首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bilateral asymmetry of the paired snapper/pincer claws may be reversed in adult snapping shrimps (Alpheus heterochelis). Removal of the snapper claw triggers transformation of the contralateral pincer claw into a snapper and the regeneration of a new pincer claw at the old snapper site. During this process the pincer closer muscle is remodeled to a snapper-type, and these alterations have been examined with the electron microscope. There is selective death of the central band of fast fibers, accompanied by an accumulation of electron-dense crysttaline bodies in the degenerating fibers. Two principal types of hemocytes (amebocytes and coagulocytes) invade the area and the degenerating muscle fibers. New myotubes also appear in this central site. The myotubes are characterized by a prolific network of presumptive sarcoplasmic reticulum and transverse tubules, nascent myofibrils, and crystalline bodies. The myotubes are innervated by many motor nerve terminals, and they subsequently differentiate into long-sarcomere (8–12 m), slow muscle fibers. Remodeling of the central band, therefore, occurs by degeneration of the fast fibers and their replacement by new slow fibers. Remnants of the degenerating fast fibers act as scaffolding for the myotubes which originate from adjacent satellite cells. The crystalline bodies may represent protein stores from the degeneration of the fast fibers, recycled for use in the genesis of new fibers. The invading hemocytes appear to play several roles, initially phagocytosing the fast muscle fibers, transporting the crystalline bodies into the new myotubes, and acting as stem cells for the new muscle fibers. Apart from the central band of fibers, the remaining pincer-type slow fibers with sarcomere lengths of 5–7 m are transformed via sarcomere lengthening into snapper-type slow fibers with sarcomere lengths of 7–12 m. Thus, during claw transformation in adult snapping shrimps, the pincer closer muscle is remodeled into a snapper closer muscle by selective death of the fast-fiber band, replacement of the fast-fiber band by new slow fibers, and transformation of the existing slow fibers to an even-slower variety. Note. This paper is dedicated to the fond memory of Professor M.S. Laverack whose enjoyment of biological research and gentle encouragement of such endeavours touched all those who knew him.  相似文献   

2.
An enduring debate in the study of development is the relative contribution of genetic and epigenetic factors in the genesis of an organism, that is, the nature vs. nurture debate. The behavior of the paired claws in the lobster offers promising material for pursuing this debate because of the way they develop. The paired claws and their closer muscles are initially symmetrical; both are slender in appearance and have a mixture of fast and slow fibers in their closer muscles. During a critical period of development, they become determined into a major (crusher) and minor (cutter) claw and during subsequent development acquire their final form and behavior: The crusher becomes a stout, molar-toothed claw capable of closing only slowly because its closer muscle has 100% slow fibers while the cutter becomes a slender, incisor-toothed claw capable of closing rapidly because its closer muscle has 90% fast fibers. Our initial hypothesis was that the more active claw became the crusher and its less active counterpart the cutter. Presumably, nerve activity would influence muscle transformation, which in turn would influence the exoskeleton to which they attach and hence claw morphology. Curtailing nerve activity to the claw prevented crusher development, while reflex activation of a claw promoted its development; both results support the notion that nerve activity directly regulates claw form and function. This is not, however, the case, for when both claws were reflexly exercised neither formed a crusher, signifying rather that bilateral differences in predominantly mechanoreceptive input to the paired claws somehow lateralized the claw ganglion [central nervous system (CNS)] into a crusher and cutter side. The side experiencing the greater activity becomes the crusher side while the contralateral side becomes the cutter and is also inhibited from ever becoming a crusher. This initial lateralization in the CNS is expressed, via as yet unknown pathways, at the periphery in claw morphology, muscle composition, and behavior. The critical period defines a time when the CNS is susceptible to being lateralized into a crusher and cutter side. Such lateralization is dependent upon experience of the environment in the form of mechanoreceptive input. In the absence of such experience, the CNS is not lateralized and paired cutter claws develop. Thus, while the critical period for crusher determination is genetically determined the actual trigger is influenced by experience.  相似文献   

