首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sensitive and cost‐effective indicators of aquatic ecosystem condition in Amazon streams are necessary to assess the effects of anthropogenic disturbances on those systems in a viable and ecologically meaningful manner. We conducted the present study in the municipality of Paragominas, state of Pará, northern Brazil, where we sampled adult dragonflies in 50 100‐m‐long wadeable stream sites in 2011. We collected 1769 specimens represented by 11 families, 41 genera and 97 species. The suborder Zygoptera contributed 961 individuals and Anisoptera 808. Among the 97 recorded species, nine were classified as useful indicators of ecological condition, with four species being associated with more degraded streams (three Anisoptera, one Zygoptera) and five with more preserved streams (all were Zygoptera). Anisoptera (dragonflies) tend to provide more useful indicators of more degraded environments because they have more efficient homeostatic mechanisms and are more mobile, enabling them to tolerate a wider range of environmental conditions. By contrast, Zygoptera (damselflies) tend to provide a more useful role as indicators of more preserved environments and high levels of environmental heterogeneity because of their smaller body sizes and home ranges and greater ecophysiological restrictions. We conclude from our assessment of this low‐order Amazonian stream system that (i) the occurrence of specific odonate species is strongly associated with the configuration of riparian vegetation, (ii) agricultural activities appear to be the main factor determining changes in the composition of odonate assemblages and (iii) these insects can act as useful indicators of the ecological consequences of riparian habitat loss and disturbance. Because generalist species invade moderately degraded areas, those areas may have high species richness but host few species of Zygoptera. Therefore, preserving dense riparian vegetation is necessary to maintain aquatic ecological condition, and that condition can be rehabilitated by planting new trees. Both require enforcing existing environmental regulations, various types of incentives and educating local communities.  相似文献   

2.
Dung beetles (Scarabaeinae) are conspicuous components in most terrestrial ecosystems, performing important ecological functions and services. Being sensitive to several types of disturbance, they have been successfully used as indicators of habitat change. Dung beetle communities in tropical rainforests have been well studied, but considerably less information is available for tropical dry forests. In this study I sampled dung beetles in two undisturbed habitats, deciduous forest and semideciduous forest, and two disturbed habitats, secondary forest and open area habitat, in the Chamela-Cuixmala region of western Mexico. Dung beetle species with high indicator value for each habitat were identified. Beetle abundance, observed species richness and estimated species richness were similar in the three forest habitats, but significantly lower in the open area habitat. A more detailed analysis of species-specific abundances in the three forest habitats revealed some differences. Transects of one of the undisturbed habitats, the deciduous forest, were more similar to the non-adjacent transects of disturbed secondary forest, than to the adjacent undisturbed semideciduous forest transects. Unlike studies in other tropical sites that have found a decrease in equitability in Scarabaeinae assemblages between undisturbed forest and disturbed habitat (particularly open habitats), in the Chamela-Cuixmala region all four habitats showed similar low equitability in community structure, with two or three very dominant species.  相似文献   

3.
Calcareous grasslands have become severely threatened habitats in Europe. The aim of this study was to investigate the changes in plant species richness, and functional and phylogenetic diversity in northern Estonian calcareous (alvar) grasslands resampled after 90 years of land-use change. Functional traits characterizing species that have benefited most from decreased habitat area and altered environmental conditions, and additional species that can potentially inhabit the remaining grassland patches were identified. Also changes in the relative amount of habitat-specific species were studied to detect a possible decrease in habitat integrity. Although grasslands in the studied region had lost most of their original area (~90 %), species richness had substantially increased due to invasion by more competitive, nutrient-demanding native species. Functional diversity generally increased, whereas phylogenetic diversity showed no response to altered conditions. Overall, these grasslands have lost their integrity as calcareous grassland habitat type in the region, because the relative amount of habitat-specific characteristic species has declined significantly. However, although the grasslands have transformed to a ‘hybrid’ habitat type and restoration to their previous state is likely not reasonable, such degraded species-rich grassland fragments can still be recognized as important habitats to preserve high local biodiversity and several characteristic species of calcareous grasslands. As current landscapes consist of an increasing number of hybrid and novel communities, new tools to supplement traditional conservation or restoration practices are necessary to recognize and maintain regions and habitats of high local biodiversity.  相似文献   

