首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The malaria parasite, Plasmodium falciparum, and related parasites use a variety of proteins with Duffy-Binding Like (DBL) domains to bind glycoproteins on the surface of host cells. Among these proteins, the 175 kDa erythrocyte binding antigen, EBA-175, specifically binds to glycophorin A on the surface of human erythrocytes during the process of merozoite invasion. The domain responsible for glycophorin A binding was identified as region II (RII) which contains two DBL domains, F1 and F2. The crystal structure of this region revealed a dimer that is presumed to represent the glycophorin A binding conformation as sialic acid binding sites and large cavities are observed at the dimer interface. The dimer interface is largely composed of two loops from within each monomer, identified as the F1 and F2 β-fingers that contact depressions in the opposing monomers in a similar manner. Previous studies have identified a panel of five monoclonal antibodies (mAbs) termed R215 to R218 and R256 that bind to RII and inhibit invasion of erythrocytes to varying extents. In this study, we predict the F2 β-finger region as the conformational epitope for mAbs, R215, R217, and R256, and confirm binding for the most effective blocking mAb R217 and R215 to a synthetic peptide mimic of the F2 β-finger. Localization of the epitope to the dimerization and glycan binding sites of EBA-175 RII and site-directed mutagenesis within the predicted epitope are consistent with R215 and R217 blocking erythrocyte invasion by Plasmodium falciparum by preventing formation of the EBA-175– glycophorin A complex.  相似文献   

2.
BACKGROUND: Plasmodium falciparum merozoites bind to and invade human erythrocytes via specific erythrocyte receptors. This establishes the erythrocytic stage of the parasite life cycle that causes clinical disease resulting in 2-3 million deaths per year. We tested the hypothesis that a Plasmodium falciparum ligand, EBA-175 region II (RII), which binds its erythrocyte receptor glycophorin A during invasion, can be used as an immunogen to induce antibodies that block the binding of RII to erythrocytes and thereby inhibit parasite invasion of erythrocytes. Accordingly, we immunized mice, rabbits, and monkeys with DNA plasmids that encoded the 616 amino acid RII. MATERIALS AND METHODS: DNA vaccine plasmids that targeted the secretion of recombinant RII protein with and without the universal T-cell helper epitopes P2P30 were used to immunize mice, rabbits, and Aotus monkeys. RII specific antibodies were assessed by IFA, ELISA, blocking of native [35S] labeled EBA-175 binding to human erythrocytes, and growth inhibition assays, all in vitro. RESULTS: The RII DNA plasmids were highly immunogenic as measured by ELISA and IFA. The anti-RII antibodies blocked the binding of native EBA-175 to erythrocytes, and rosetting of erythrocytes on COS-7 cells expressing RII. Most important, murine and rabbit anti-RII antibodies inhibited the invasion of merozoites into erythrocytes. We immunized nonhuman primates and showed that the RII-DNA plasmids were immunogenic and well tolerated in these monkeys. Monkeys were challenged with parasitized erythrocytes; one of three monkeys that received RII DNA plasmid was protected from fulminant disease. After challenge with live parasites, anti-RII antibody titers were boosted in the immunized monkeys. CONCLUSIONS: By proving the hypothesis that anti-RII antibodies can block merozoite invasion of erythrocytes, these studies pave the way for the clinical evaluation of EBA-175 as a receptor-blockade vaccine.  相似文献   

