型可将成体哺乳动物骨骼肌纤维分为4类,即Ⅰ,Ⅱa,Ⅱx和Ⅱb型.骨骼肌保持高度可塑性,当机体受到某些生理或病理刺激时,骨骼肌为了适应需要,通过激活胞内相关信号通路改变肌纤维特异基因的表达从而诱发肌纤维类型的转化.本文综述了细胞内参与调控肌纤维类型转化的多条重要信号通路,如Ca2+信号通路,Ras/MAPK信号通路及多种转录调节因子,辅激活因子和抑制子等,为改善肉类品质,提高运动训练效果及治疗肌肉相关疾病奠定了理论基础.  相似文献   

6.
SYNOPSIS. Most vertebrate skeletal muscles consist of a heterogeneousarray of muscle fiber types that are distinguishable, in part,by differences in their contractile protein isoform content.It is often suggested that the information necessary for directingthe development of these fiber types is derived from interactionswith factors outside the muscle fibers themselves and, in particular,with innervating motoneurons. However, recent data from thisand other laboratories indicate that the emergence of fiberspecialization within developing muscle is not dependent oninnervation at all. These studies recognize two periods of embryonicfiber specialization. The first occurs during early embryonicdevelopment as individual muscles are formed from primary generationfibers expressing different myosin isoform types. The formationof these "early" muscle fiber types and their characteristicdistributions within and among different muscles are not dependenton interactions with innervating motoneurons. Furthermore, myoblastsisolated from "early" embryonic muscle tissue and cultured invitro display the same heterogeneity of myosin expression asthe primary generation fiber types in ovo, suggesting that thedifferences in expression among early muscle fiber types arepreprogrammed within their myoblasts. The second period occurs"late" in development after the major morphological events oflimb formation are complete and the initial pattern of fibertypes has been established. It is during this period that massivegrowth of most muscles occurs which is due, in part, to theformation of a secondary generation of muscle fibers. Thesesecondary generation fibers in ovo and the cultured myotubesderived from "late" embryonic myoblasts exhibit a single myosinphenotype (e.g., fast). The transition from "early" to "late"embryonic phases is accompanied by a change in fast myosin heavychain expression and is blocked by agents that disrupt neuromuscularcontacts.  相似文献   

7.
Six fiber types have been described in the ambiens muscle of red-eared turtles. These include one slow oxidative type, two fast oxidative types, two fast oxidative and glycolytic types, and one fast glycolytic type. Fiber types are non-randomly distributed throughout cross sections of the muscle. There is a decreasing gradient of oxidative staining and an increasing gradient of glycolytic staining along an axis from the superficial to deep regions of the muscle. The slow oxidative fibers are predominantly located within one or two fascicles of the superficial surface of the muscle. The fast glycolytic fibers are predominant in deep fascicles. In contrast to previous reports of histochemically monotypic intrafusal fibers in turtle muscle, ambiens muscle spindles have been observed containing one to eleven intrafusal fibers, including two fiber types. Fiber diameter and area are consistently smaller than observed in most extrafusal fibers. Spindles are predominantly located in superficial and cranial fascicles of the ambiens muscle and are located in regions characterized by extrafusal fibers with high oxidative activity.  相似文献   

8.
Research on the dimorphic claws of the snapping shrimp Alpheushas revealed moult-associated changes in structure and biochemicalcomposition—including atrophy and biochemical modification—ofclaw muscle fibers during morphological transformation of aclaw from a pincer to a snapper. Electrophysiology, SDS-PAGEgel electrophoresis, and immunocytochemistry were used to analyzechanges in claw closer muscle function and composition duringthe transformation process. Remodification of closer muscleduring claw transformation, involving the complete loss of acentral section of fast-contracting fibers and their replacementthrough enlargement of existing slowly-contracting segmentsof the muscle, may mimic similar muscle modifications duringinitial claw development. Exposure of intact animals to environmentalecdysteroid hormones accelerated the rate of these changes.These processes appear to be a product of a remarkable trophicplasticity of crustacean skeletal muscle first discovered bySkinner.  相似文献   