4.
Ants are used as indicators of environmental change in disturbed landscapes, often without adequate understanding of their response to disturbance. Ant communities in the southeastern United States displayed a hump-backed species richness curve against an index of landscape disturbance. Forty sites at Fort Benning, in west-central Georgia, covered a spectrum of habitat disturbance (military training and fire) in upland forest. Sites disturbed by military training had fewer trees, less canopy cover, more bare ground, and warmer, more compact soils with shallower A-horizons. We sampled ground-dwelling ants with pitfall traps, and measured 15 habitat variables related to vegetation and soil. Ant species richness was greatest with a relative disturbance of 43%, but equitability was greatest with no disturbance. Ant abundance was greatest with a relative disturbance of 85%. High species richness at intermediate disturbance was associated with greater within-site spatial heterogeneity. Species richness was also associated with intermediate values of the normalized difference vegetation index (NDVI), a correlate of net primary productivity (NPP). Available NPP (the product of NDVI and the fraction of days that soil temperature exceeded 25 °C), however, was positively correlated with species richness, though not with ant abundance. Species richness was unrelated to soil texture, total ground cover, and fire frequency. Ant species richness and equitability are potential state indicators of the soil arthropod community. Moreover, equitability can be used to monitor ecosystem change.  相似文献   

5.
Grasslands are constructed for soil and wildlife conservation in agricultural landscapes across Europe and North America. Constructed grasslands may mitigate habitat loss for grassland-dependent animals and enhance ecosystem services that are important to agriculture. The responses of animal species richness and abundance to grassland habitat quality are often highly variable, however, and monitoring of multiple taxa is often not feasible. We evaluated whether multiple animal taxa responded to variation in constructed grassland habitats of southwest Ohio, USA, in ways that could be predicted from indicators based on quality assessment indices, Simpson diversity, and the species richness of ants and plants. The quality assessment indices included a widely used Floristic Quality Assessment (FQA) index, and a new Ant Quality Assessment (AntQA) index, both based on habitat specificity and species traits. The ant and plant indicators were used as predictor variables in separate general linear models of four target taxa—bees, beetles, butterflies and birds—with response variables of overall species richness and abundance, and subsets of taxa that included the abundance of ecosystem-service providers and grassland-associated species. Plant Simpson diversity was the best-fitting predictor variable in models of overall bee and beetle abundance, and the abundance of bees classified as ecosystem-service (ES) providers. FQA and plant richness were the best predictors of overall butterfly species richness and abundance. Ant species richness was the best predictor of overall bird species richness and abundance as well as the abundance of ES birds, while the AntQA index was the best predictor for the abundance of grassland bird and butterfly species. Thus, plant Simpson diversity and ant species richness were the most effective indicators for complementary components of grassland animal communities, whereas quality assessment indices were less robust as indicators and require more knowledge on the habitat specificity of individual ant and plant species.  相似文献   

6.
Anthropogenic habitat disturbance can have profound effects on multiple components of forest biotas including pollinator assemblages. We assessed the effect of small-scale disturbance on local richness, abundance, diversity and evenness of insect pollinator fauna; and how habitat disturbance affected species turnover across the landscape and overall diversity along a precipitation gradient in NW Patagonia (Argentina). We evaluated the effect of disturbance on overall pollinator fauna and then separately for bees (i.e. Apoidea) and non-bee pollinators. Locally, disturbed habitats had significantly higher pollinator species richness and abundances than undisturbed habitats for the whole pollinator assemblage, but not for bees or non-bees separately. However, significant differences in species richness between habitats vanished after accounting for differences in abundance between habitat types. At a local scale Shannon–Weaver diversity and evenness did not vary with disturbance. A β diversity index indicated that, across forest types, species turnover was lower between disturbed habitats than between undisturbed habitats. In addition, rarefaction curves showed that disturbed habitats as a whole accumulated fewer species than undisturbed habitats at equivalent sample sizes. We concluded that small patches of disturbed habitat have a negligible effect on local pollinator diversity; however, habitat disturbance reduced β diversity through a homogenization of the pollinator fauna (in particular of bees) across the landscape.  相似文献   