3.
An enduring debate in the study of development is the relative contribution of genetic and epigenetic factors in the genesis of an organism, that is, the nature vs. nurture debate. The behavior of the paired claws in the lobster offers promising material for pursuing this debate because of the way they develop. The paired claws and their closer muscles are initially symmetrical; both are slender in appearance and have a mixture of fast and slow fibers in their closer muscles. During a critical period of development, they become determined into a major (crusher) and minor (cutter) claw and during subsequent development acquire their final form and behavior: The crusher becomes a stout, molar-toothed claw capable of closing only slowly because its closer muscle has 100% slow fibers while the cutter becomes a slender, incisor-toothed claw capable of closing rapidly because its closer muscle has 90% fast fibers. Our initial hypothesis was that the more active claw became the crusher and its less active counterpart the cutter. Presumably, nerve activity would influence muscle transformation, which in turn would influence the exoskeleton to which they attach and hence claw morphology. Curtailing nerve activity to the claw prevented crusher development, while reflex activation of a claw promoted its development; both results support the notion that nerve activity directly regulates claw form and function. This is not, however, the case, for when both claws were reflexly exercised neither formed a crusher, signifying rather that bilateral differences in predominantly mechanoreceptive input to the paired claws somehow lateralized the claw ganglion [central nervous system (CNS)] into a crusher and cutter side. The side experiencing the greater activity becomes the crusher side while the contralateral side becomes the cutter and is also inhibited from ever becoming a crusher. This initial lateralization in the CNS is expressed, via as yet unknown pathways, at the periphery in claw morphology, muscle composition, and behavior. The critical period defines a time when the CNS is susceptible to being lateralized into a crusher and cutter side. Such lateralization is dependent upon experience of the environment in the form of mechanoreceptive input. In the absence of such experience, the CNS is not lateralized and paired cutter claws develop. Thus, while the critical period for crusher determination is genetically determined the actual trigger is influenced by experience. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
Contractile protein populations were determined, using gel electrophoresis, during development of the claw closer muscles of the lobster Homarus americanus. In the adult the paired claw closer muscles are asymmetric, consisting of a crusher muscle with all slow fibers and a cutter muscle with a majority of fast and a few slow fibers. The electrophoretic banding pattern of these adult fast and slow fibers shows a similarity in the major proteins including myosin, actin, and tropomyosin which are common to both fiber types. Paramyosin is slightly heavier in fast fibers than in slow. However, fast fibers have three proteins and slow fibers have four proteins which are unique to themselves. Several of these unique proteins belong to the regulatory troponin complexes. In juvenile 4th stage lobster, where the paired closer muscles are undifferentiated, the banding pattern reveals the presence of proteins common to both fiber types including myosin, actin, and tropomysin but the conspicuous absence of all unique fast fiber proteins as well as one unique slow fiber protein. By the juvenile 10th stage most of these unique proteins are present except for one unique slow fiber protein. Thus lobster fast and slow fiber differentiation entails coordinate gene activation to add unique contractile proteins.  相似文献   

5.
Research on the dimorphic claws of the snapping shrimp Alpheushas revealed moult-associated changes in structure and biochemicalcomposition—including atrophy and biochemical modification—ofclaw muscle fibers during morphological transformation of aclaw from a pincer to a snapper. Electrophysiology, SDS-PAGEgel electrophoresis, and immunocytochemistry were used to analyzechanges in claw closer muscle function and composition duringthe transformation process. Remodification of closer muscleduring claw transformation, involving the complete loss of acentral section of fast-contracting fibers and their replacementthrough enlargement of existing slowly-contracting segmentsof the muscle, may mimic similar muscle modifications duringinitial claw development. Exposure of intact animals to environmentalecdysteroid hormones accelerated the rate of these changes.These processes appear to be a product of a remarkable trophicplasticity of crustacean skeletal muscle first discovered bySkinner.  相似文献   

6.
Calpains are Ca2+-dependent proteinases that mediate protein turnover in crustacean skeletal muscles. We used an antibody directed against lobster muscle-specific calpain (Ha-CalpM) to examine its distribution in differentiating juvenile lobster claw muscles. These muscles are comprised of both fast and slow fibers early in development, but become specialized into predominantly fast or exclusively slow muscles in adults. The transition into adult muscle types requires that myofibrillar proteins specific for fast or slow muscles to be selectively removed and replaced by the appropriate proteins. Using immunohistochemistry, we observed a distinct staining pattern where staining was preferentially localized in the fiber periphery along one side of the fiber. Immunolabeling with an antibody directed against synaptotagmin revealed that the calpain staining was greatest in the cytoplasm adjacent to synaptic terminals. In complementary analyses, we used sequence-specific primers with real-time PCR to quantify the levels of Ha-CalpM in whole juvenile claw muscles. These expression levels were not significantly different between cutter and crusher claws, but were positively correlated with the expression of fast myosin heavy chain. The anatomical localization of Ha-CalpM near motor endplates, coupled with the correlation with fast myofibrillar gene expression, suggests a role for this intracellular proteinase in fiber type switching.  相似文献   