3.
The erythrocyte binding ligand 140 (EBA-140) is a member of the Plasmodium falciparum DBL family of erythrocyte binding proteins, which are considered as prospective candidates for malaria vaccine development. The EBA-140 ligand is a paralogue of the well-characterized P. falciparum EBA-175 protein. They share homology of domain structure, including Region II, which consists of two homologous F1 and F2 domains and is responsible for ligand-erythrocyte receptor interaction during invasion. In this report we describe, for the first time, the glycophorin C specificity of the recombinant, baculovirus-expressed binding region (Region II) of P. falciparum EBA-140 ligand. It was found that the recombinant EBA-140 Region II binds to the endogenous and recombinant glycophorin C, but does not bind to Gerbich-type glycophorin C, neither normal nor recombinant, which lacks amino acid residues 36–63 of its polypeptide chain. Our results emphasize the crucial role of this glycophorin C region in EBA-140 ligand binding. Moreover, the EBA-140 Region II did not bind either to glycophorin D, the truncated form of glycophorin C lacking the N-glycan or to desialylated GPC. These results draw attention to the role of glycophorin C glycans in EBA-140 binding. The full identification of the EBA-140 binding site on glycophorin C molecule, consisting most likely of its glycans and peptide backbone, may help to design therapeutics or vaccines that target the erythrocyte binding merozoite ligands.  相似文献   

4.

Background

Erythrocyte invasion by Plasmodium falciparum parasites represents a key mechanism during malaria pathogenesis. Erythrocyte binding antigen-181 (EBA-181) is an important invasion protein, which mediates a unique host cell entry pathway. A novel interaction between EBA-181 and human erythrocyte membrane protein 4.1 (4.1R) was recently demonstrated using phage display technology. In the current study, recombinant proteins were utilized to define and characterize the precise molecular interaction between the two proteins.

Methods

4.1R structural domains (30, 16, 10 and 22 kDa domain) and the 4.1R binding region in EBA-181 were synthesized in specific Escherichia coli strains as recombinant proteins and purified using magnetic bead technology. Recombinant proteins were subsequently used in blot-overlay and histidine pull-down assays to determine the binding domain in 4.1R.

Results

Blot overlay and histidine pull-down experiments revealed specific interaction between the 10 kDa domain of 4.1R and EBA-181. Binding was concentration dependent as well as saturable and was abolished by heat denaturation of 4.1R.

Conclusion

The interaction of EBA-181 with the highly conserved 10 kDa domain of 4.1R provides new insight into the molecular mechanisms utilized by P. falciparum during erythrocyte entry. The results highlight the potential multifunctional role of malaria invasion proteins, which may contribute to the success of the pathogenic stage of the parasite's life cycle.  相似文献   

5.
The invasion of host cells by the malaria parasite Plasmodium falciparum requires specific protein-protein interactions between parasite and host receptors and an intracellular translocation machinery to power the process. The transmembrane erythrocyte binding protein-175 (EBA-175) and thrombospondin-related anonymous protein (TRAP) play central roles in this process. EBA-175 binds to glycophorin A on human erythrocytes during the invasion process, linking the parasite to the surface of the host cell. In this report, we show that the cytoplasmic domain of EBA-175 encodes crucial information for its role in merozoite invasion, and that trafficking of this protein is independent of this domain. Further, we show that the cytoplasmic domain of TRAP, a protein that is not expressed in merozoites but is essential for invasion of liver cells by the sporozoite stage, can substitute for the cytoplasmic domain of EBA-175. These results show that the parasite uses the same components of its cellular machinery for invasion regardless of the host cell type and invasive form.  相似文献   

6.
Several EBA-175 paralogues (EBA-140, EBA-165, EBA-175, EBA-181, and EBL-1) have been described among the Plasmodium falciparum malaria parasite proteins, which are important in the red blood cell (RBC) invasion process. EBA-181/JESEBL is a 181 kDa protein expressed in the late schizont stage and located in the micronemes; it belongs to the Plasmodium Duffy binding-like family and is able to interact with the erythrocyte surface. Here, we describe the synthesis of 78, 20-mer synthetic peptides derived from the reported EBA-181/JESEBL sequence and their ability to bind RBCs in receptor-ligand assays. Five peptides (numbered 30030, 30031, 30045, 30051, and 30060) displayed high specific binding to erythrocytes; their equilibrium binding parameters were then determined. These peptides interacted with 53 and 33 kDa receptor proteins on the erythrocyte surface, this binding being altered when RBCs were pretreated with enzymes. They were able to inhibit P. falciparum merozoite invasion of RBCs when tested in in vitro assays. According to these results, these five EBA-181/JESEBL high specific erythrocyte binding peptides, as well as the entire protein, were seen to be involved in the molecular machinery used by the parasite for invading RBCs. They are thus suggested as potential candidates in designing a multi-sub-unit vaccine able to combat the P. falciparum malaria parasite.  相似文献   