7.
Aim To determine how the distribution of species richness is associated with environmental factors for the four major C4 grass lineages in South Africa, as a means to explore the mechanisms responsible. Location South Africa, Lesotho and Swaziland. Methods The geographical distributions of species richness for four major C4 grass lineages (Aristidoideae, Chloridoideae, Andropogoneae and Paniceae) were sourced from a recently published flora that divided the study region into different vegetation types. Mean values of potential environmental correlates were calculated for each vegetation type, and the relative importances of these were determined using single‐ and multiple‐predictor generalized linear models, with and without control for spatial autocorrelation. Model selection of the multiple‐predictor generalized linear models was conducted using an Akaike’s information criterion–information theoretic approach. Association with wet, intermediate or dry, shady or open, and disturbed or undisturbed habitats was also determined for each C4 grass clade using habitat data for all the grass species, and analysed using chi‐square tests of independence. Results Andropogoneae and Paniceae are most species‐rich in areas of high precipitation and in mesic habitats. Andropogoneae are associated with high fire frequencies. Species richness in Andropogoneae decreases and in Paniceae increases in relation to livestock density. Chloridoideae species richness is relatively constant across South Africa, but is highest where there are infrequent fires, high temperatures and basic soils, and in mesic and disturbed habitats. Aristidoideae are most species‐rich in arid regions and in habitats with high temperatures, and are associated with disturbed habitats. Main conclusions Environmental variables other than precipitation, including temperature, fire frequency and grazing pressure, are strongly associated with the contrasting distributions of species richness for the various C4 grass clades in South Africa. Our results suggest that ecological sorting is an important determinant of phylogenetic patterns in the species richness of these C4 grass lineages.  相似文献   

8.
We contrasted traditionally used indicators of service provision quality, such as overall species richness and growth form composition, to three more specific functional properties: functional diversity, functional intensity, and functional stability. We defined flower colour as a functional trait perceived differently by humans and insect pollinators, and used user specific colour richness, flower size, and species richness within colour group as indicators of these three properties. We asked (1) do field margins and road verges provide flower-based ecosystem services with the quality of permanent grasslands; and (2) do traditional and detailed functional indicators of service provision quality agree on the service quality ranking of habitats?In an agricultural landscape of central and south-eastern Estonia (115 ÿ 95 km area, centroid 26°49⿲43⿳ and 58°54⿲49⿳) we sampled 87 field margins and 111 road verges as linear grassland-substitution habitats, and 84 permanent grasslands to scale their service quality.Linear habitats generally provided service of lower quality than permanent grasslands, but detailed indicators showed less evident contrast among habitat types than the overall species richness and stronger contrast than the proportion of forbs. Detailed indices, however, had strong seasonal dynamics to take into account. Vegetation in the first year field margins had greater colour richness (functional diversity) and species richness within colour groups (functional stability), but the smallest flower size (functional intensity), in contrast to road verges. By the third year of succession, field margins had become more similar to road verges. Indication of service provision quality differed between humans and pollinators, but their estimates were correlated across habitats.We showed that (1) combinations of specific service quality indicators provide more adequate information than generalized richness or growth form system, and (2) single grassland surrogate habitat type is an insufficient service providing substitute for permanent grasslands, although a mosaic of these habitats might be more efficient. Therefore, remnant fragments of semi-natural grasslands should receive top priority attention for conservation and restoration, particularly in agriculture dominated landscapes.  相似文献   

9.
Landscape context and habitat quality may have pronounced effects on the diversity of flower visiting insects. We investigated whether the effects of landscape context and habitat quality on flower visiting insects interact in agricultural landscapes in the Netherlands. Landscape context was expressed as the area of semi-natural habitats or the density of linear landscape features, and was quantified at spatial scales ranging from 250 to 2000 m. Habitat quality was determined as flower abundance. Species richness and abundance of hoverflies and bees were determined along 16 stream banks experiencing similar environmental conditions but situated in areas with contrasting landscape context. Only flower abundance and the area of semi-natural habitats within 500–1000 m were significantly related to species richness of hoverflies and bees and these factors had interacting effects on both species groups. Our results suggest that the regional area of semi-natural habitats had a positive effect on hoverfly species richness when flower abundance was relatively high, but not when flower abundance was low. Moreover, flower abundance had positive effects on hoverfly species richness only in areas with relatively many semi-natural habitats. Contrastingly, flower abundance had a more positive effect on bee species richness in landscapes with few semi-natural habitats compared to landscapes with more semi-natural habitats. Our results suggest that the importance of landscape context for the species richness of flower visiting insects depends upon the quality of the habitat patches.  相似文献   