9.
Summary Carbonic anhydrase (CA III) and myoglobin contents from isolated human muscle fibers were quantified using a sensitive time-resolved fluoroimmunoassay. Human psoas muscle specimens were freeze-dried, and single fibers were dissected out and classified into type I, IIA and IIB by myosin ATPase staining. Fiber typing was further confirmed by SDS-PAGE. CA III and myoglobin were found in all fiber types. Type I fibers contained higher concentrations of CA III and myoglobin than type IIA and IIB fibers. The relative concentrations of CA III in type IIA and IIB fibers were respectively 24% and 10% of that in type I fibers. The relative concentrations of myoglobin in type IIA and IIB fibers were 60% and 28% of that in type I fibers. Anti-CA III immunoblotting results from fiber-specific pooled samples agreed well with quantitative measurements. The results indicate that CA III is a more specific marker than myoglobin for type I fibers.  相似文献   

10.
Populations and distributions of fiber types were studied in 19 limb muscles ofMicrocebus murinus. Proportions and cross-sectional areas of muscles fiber types were compared with data from the literature for other prosimians (Galago, Lemur, andNycticebus), another primate (Macaca cynomolgus), and the rat. Most muscles are heterogenous, with type I fibers (slow oxidative) localized in the deeper part, near the bone. Type IIA fibers (fast oxidative glycolytic) are more evenly distributed than type I and type IIB (fast glycolytic). The combination of large number and large size of type I fibers results in enhanced slow-twitch and oxidative properties as required for antigravity function of postural muscles. Compared with other primates,Microcebus shows relatively small cross-sectional areas of fibers and less numerous type I fibers, in every muscle, which is probably related to small body mass. The fiber type population of the different components of the quadriceps femoris is also related to the particular mode of locomotion of the mouse-lemur: running and leaping, climbing and hopping. M. vastus medialis and m. vastus lateralis are made up only of fast twitch fibers, IIA and IIB. A possible repercussion of hypothyroidism during the rest season and a decrease in locomotor activity was the subject of investigation of the fiber type proportion and section areas. No difference were found between individuals euthanized during the active period and those at rest period. Either a very low level of thyroxine associated with reduced activity is sufficient to maintain the processes controlling myosin expression, or the effects on muscles fibers of natural hypothyroidism and hypokinesia neutralize each other during the rest season.  相似文献   

11.
There have been no systematic comparisons ofskeletal muscle adaptations in response to voluntary wheel runningunder controlled loading conditions. To accomplish this, a voluntaryrunning wheel for rats and mice was developed in which a known load canbe controlled and monitored electronically. Five-week-old maleSprague-Dawley rats (10 rats/group) were assigned randomly to either a1) sedentary control group(Control); 2) voluntary exercisedwith no load (Run-No-Load) group; or3) voluntary exercised withadditional load (Run-Load) group for 8 wk. The load for the Run-Loadgroup was progressively increased to reach ~60% of body weightduring the last week of training. The proportions of fast glycolytic(FG), fast oxidative glycolytic (FOG), or slow oxidative (SO) fibers inthe plantaris were similar in all groups. The absolute and relativeplantaris weights were greater in the Run-Load group compared with theControl and Run-No-Load groups. The mean fiber cross-sectional areas of FG, FOG, and SO fibers were 20, 25, and 15% greater in the Run-Load than in Control rats. In addition, these fiber types were 16, 21, and12% larger in Run-Load than in Run-No-Load rats. The muscle weightsand mean cross-sectional areas of each fiber type were highlycorrelated with the average running distances and total work performedin the Run-Load, but not the Run-No-Load, group. The slope of therelationship between fiber size and running distance and total workperformed was significant for each fiber type but was higher for FG andFOG fibers compared with SO fibers. These data show that the load on arat running voluntarily can determine the magnitude of a hypertrophicresponse and the population of motor units that are recruited toperform at a given loading condition.

  相似文献   

12.
Little is known of thegene regulatory mechanisms that coordinate the contractile andmetabolic specializations of skeletal muscle fibers. Here we report anovel connection between fast isoform contractile protein transgene andglycolytic enzyme expression. In quantitative histochemical studies oftransgenic mouse muscle fibers, we found extensive coregulation ofthe glycolytic enzyme glycerol-3-phosphate dehydrogenase(GPDH) and transgene constructs based on the fast skeletal muscletroponin I (TnIfast) gene. In addition to a common IIB > IIX > IIA fiber type pattern, TnIfast transgenes and GPDH showedcorrelated fiber-to-fiber variation within each fast fiber type,concerted emergence of high-level expression during early postnatalmuscle maturation, and parallel responses to muscle under- oroverloading. Regulatory information for GPDH-coregulated expression iscarried by the TnIfast first-intron enhancer (IRE). These resultsidentify an unexpected contractile/metabolic gene regulatory link thatis amenable to further molecular characterization. They also raise thepossibility that the equal expression in all fast fiber types observedfor the endogenous TnIfast gene may be driven by differentmetabolically coordinated mechanisms in glycolytic (IIB) vs. oxidative(IIA) fast fibers.