7.
The paired thoracic chelipeds or claws of adult snapping shrimp, Alpheus heterochelis, are bilaterally asymmetric, consisting of an enlarged and elaborate, sound-producing major (snapper) claw and a much smaller minor (pincer) claw. These paired claws vary in the composition of their external sensilla. Both possess long serrulate and simple short setae but the snapper also have plumose setae and long serrulate setae on the plunger. The pincers differ in having short serrulate setae and, in males alone, a prominent fringe of plumoserrate setae. During regeneration of each claw type, these setal structures are gradually added over three molts to reach the pristine condition. The long serrulate and simple short setae appear first, being seen in intermolt limb buds and commonly in both claws. Setae exclusive to each claw, i.e., plumoserrate and short serrulate in the pincer and plumose and long serrulate on the plunger in the snapper, appear sparsely in either the regenerated 1st or 2nd postmolt claw, they proliferate in the subsequent 2nd or 3rd postmolt claw. Transformation of the pincer claw to the snapper type begins in the 1st postmolt stage with the loss of pincer setae and addition of snapper setae and is completed by the 3rd postmolt stage. Since changes in composition of the external sensilla are restricted to postmolt stages, the underlying hypodermis is presumably being remodeled during proecdysis.  相似文献   

8.
Summary Comparisons were made of the passive electrical properties of closer muscle fibers in the dimorphic claws of snapping shrimp,Alpheus armillatus. During claw transformation the small fibers of pincer claws grow to become much larger snapper claw fibers. As muscle fibers grow, the relationship of fiber input resistance (R 0) to fiber diameter (d) is predicted by the proportionality,R 0d –3/2. Muscle fiber membrane resistance,R m, is independent of fiber diameter, but membrane capacitance,C m, grows with diameter. This results in a 40 to 50 fold reduction in fiber input impedance as fiber diameter enlarges during transformation. Reductions of muscle fiber impedance are partially compensated by 2–5 fold increases in quantal content at excitatory synapses on snapper muscle fibers. However, changes in quantal content during transformation apparently are independent of fiber diameter per se. Excitatory junction potentials in both pincer and snapper muscle fibers have equal amplitude. Because fiber input impedance decreases precipitously during transformation, and in view of the relatively small compensatory changes in quantal content at excitatory synapses, additional pre- or post-synaptic modifications must supplement increased quantal content to maintain synaptic efficacy in transformed muscle fibers.Abbreviations ejp excitatory junctional potential - epp endplate potential - mepp miniature endplate potential  相似文献   

9.
In the pristine claws of adult crayfish the muscle fibers of the closer are all of slow type as judged by sarcomere lengths of greater than 6 micron, and a uniform degree of myofibrillar ATPase activity. In regenerating claws of mature and immature crayfish, the muscle has a central band of fast type fibers as characterized by shorter sarcomeres (less than 6 micron) and a higher degree of ATPase activity than the surrounding slow fibers. During primary development, the closer muscle has a fiber composition similar to that of the regenerating muscle except for a smaller proportion of fast fibers. Thus the reappearance of fast fibers during regeneration recapitulates ontogeny while their enhanced proportions may reflect epigenetic influences such as restriction of nerve-mediated muscle activity in the limb bud.  相似文献   