7.
Apicomplexan pathogens are obligate intracellular parasites. To enter cells, they must bind with high affinity to host cell receptors and then uncouple these interactions to complete invasion. Merozoites of Plasmodium falciparum, the parasite responsible for the most dangerous form of malaria, invade erythrocytes using a family of adhesins called Duffy binding ligand-erythrocyte binding proteins (DBL-EBPs). The best-characterized P. falciparum DBL-EBP is erythrocyte binding antigen 175 (EBA-175), which binds erythrocyte surface glycophorin A. We report that EBA-175 is shed from the merozoite at around the point of invasion. Shedding occurs by proteolytic cleavage within the transmembrane domain (TMD) at a site that is conserved across the DBL-EBP family. We show that EBA-175 is cleaved by PfROM4, a rhomboid protease that localizes to the merozoite plasma membrane, but not by other rhomboids tested. Mutations within the EBA-175 TMD that abolish cleavage by PfROM4 prevent parasite growth. Our results identify a crucial role for intramembrane proteolysis in the life cycle of this pathogen.  相似文献   

8.
The recognition and invasion of human erythrocytes by the most lethal malaria parasite Plasmodium falciparum is dependent on multiple ligand-receptor interactions. Members of the erythrocyte binding-like (ebl) family, including the erythrocyte binding antigen-175 (EBA-175), are responsible for high affinity binding to glycoproteins on the surface of the erythrocyte. Here we describe a paralogue of EBA-175 and show that this protein (EBA-181/JESEBL) binds in a sialic acid-dependent manner to erythrocytes. EBA-181 is expressed at the same time as EBA-175 and co-localizes with this protein in the microneme organelles of asexual stage parasites. The receptor binding specificity of EBA-181 to erythrocytes differs from other members of the ebl family and is trypsin-resistant and chymotrypsin-sensitive. Furthermore, using glycophorin B-deficient erythrocytes we show that binding of EBA-181 is not dependent on this sialoglycoprotein. The level of expression of EBA-181 differs among parasite lines, and the importance of this ligand for invasion appears to be strain-dependent as the EBA-181 gene can be disrupted in W2mef parasites, without affecting the invasion phenotype, but cannot be targeted in 3D7 parasites.  相似文献   

9.
《The Journal of cell biology》1990,111(5):1877-1884
The Plasmodium falciparum gene encoding erythrocyte binding antigen-175 (EBA-175), a putative receptor for red cell invasion (Camus, D., and T. J. Hadley. 1985. Science (Wash. DC). 230:553-556.), has been isolated and characterized. DNA sequencing demonstrated a single open reading frame encoding a translation product of 1,435 amino acid residues. Peptides corresponding to regions on the deduced amino acid sequence predicted to be B cell epitopes were assessed for immunogenicity. Immunization of mice and rabbits with EBA-peptide 4, a synthetic peptide encompassing amino acid residues 1,062-1,103, produced antibodies that recognized P. falciparum merozoites in an indirect fluorescent antibody assay. When compared to sera from rabbits immunized with the same adjuvant and carrier protein, sera from rabbits immunized with EBA-peptide 4 inhibited merozoite invasion of erythrocytes in vitro by 80% at a 1:5 dilution. Furthermore, these sera inhibited the binding of purified, authentic EBA-175 to erythrocytes, suggesting that their activity in inhibiting merozoite invasion of erythrocytes is mediated by blocking the binding of EBA-175 to erythrocytes. Since the nucleotide sequence of EBA-peptide 4 is conserved among seven strains of P. falciparum from throughout the world (Sim, B. K. L. 1990. Mol. Biochem. Parasitol. 41:293-296.), these data identify a region of the protein that should be a focus of vaccine development efforts.  相似文献   