  相似文献   

13.
大鼠和家兔生后发育各阶段比目鱼肌纤维的比较   总被引:2,自引:2,他引:0  
为研究大鼠与家兔骨骼肌各类型肌纤维的数量和二维分布以及生后发育对其影响,取生后2d和2、4、6、8、10周龄(体重10g和32、95、190、280、320g)大鼠及生后2d和2、4、8、12、16、20、24周龄(体重100g和220、400、750、1200、1600、2100、2500g)家兔的比目鱼肌做琥珀酸脱氢酶染色。实验结果表明,大鼠和家兔比目鱼肌纤维被分成Ⅰ型(SO),ⅡX型(FO)和ⅡA型(FOG)3型。使用图像分析系统分析每型肌纤维在生后发育各阶段的相关变化,大鼠和家兔比目鱼肌中:Ⅰ型纤维分布于整块肌肉,其数量随着生后发育而增加。幼体ⅡX型纤维分布在整块肌肉中,其数量随生后发育而减少;ⅡA型分布在肌肉中深层,数量几乎无变化;至成体时只有少量的ⅡX和ⅡA分布在肌表层。整个发育期间未见ⅡB型纤维。ⅡA型纤维直径最大,Ⅰ型中等,而ⅡX型最小。家兔3型肌纤维的平均横切面积比大鼠的大。这些结果表明大鼠和家兔后肢肌各种类型肌纤维的数量比例和分布随生长过程发生改变。  相似文献   

14.
The TGF-beta member myostatin acts as a negative regulator of skeletal muscle mass. The Compact mice were selected for high protein content and hypermuscularity, and carry a naturally occurring 12-bp deletion in the propeptide region of the myostatin precursor. We aimed to investigate the cellular characteristics and the glycogen distribution of the Compact tibialis anterior (TA) muscle by quantitative histochemistry and spectrophotometry. We have found that the deficiency in myostatin resulted in significantly increased weight of the investigated hindlimb muscles compared to wild type. Although the average glycogen content of the individual fibers kept unchanged, the total amount of glycogen in the Compact TA muscle increased two-fold, which can be explained by the presence of more fibers in Compact compared to wild type muscle. Moreover, the ratio of the most glycolytic IIB fibers significantly increased in the Compact TA muscle, of which glycogen content was the highest among the fast fibers. In summary, myostatin deficiency caused elevated amount of glycogen in the TA muscle but did not increase the glycogen content of the individual fibers despite the marked glycolytic shift observed in Compact mice.Key words: Compact mice, fiber-type, GDF-8, glycogen, muscle, myostatin  相似文献   

15.
16.
In skeletal muscle, two major types of muscle fibers exist: slow-twitch oxidative (type I) fibers designed for low-intensity long-lasting contractions, and fast-twitch glycolytic (type II) fibers designed for high-intensity short-duration contractions. Such a wide range of capabilities has emerged through the selection across fiber types of a narrow set of molecular characteristics suitable to achieve a specific contractile phenotype. In this article we review evidence supporting the existence of distinct functional phenotypes in mitochondria from slow and fast fibers that may be required to ensure optimal muscle function. This includes differences with respect to energy substrate preferences, regulation of oxidative phosphorylation, dynamics of reactive oxygen species, handling of Ca2+, and regulation of cell death. The potential physiological implications on muscle function and the putative mechanisms responsible for establishing and maintaining distinct mitochondrial phenotype across fiber types are also discussed.  相似文献   