10.
Lobster claw muscles undergo a process of fiber switching during development, where isomorphic muscles containing a mixture of both fast and slow fibers, become specialized into predominantly fast, or exclusively slow, muscles. Although this process has been described using histochemical methods, we lack an understanding of the shifts in gene expression that take place. In this study, we used several complementary techniques to follow changes in the expression of a number of myofibrillar genes in differentiating juvenile lobster claw muscles. RNA probes complementary to fast and slow myosin heavy chain (MHC) mRNA were used to label sections of 7th stage (approximately 3 months old) juvenile claw muscles from different stages of the molt cycle. Recently molted animals (1-5 days postmolt) had muscles with distinct regions of fast and slow gene expression, whereas muscles from later in the molt cycle (7-37 days postmolt) had regions of fast and slow MHC expression that were co-mingled and indistinct. Real-time PCR was used to quantify several myofibrillar genes in 9th and 10th stages (approximately 6 months old) juvenile claws and showed that these genes were expressed at significantly higher levels in the postmolt claws, as compared with the intermolt and premolt claws. Finally, Western blot analyses of muscle fibers from juvenile lobsters approximately 3 to 30 months in age showed a shift in troponin-I (TnI) isoform expression as the fibers differentiated into the adult phenotypes, with expression of the adult fast fiber TnI pattern lagging behind the adult slow fiber TnI pattern. Collectively, these data show that juvenile and adult fibers differ both qualitatively and quantitative in the expression of myofibrillar proteins and it may take as much as 2 years for juvenile fibers to achieve the adult phenotype.  相似文献   

11.
SYNOPSIS. Based on electrophysiological and histochemical data,four types of muscle fibers (types I, II, III and IV) can beidentified in the closer of the crab Eriphia. Although characteristicsused for typing vary among the fibers of a particular type,the combination of several parameters permits an assignment.Of particular significance for typing is the myosin ATPase activityand its stability after preincubation at different pH levels.The fiber types defined for the closer muscle can also be foundin the other leg muscles of riphia. Single, electrophysiologically identified fibers of each typewere quantitatively analyzed for several key enzymes of oxidativeand glycolytic energy metabolism (GAPDH, LDH, CS, IDH, HAD).Despite the variations found, different metabolic types canbe defined. The typing derived from biochemical studies correlateswell with that obtained electrophysiologically and histochemically.The variability of the biochemical properties, however, seemsto be considerably larger. The type I fibers can be regarded as slow oxidative, the typeII and III fibers as fast oxidative glycolytic, and the typeIV fibers as fast glycolytic.  相似文献   

12.
Myofibrillar proteins in muscles of the claws and abdomen of lobster, Homarus americanus, and the claws of fiddler crab, Uca pugnax, and land crab, Gecarcinus lateralis, have been analyzed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fibers contained numerous isoforms of structural and regulatory proteins in assemblages correlated with fiber type. One fast (F) and two slow (S1 and S2) fibers were identified. All F fibers possessed two isoforms of paramyosin (P1 and P2), while all slow fibers, with the exception of Uca major claw, contained only the P2 variant. S1 and S2 fibers were distinguished by the distribution of a large isoform of troponin-T (T1; Mr = 55,000); S2 fibers in all three species contained T1 in addition to one or two smaller-molecular-weight variants usually associated with S1 fibers. In order to determine whether the slow fibers differed in histochemical properties, land crab claw closer muscle was cryosectioned and stained for myofibrillar ATPase and NADH diaphorase activities. Most S2 fibers had lower ATPase and higher NADH diaphorase activities than S1 fibers, which indicated that S2 fibers had a lower rate of contraction and were more fatigue-resistant than S1 fibers. It is proposed that the S1 and S2 fibers defined by biochemical and histochemical criteria are identical to the slow-twitch and tonic fibers, respectively characterized physiologically.  相似文献   

13.
Snapping shrimp (Alpheus heterochaelis) produce a fast, well-focused water jet by rapid closure of their specialised snapper claw. As shown previously, water jets may injure the opponent in interspecific encounters (e.g. with small crabs) although no damage was observed in intraspecific encounters. For conspecific receivers the jet represents a potential hydrodynamic signal and can be analysed with the help of mechanosensory hairs. To gain more insight in the biophysical characteristics of the water jet we visualised and analysed jets of tethered snapping shrimp using standard and high speed video recordings. Water jet width increases with increasing distance from the snapper claw tip, and both width and distance increase with increasing snapper claw size. Water jet distances do not increase with increasing claw cocking duration (building up muscle tension) but medium cocking durations of about 550 ms result in longest distances. Mean water jet velocity is 6.5 m s−1 shortly after claw closure but rapidly decreases subsequently. At the mean distance between snapping conspecifics (9 mm) water jet velocities produced by snapping shrimp with larger snapper claws are significantly higher than those of animals with smaller claws. Interestingly, males with equal snapper claw size as females produce significantly faster water jets. Accepted: 31 March 1999  相似文献   