10.
Apicomplexan parasites employ multiple adhesive ligands for recognition and entry into host cells. The Duffy binding-like (DBL) and the reticulocyte binding protein-like (RBL) families are central to the invasion of erythrocytes by the malaria parasite. These type-1 transmembrane proteins are composed of large ectodomains and small conserved cytoplasmic tail domains. The cytoplasmic tail domain of the micronemal DBL protein EBA-175 is required for a functional ligand-receptor interaction, but not for correct trafficking and localisation. Here we focus on the cytoplasmic tail domain of the rhoptry-localised Plasmodium falciparum RBL PfRh2b. We have identified a conserved sequence of six amino acids, enriched in acidic residues, in the cytoplasmic tail domains of RBL proteins from Plasmodium spp. Genetic analyses reveal that the entire cytoplasmic tail and the conserved motif within the cytoplasmic tail are indispensable for invasion P. falciparum. Site-directed mutagenesis of the conserved moiety reveals that changes in the order of the amino acids of the conserved moiety, but not the charge of the sequence, can be tolerated. Shuffling of the motif has no effect on either invasion phenotype or PfRh2b expression and trafficking. Although the PfRh2b gene can be readily disrupted, our results suggest that modification of the PfRh2b cytoplasmic tail results in strong dominant negative activity, highlighting important differences between the PfRh2b and EBA-175 invasion ligands.  相似文献   

11.
Erythrocyte binding antigen-160 (EBA-160) protein is a Plasmodium falciparum antigen homologue from the erythrocyte binding protein family (EBP). It has been shown that the EBP family plays a role in parasite binding to the erythrocyte surface. The EBA-160 sequence has been chemically synthesised in seventy 20-mer sequential peptides covering the entire 3D7 protein strain, each of which was tested in erythrocyte binding assays to identify possible EBA-160 functional regions. Five EBA-160 high activity binding peptides (HABPs) specifically binding to erythrocytes with high affinity were identified. Dissociation constants lay between 200 and 460 nM and Hill coefficients between 1.5 and 2.3. Erythrocyte membrane protein binding peptide cross-linking assays using SDS-PAGE showed that these peptides bound specifically to 12, 28, and 44 kDa erythrocyte membrane proteins. The nature of these receptor sites was studied in peptide binding assays using enzyme-treated erythrocytes. HABPs were able to block merozoite in vitro invasion of erythrocytes. HABPs’ potential as anti-malarial vaccine candidates is also discussed.  相似文献   

12.
The malaria parasite proliferates in the bloodstream of its vertebrate host by invading and replicating within erythrocytes. To achieve successful invasion, a number of discrete and essential events need to take place at the parasite-host cell interface. Erythrocyte-binding antigen 175 (EBA-175) is a member of a family of Plasmodium falciparum erythrocyte-binding proteins involved in the formation of a tight junction, a necessary step in invasion. Here we present the crystal structure of EBA-175 region VI (rVI), a cysteine-rich domain that is highly conserved within the protein family and is essential for EBA-175 trafficking. The structure was solved by selenomethionine single-wavelength anomalous dispersion at 1.8 Å resolution. It reveals a homodimer, containing in each subunit a compact five-α-helix core that is stabilized by four conserved disulfide bridges. rVI adopts a novel fold that is likely conserved across the protein family, indicating a conserved function. It shows no similarity to the Duffy-binding-like domains of EBA-175 involved in erythrocyte binding, indicating a distinct role. Remarkably, rVI possesses structural features related to the KIX-binding domain of the coactivator CREB-binding protein, supporting the binding and trafficking roles that have been ascribed to it and providing a rational basis for further experimental investigation of its function.  相似文献   