10.
Not only can teeth provide clues about diet, but they also can be indicators of habitat quality. Conspecific groups living in different habitats with different kinds of foods may exhibit different rates of dental attrition because their teeth are less well adapted to some foods than to others. Ecological disequilibrium describes the situation in which animals live in habitats to which they are relatively poorly adapted. We test whether dental senescence, the wear-related decrease in dental functionality that is associated with decreased survival of infants born to older Propithecus edwardsi females, can be explained by ecological disequilibrium. Specifically, we compare the rates of dental wear in sifaka groups living in nearby habitats that differ in the degree of anthropogenically induced disturbance. We hypothesize that sifakas living in disturbed areas have an unusual rate of tooth wear compared to those living in a more pristine area, and that dental senescence is a consequence of an atypically high wear rate in a degraded habitat. To test whether habitat quality affects tooth wear more generally, we compare rates of use-wear in two subsets of Microcebus rufus living in either relatively undisturbed or disturbed habitats. Contrary to our predictions, we did not detect different rates of tooth wear in disturbed versus undisturbed habitats for either species and consider that reproductively detrimental dental senescence in P. edwardsi females is unlikely to be a pathological consequence of ecological disequilibrium.  相似文献   

11.
Acridid communities are sensitive to anthropogenic disturbance and the community structure of acridids plays vital role in functioning the forest ecosystem. They are potentially useful bioindicators for conservation planning and habitat disturbances. Acridid assemblages of three different habitat types based on degree of disturbance as follows five natural sites, five moderately disturbed sites and five highly disturbed sites in Chaupahari forest, West Bengal, India were studied. Diversity, abundance, equitability and species richness of acridid were observed in respect to undisturbed and disturbed habitats. The species richness and diversity of the sites tracked the intensity of disturbance, the greatest value being associated with the natural site followed by the moderately disturbed site and highly disturbed site. The highest species richness and diversity index indicate the suitable habitat for acridid population. Statistical analysis infers that different species show different behavior and the sites are also different in relation to different habitat types.  相似文献   

12.
In the Mediterranean basin, pine tree reforestation has been the most common management tool in restoring degraded and burnt areas, as well as for economic purposes. However, the quality of the biodiversity of these habitats has undergone little assessment. Terrestrial gastropods are suitable indicators of forest quality and long-term stability because of their strict dependence on microhabitat conditions and their slow dispersal rate. We sampled the gastropod population in a protected Mediterranean area in order to compare the species richness in seven main habitats. Holm oak wood and mixed-pine forests were the habitats with the lowest species density, and areas with a high level of heterogeneity exhibited the richest communities. In recent decades however, land abandonment and pine reforestation are leading to landscape homogeneity, which is perhaps the cause of the extinction of six open-habitat gastropod species in the Park. These results provide park authorities with insights into how to adapt management plans to enhance habitat quality for land snail and slug assemblages. More specifically, our results stress the need to create habitat heterogeneity to increase land mollusc diversity in large and continuous areas of mixed-pine forests.  相似文献   

13.
Successful regeneration of secondary tropical forest might be crucial in the conservation of rainforests, since large areas of primary forest have been destroyed or degraded. Animal communities might play an important role in restoration of biological diversity in these secondary habitats, since some groups have high mobility and capacity for dispersal. Fruit-feeding butterflies were trapped to measure differences between butterfly communities in primary rainforest and disturbed forest habitats of different stage of regeneration including clear-cut, abandoned farmland, newly planted forest and middle-aged secondary growth. 3465 specimens representing 114 species were identified from 56 traps operated for 36 days. Extremely high values of rarefied species richness were estimated in the clear-cut habitat, due to the high number of singletons and doubletons. This was caused by a gap-effect that allowed penetration of canopy and open area species after disturbance. The differences between butterfly communities were best demonstrated through ecological composition, richness and abundance of indicator groups and habitat similarity based on Jaccard’s similarity index. The results show a clear ability of butterfly communities in degraded forest habitats to regenerate in 50–60 years after clearance.  相似文献   