14.
Longo, M.V., Goldemberg, A.L. and Díaz, A.O. 2011. The claw closer muscle of Neohelice granulata (Grapsoidea, Varunidae): a morphological and histochemical study. —Acta Zoologica (Stockholm) 92 : 126–133. The claw closer muscle of Neohelice granulata was studied according to histological, histochemical, and morphometrical criteria. Adult male crabs in intermoult stage were collected from Mar Chiquita Lagoon (Buenos Aires, Argentina). Muscle fibers show evident striations and oval‐elongated nuclei with loose chromatin. The loose connective tissue among muscle fibers consists of cells and fibers embedded in an amorphous substance. Muscle histochemistry reveals two slow fiber types: ‘A’ and ‘B’. Prevailing A fibers are larger, and they usually show, with respect to B type, a weaker reaction to whole techniques. Fibers with short (SS), intermediate (IS), and long sarcomeres (LS) appear in the claw closer muscle, being the LS fibers predominant. Concluding, the histochemical and morphometrical characteristics of the claw closer muscle fibers of N. granulata are indicative of slow fibers. The slow A type (low resistant to fatigue) prevails.  相似文献   

15.
The claw closer muscle of the land crab, Gecarcinus lateralis,undergoes a cyclical atrophy and restoration during the intervalbetween ecdyses. During proecdysis (stage D0), 30–60%of the muscle protein is degraded, which reduces tissue massand facilitates withdrawal of the propodus at ecdysis. Proteinis resynthesized as the muscle grows back to its previous sizeduring metecdysis. This atrophy is specific to the claws andcan be accentuated by multiple limb autotomy. Crustacean musclescontain five cytosolic proteinases that degrade myofibrillarproteins. Four of these constitute a family of enzymes requiringCa2+ for activity. These calcium-dependent proteinases (CDPs)hydrolyze myofibrillar proteins in vitro and in situ and showincreased activity in atrophic claw muscles, which suggeststhat CDPs play an important role in myofibrillar protein metabolism.The fifth enzyme is a multicatalytic proteinase (MCP), a multisubunitproteolytic complex that degrades a wide range of peptide andprotein substrates. The catalytic properties of the complexare altered with low concentrations of sodium dodecyl sulfateor by brief heating at 60°C. Only the heat-activated formdegrades myofibrillar proteins. Since the CDPs hydrolyze contractileproteins about 30-fold more rapidly than the heat-activatedMCP, the MCP probably has a more limited or specialized functionin molt-induced claw muscle atrophy.  相似文献   

16.
During intraspecific agonistic encounters in snapping shrimp (Alpheus heterochaelis) the behaviour of the snapper, emitting a fast water jet by very rapid closure of the large modified snapper claw, and the receiver was analysed by single frame video analysis before, during, and after the snap. During snapping the opponents usually face each other. Snapping is most frequently preceded by touch of frontal appendages. The snapping animal keeps its snapper claw slightly across the midline, shielding frontal body parts, and its tailfan bent downwards. The mean claw cocking duration (generating muscle tension) before snapping amounts to about 500 ms. In 58% of the snaps, the snapper claw pointed at the opponent, its claws, densely covered with sensory hairs, representing the main target of the water jet. The mean distance for these directed snaps was 0.9 cm, while undirected snaps were emitted from larger distances of on average 3.4 cm. The snapper usually withdraws immediately after snapping, the receiver approaches. Initial snaps are often answered by return snaps and both are emitted from smaller distances and hit more often than subsequent snaps.  相似文献   

17.
The ability to regenerate lost tissues, organs or whole body parts is widespread across animal taxa; in some animals, regeneration includes transforming a remaining structure to replace the one that was lost. The transformation of one limb into another involves considerable plasticity in morphology, physiology and behavior, and snapping shrimp offer excellent opportunities for studying this process. We examined the changes required for the transformation of the small pincer to a mature snapping claw in Alpheus angulosus. First molt claws differ from mature claws in overall shape as well as in morphology related to snapping function; nonetheless, shrimp with first molt claws do produce snaps. While most shape variables of second molt claws do not differ significantly from mature claws, the plunger (structure required for snap production) does not reach mature size until the third molt for females, or later for males. Thus, the pincer claw can be transformed into a functional snapping claw in one molt, although both the underlying morphology and superficial shape are not fully regenerated at this stage. The rapid production of a functional snapping claw that we observe in this study suggests that this particular function is of significant importance to snapping shrimp behavior and survival.  相似文献   