13.
The ability of the malaria parasite, Plasmodium falciparum, to proliferate within the human host depends on its invasion of erythrocytes. Erythrocyte binding-like (EBL) proteins play crucial roles in the attachment of merozoites to human erythrocytes by binding to specific receptors on the cell surface. In this study, we have carried out a bioinformatics analysis of the three EBL proteins EBA-140, EBA-175 and EBA-181 and show that they contain a large amount of intrinsic disorder in particular within the RIII–V domains. The functional role of these domains has so far not been identified, although antibodies raised against these regions were shown to inhibit parasite invasion. Here, we obtain a more complete structural and dynamic view of the EBL proteins by focusing on the biophysical characterization of a smaller construct of the RIII–V regions of EBA-181 (EBA-181945–1097). We show using a number of techniques that EBA-181945–1097 is intrinsically disordered, and we obtain a detailed structural and dynamic characterization of the protein at atomic resolution using nuclear magnetic resonance (NMR) spectroscopy. Our results show that EBA-181945–1097 is essentially a statistical coil with the presence of several turn motifs and does not possess transiently populated secondary structures as is common for many intrinsically disordered proteins that fold via specific, pre-formed molecular recognition elements.  相似文献   

14.
Plasmodium falciparum malaria parasites invade human erythrocytes by means of a parasite receptor for erythrocytes, the 175-kD erythrocyte binding antigen (EBA-175). Similar to invasion efficiency, binding requires N-acetylneuraminic acid (Neu5Ac) on human erythrocytes, specifically the glycophorins. EBA-175 bound to erythrocytes with receptor-like specificity and was saturable. The specificity of EBA-175 binding was studied to determine if its binding is influenced either by simple electrostatic interaction with the negatively charged Neu5Ac (on the erythrocyte surface); or if Neu5Ac indirectly affected the conformation of an unknown ligand, or if Neu5Ac itself in specific linkage and carbohydrate composition was the primary ligand for EBA-175 as demonstrated for hemagglutinins of influenza viruses. Most Neu5Ac on human erythrocytes is linked to galactose by alpha 2-3 and alpha 2-6 linkages on glycophorin A. Soluble Neu5Ac by itself in solution did not competitively inhibit the binding of EBA-175 to erythrocytes, suggesting that linkage to an underlying sugar is required for binding in contrast to charge alone. Binding was competitively inhibited only by Neu5Ac(alpha 2-3)Gal-containing oligosaccharides. Similar oligosaccharides containing Neu5Ac(alpha 2-6)Gal-linkages had only slight inhibitory effects. Binding inhibition assays with modified sialic acids and other saccharides confirmed that oligosaccharide composition and linkage were primary factors for efficient binding. EBA-175 bound tightly enough to glycophorin A that the complex could be precipitated with an anti-glycophorin A monoclonal antibody. Selective cleavage of O-linked tetrasaccharides clustered at the NH2 terminus of glycophorin A markedly reduced binding in inhibition studies. We conclude that the Neu5Ac(a2,3)-Gal- determinant on O-linked tetrasaccharides of glycophorin A appear to be the preferential erythrocyte ligand for EBA-175.  相似文献   

15.
Erythrocyte invasion by merozoite is a multistep process involving multiple ligand–receptor interactions. The Plasmodium falciparum reticulocyte binding protein homologues (PfRHs) consists of five functional members. The differential expression of PfRHs has been linked to the utilization of different invasion pathways by the merozoites as well as a mechanism of immune evasion. PfRHs are expressed at the apical end of merozoite and form interactions with distinct red blood cell (RBC) surface receptors that are important for successful invasion. Here we show that PfRH2b undergoes processing before and during merozoite invasion. The different processed fragments bind to chymotrypsin sensitive RBC surface receptors. We also show that PfRH2b follows the merozoite tight junction during invasion. Monoclonal antibodies (mAbs) inhibit merozoites invasion by blocking tight junction formation. mAbs binding to PfRH2b block merozoites intracellular Ca2+ signal necessary for EBA175 surface expression. The data suggests that a conserved function of PfRHs, where their interaction with RBC surface receptors facilitated recruitment of EBA175 and other tight junction proteins necessary for merozoite invasion by modulating merozoite intracellular Ca2+ signals.  相似文献   

16.