17.
18.
Bilateral asymmetry of the paired snapper/pincer claws may be reversed in adult snapping shrimps (Alpheus heterochelis). Removal of the snapper claw triggers transformation of the contralateral pincer claw into a snapper and the regeneration of a new pincer claw at the old snapper site. During this process the pincer closer muscle is remodeled to a snapper-type, and these alterations have been examined with the electron microscope. There is selective death of the central band of fast fibers, accompanied by an accumulation of electron-dense crysttaline bodies in the degenerating fibers. Two principal types of hemocytes (amebocytes and coagulocytes) invade the area and the degenerating muscle fibers. New myotubes also appear in this central site. The myotubes are characterized by a prolific network of presumptive sarcoplasmic reticulum and transverse tubules, nascent myofibrils, and crystalline bodies. The myotubes are innervated by many motor nerve terminals, and they subsequently differentiate into long-sarcomere (8–12 m), slow muscle fibers. Remodeling of the central band, therefore, occurs by degeneration of the fast fibers and their replacement by new slow fibers. Remnants of the degenerating fast fibers act as scaffolding for the myotubes which originate from adjacent satellite cells. The crystalline bodies may represent protein stores from the degeneration of the fast fibers, recycled for use in the genesis of new fibers. The invading hemocytes appear to play several roles, initially phagocytosing the fast muscle fibers, transporting the crystalline bodies into the new myotubes, and acting as stem cells for the new muscle fibers. Apart from the central band of fibers, the remaining pincer-type slow fibers with sarcomere lengths of 5–7 m are transformed via sarcomere lengthening into snapper-type slow fibers with sarcomere lengths of 7–12 m. Thus, during claw transformation in adult snapping shrimps, the pincer closer muscle is remodeled into a snapper closer muscle by selective death of the fast-fiber band, replacement of the fast-fiber band by new slow fibers, and transformation of the existing slow fibers to an even-slower variety. Note. This paper is dedicated to the fond memory of Professor M.S. Laverack whose enjoyment of biological research and gentle encouragement of such endeavours touched all those who knew him.  相似文献   

19.
The cDNA sequence of troponin I (TnI), one of the subunits of the skeletal muscle regulatory protein, differs between slow-twitch muscle and fast-twitch muscle. We prepared monoclonal antibodies td the slow and fast isoforms of human TnI for the purpose of differentiating muscle fiber types in human neuromuscular disorders. Slow TnI antibody was labeled with tetramethylrhodamine isothiocyanate while fast TnI antibody was labeled with fluorescein isothiocyanate; then these two antibodies were mixed. This mixture was then used to stain biopsied muscle from patients with neuromuscular disorders. It was possible to differentiate muscle fibers into slow, fast and intermediate fibers having various contents of slow and fast TnI. In tissue composed of small muscle fibers, this method facilitated differentiation of types of muscle fibers by allowing staining of only a single section. The usefulness of our technique using slow and fast TnI antibodies is discussed in comparison with ATPase staining. Because our staining method can distinguish slow and fast fiber components, it is useful for clinical application.  相似文献   

20.
Because of its mechanical function, skeletal muscle is heavily influenced by the composition of its extracellular matrix (ECM). Fibrosis generated by chronic damage, such as occurs in muscular dystrophies, is thus particularly disastrous in this tissue. Here, we examined the interrelationship between the muscle satellite cell and the production of collagen type I, a major component of fibrotic ECM, by using both C2C12, a satellite cell-derived cell line, and primary muscle satellite cells. In C2C12 cells, we found that expression of collagen type I mRNA decreases substantially during skeletal muscle differentiation. On a single-cell level, collagen type I and myogenin became mutually exclusive after 3 days in differentiation medium, whereas addition of collagen markedly suppressed differentiation of C2C12 cells. Primary cultures of satellite cells associated with isolated single fibers of the young (4 wk old) mdx dystrophic mouse and of C57BL/10ScSn wild-type controls expressed collagen type I and type III mRNA and protein. This pattern persisted in wild-type mice at all ages. But, curiously, in older (18-mo-old) mdx mice, although the myogenic cells continued to express type III collagen, type I expression became restricted to nonmyogenic cells. These cells typically constituted part of a cellular sheet surrounding the old mdx fibers. This combination of features strongly suggests that the progression to fibrosis in dystrophic muscle involves changes in the mechanisms controlling matrix production, which generates positive feedback that results in a reprogramming of myoblasts to a profibrotic function. collagen type I; myogenin; muscle single fibers; Duchenne muscular dystrophy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号