18.
Whereas many plasticity studies demonstrate the importance of inducible defences among prey, far fewer investigate the potential role of inducible offences among predators. Here we ask if natural differences in a snail's shell hardness can induce developmental changes to a predatory crab's claw size. To do this, we fed Littorina obtusata snails from either thick- or thin-shelled populations to captive European green crabs Carcinus maenas. The crabs' shell-breaking behaviour dominated among those fed thin-shelled snails, whereas crabs fed thick-shelled snails mostly winkled flesh through the shell opening without damaging the shell itself (a.k.a. aperture-probing behaviour). Significantly, the size of crab crusher claws grew in proportion to the frequency of shell-crushing behaviour and, for a same shell-crushing frequency, crabs fed thick-shelled snails grew larger crusher claws than those fed thin-shelled snails after two experimental moults. Diet and behaviour had no effect on the growth of the smaller cutter claws of same individuals, providing good evidence that allometric changes to crusher claws were indeed a result of differential use while feeding. Findings indicate that both predation habits and claw sizes are affected by green crabs' diet, supporting the hypothesis that prey-induced phenotypic plasticity contributes to earlier accounts of shell-claw covariance between this predator and its Littorina prey in the wild.  相似文献   

19.
The cells of the electric organ, called electrocytes, of the weakly electric fish Sternopygus macrurus derive from the fusion of mature fast muscle fibers that subsequently disassemble and downregulate their sarcomeric components. Previously, we showed a reversal of the differentiated state of electrocytes to that of their muscle fiber precursors when neural input is eliminated. The dependence of the mature electrocyte phenotype on neural input led us to test the hypothesis that innervation is also critical during formation of electrocytes. We used immunohistochemical analyses to examine the regeneration of skeletal muscle and electric organ in the presence or absence of innervation. We found that blastema formation is a nerve-dependent process because regeneration was minimal when tail amputation and denervation were performed at the same time. Denervation at the onset of myogenesis resulted in the differentiation of both fast and slow muscle fibers. These were fewer in number, but in a spatial distribution similar to controls. However, in the absence of innervation, fast muscle fibers did not progress beyond the formation of closely apposed clusters, suggesting that innervation is required for their fusion and subsequent transdifferentiation into electrocytes. This study contributes further to our knowledge of the influence of innervation on cell differentiation in the myogenic lineage.  相似文献   

20.
SYNOPSIS. Most vertebrate skeletal muscles consist of a heterogeneousarray of muscle fiber types that are distinguishable, in part,by differences in their contractile protein isoform content.It is often suggested that the information necessary for directingthe development of these fiber types is derived from interactionswith factors outside the muscle fibers themselves and, in particular,with innervating motoneurons. However, recent data from thisand other laboratories indicate that the emergence of fiberspecialization within developing muscle is not dependent oninnervation at all. These studies recognize two periods of embryonicfiber specialization. The first occurs during early embryonicdevelopment as individual muscles are formed from primary generationfibers expressing different myosin isoform types. The formationof these "early" muscle fiber types and their characteristicdistributions within and among different muscles are not dependenton interactions with innervating motoneurons. Furthermore, myoblastsisolated from "early" embryonic muscle tissue and cultured invitro display the same heterogeneity of myosin expression asthe primary generation fiber types in ovo, suggesting that thedifferences in expression among early muscle fiber types arepreprogrammed within their myoblasts. The second period occurs"late" in development after the major morphological events oflimb formation are complete and the initial pattern of fibertypes has been established. It is during this period that massivegrowth of most muscles occurs which is due, in part, to theformation of a secondary generation of muscle fibers. Thesesecondary generation fibers in ovo and the cultured myotubesderived from "late" embryonic myoblasts exhibit a single myosinphenotype (e.g., fast). The transition from "early" to "late"embryonic phases is accompanied by a change in fast myosin heavychain expression and is blocked by agents that disrupt neuromuscularcontacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号