Background

The erythrocyte binding antigen-175 (EBA-175) on Plasmodium falciparum merozoites mediates sialic acid dependent binding to glycophorin A on host erythrocytes and, therefore, plays a crucial role in cell invasion. Dimorphic allele segments have been found in its encoding gene with a 342 bp segment present in FCR-3 strains (F-segment) and a 423 bp segment in CAMP strains (C-segment). Possible associations of the dimorphism with severe malaria have been analysed in a case-control study in northern Ghana.

Methods

Blood samples of 289 children with severe malaria and 289 matched parasitaemic but asymptomatic controls were screened for eba- 175 F- and C-segments by nested polymerase chain reaction.

Results

In children with severe malaria, prevalences of F-, C- and mixed F-/C-segments were 70%, 19%, and 11%, respectively. The C-segment was found more frequently in severe malaria cases whereas mixed infections were more common in controls. Infection with strains harbouring the C-segment significantly increased the risk of fatal outcome.

Conclusion

The results show that the C-segment is associated with fatal outcome in children with severe malaria in northern Ghana, suggesting that it may contribute to the virulence of the parasite.  相似文献   

17.
Plasmodium malaria parasites multiply within erythrocytes and possess a repertoire of proteins whose function is to recognize and invade these vertebrate host cells. One such protein involved in erythrocyte invasion is the micronemal protein, Erythrocyte Binding-Like (EBL), which has been studied as a potential target of vaccine development in Plasmodium vivax (PvDBP) and Plasmodium falciparum (EBA-175). In the rodent malaria parasite model Plasmodium yoelii, specific substitutions in the EBL regions responsible for intracellular trafficking (17XL parasite line) or receptor recognition (17X1.1pp. parasite line), paradoxically increase invasion ability and virulence rather than abolish EBL function. Attempts to disrupt the ebl gene locus in the 17XL and 17XNL lines were unsuccessful, suggesting EBL essentiality. To understand the mechanisms behind these potentially conflicting outcomes, we generated 17XL-based transfectants in which ebl expression is suppressed with anhydrotetracycline (ATc) and investigated merozoite behavior during erythrocyte invasion. In the absence of ATc, EBL was secreted to the merozoite surface, whereas following ATc administration parasitemia was negligible in vivo. Merozoites lacking EBL were unable to invade erythrocytes in vitro, indicating that EBL has a critical role for erythrocyte invasion. Quantitative time-lapse imaging revealed that with ATc administration a significant number of merozoites were detached from the erythrocyte after the erythrocyte deformation event and no echinocytosis was observed, indicating that EBL is required for merozoites to establish an irreversible connection with erythrocytes during invasion.  相似文献   

18.

Background

Malaria immunity is commonly believed to wane in the absence of Plasmodium falciparum exposure, based on limited epidemiological data and short-lived antibody responses in some longitudinal studies in endemic areas.

Methods

A cross-sectional study was conducted among sub-Saharan African adults residing in Spain for 1 up to 38 years (immigrants) with clinical malaria (n=55) or without malaria (n=37), naïve adults (travelers) with a first clinical malaria episode (n=20) and life-long malaria exposed adults from Mozambique (semi-immune adults) without malaria (n=27) or with clinical malaria (n=50). Blood samples were collected and IgG levels against the erythrocytic antigens AMA-1 and MSP-142 (3D7 and FVO strains), EBA-175 and DBL-α were determined by Luminex. IgG levels against antigens on the surface of infected erythrocytes (IEs) were measured by flow cytometry.

Results

Immigrants without malaria had lower IgG levels than healthy semi-immune adults regardless of the antigen tested (P≤0.026), but no correlation was found between IgG levels and time since migration. Upon reinfection, immigrants with malaria had higher levels of IgG against all antigens than immigrants without malaria. However, the magnitude of the response compared to semi-immune adults with malaria depended on the antigen tested. Thus, immigrants had higher IgG levels against AMA-1 and MSP-142 (P≤0.015), similar levels against EBA-175 and DBL-α, and lower levels against IEs (P≤0.016). Immigrants had higher IgG levels against all antigens tested compared to travelers (P≤0.001), both with malaria.

Conclusions

Upon cessation of malaria exposure, IgG responses to malaria-specific antigens were maintained to a large extent, although the conservation and the magnitude of the recall response depended on the nature of the antigen. Studies on immigrant populations can shed light on the factors that determine the duration of malaria specific antibody responses and its effect on protection, with important implications for future vaccine design and public health control measures.  相似文献   

19.

Background

Complement (C) is a crucial part of the innate immune system and becomes over activated during malaria, resulting in depletion of C components, especially those for lectin pathway (LP), thereby compromising the host''s innate defense. In this study, involvement of P. falciparum antigens in C activation was investigated.

Methods

A highly synchronous culture of the Dd2 clone of P. falciparum was established in a serum free medium. Supernatants harvested from rings, trophozoites and schizonts at various parasite densities were tested for ability to activate C by quantifying amount of C3b deposited on erythrocytes (E). Uninfected sham culture was used as control. Remnants of each C pathway were determined using Wieslab complement System Screenkit (Euro-diagnostica, Sweden). To identify MBL binding antigens of LP, culture supernatants were added to MBL sepharose columns and trapped antigens eluted with increasing concentrations of EDTA (10 mM, 50 mM and 100 mM) and then desalted before being tested for ability to activate C. The EDTA eluate with highest activity was run on a polyacrylamide gel and silver stained proteins analyzed by mass spectroscopy.

Results

Antigens released by P. falciparum growing in culture activated C leading to C3b deposition on E. Maximal activation at 7% parasitemia was associated with schizont stage (36.7%) compared to 22% for rings, 21% for trophozoites and 3% for sham culture. All the three pathways of C were activated, with highest activation being for the alternative pathway (only 6% of C activation potential remained), 65% for classiical and 43% for the LP. Seven MBL binding merozoite proteins were identified by mass spectrometry in the 50 mM EDTA eluate.

Conclusions

MBL binding merozoite adhesins with ability to activate C pathway were identified. The survival advantage for such pronounced C activation is unclear, but opsonisation could facilitate recognition and invasion of E.  相似文献   

20.
C Chen  S Wang  H Wang  X Mao  T Zhang  G Ji  X Shi  T Xia  W Lu  D Zhang  J Dai  Y Guo 《PloS one》2012,7(8):e43845

Background

Botulinum neurotoxins (BoNTs), the causative agents for life-threatening human disease botulism, have been recognized as biological warfare agents. Monoclonal antibody (mAb) therapeutics hold considerable promise as BoNT therapeutics, but the potencies of mAbs against BoNTs are usually less than that of polyclonal antibodies (or oligoclonal antibodies). The confirmation of key epitopes with development of effective mAb is urgently needed.

Methods and Findings

We selected 3 neutralizing mAbs which recognize different non-overlapping epitopes of BoNT/B from a panel of neutralizing antibodies against BoNT/B. By comparing the neutralizing effects among different combination groups, we found that 8E10, response to ganglioside receptor binding site, could synergy with 5G10 and 2F4, recognizing non-overlapping epitopes within Syt II binding sites. However, the combination of 5G10 with 2F4 blocking protein receptor binding sites did not achieve synergistical effects. Moreover, we found that the binding epitope of 8E10 was conserved among BoNT A, B, E, and F, which might cross-protect the challenge of different serotypes of BoNTs in vivo.

Conclusions

The combination of two mAbs recognizing different receptors'' binding domain in BoNTs has a synergistic effect. 8E10 is a potential universal partner for the synergistical combination with other mAb against protein receptor binding domain in BoNTs of other serotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号