14.
Pselaphine beetles (Coleoptera: Staphylinidae: Pselaphinae) are cosmopolitan, species‐rich, and yet poorly studied, particularly in the tropics. We sampled beetles in three types of primary forest and two types of disturbed forest habitats in eastern Thailand to assess the utility of pselaphine beetles as bioindicators of forest disturbance. We simultaneously measured leaf litter mass, soil moisture, soil acidity and canopy cover at each site to infer which environmental factors affect pselaphine beetle diversity and abundance. At each site, pselaphine beetles were extracted from ten 1 m2 samples of leaf litter and soil with Tullgren funnels. We sampled 1867 adult beetles representing six supertribes, 51 genera and 114 morphospecies; 7% of the genera and 92% of the species were undescribed. Forest types differed significantly in species richness, abundance, diversity and evenness. Primary forest had greater numbers of species and individuals, and higher diversity indices (H′). Teak plantation and secondary forest had substantially fewer individuals and species of pselaphine beetles. Species composition differed between primary and degraded forests. Canopy cover, soil moisture, and leaf litter mass positively correlated with beetle species richness and abundance. Leaf litter mass and soil moisture were the two most important factors affecting the diversity of pselaphine beetle assemblages. Among the 114 morphospecies collected, 43 morphospecies were specific to two or three habitats and 64 morphospecies were found only in a single habitat. Thus pselaphine beetles appear to have rather narrow habitat requirements and their presence/absence was correlated with environmental differences. These traits make pselaphine beetles a suitable bioindicator taxon for assessing forest litter diversity and monitoring habitat change.  相似文献   

15.
Tropical butterfly conservation strategies often focus on total and/or common species richness to assess the conservation value of a patch or habitat. However, such a strategy overlooks the unique dynamics of rare species. We evaluated the species‐habitat relationships of 209 common, intermediate, and rare butterfly species (including morphospecies) across four habitat types (mature, degraded, or fragmented forest, and urban parks) and two patch sizes (<400 ha, ≥400 ha) in Singapore. Common species richness was consistent across habitat types. Intermediate species richness declined by more than 50 percent in urban parks (relative to all forest habitats), and rare species richness was reduced by 50 percent in degraded and fragmented forest and by 90 percent in urban parks (relative to mature forest). Large patches had comparable overall richness to small patches, but they supported more rare species and three times as many habitat‐restricted species over a similar area. Importantly, a number of rare species were confined to single small patches. Mixed‐effects regression models were constructed to identify habitat and ecological/life history variables associated with butterfly abundance. These models revealed that species with greater habitat specialization, rare larval host plants, few larval host plant genera, and narrow global geographic ranges were more likely to be rare species. Overall, these results demonstrate that the richness of habitat‐restricted and rare species do not follow the same spatial distribution patterns as common species. Therefore, while conserving mature forests is key, effective butterfly conservation in a transformed landscape should take into account rare and habitat‐restricted species.  相似文献   

16.
Clearance of tropical forest for agricultural purposes is generally assumed to seriously threaten the survival of forest species. In this study, we quantified the conservation value, for forest bird species, of three degraded habitat types in Peninsular Malaysia, namely rubber tree plantations, oil palm plantations, and open areas. We surveyed these degraded habitats using point counts to estimate their forest bird species richness and abundance. We assessed whether richness, abundance, and activities of different avian dietary groups (i.e. insectivores and frugivores) varied among the habitats. We identified the critical habitat elements that accounted for the distribution of forest avifauna in these degraded habitats. Our results showed that these habitats harboured a moderate fraction of forest avifauna (approximately 46–76 species) and their functions were complementary (i.e. rubber tree plantations for moving; open habitats for perching; shrubs in oil palm plantations for foraging). In terms of species richness and abundance, rubber tree plantations were more important than oil palm plantations and open habitats. The relatively high species richness of this agricultural landscape was partly due to the contiguity of our study areas with extensive forest areas. Forecasts of forest-species presence under various canopy cover scenarios suggest that leaving isolated trees among non-arboreal crops could greatly attract relatively tolerant species that require tree canopy. The conservation value of degraded habitats in agricultural landscapes seems to depend on factors such as the type of crops planted and distance to primary forest remnants.  相似文献   

17.
Scarab beetles (Coleoptera: Scarabaeidae) have been used to investigate the effects of environmental disturbances on forest structure and diversity. This group is recognized as sensitive to habitat perturbations and ecosystem changes. Here we examine the effects of anthropogenic impacts on Scarabaeidae composition, testing the following hypotheses: (1) Scarab beetle communities react to land use disturbances with predictable trends, (2) disturbed habitats are able to retain only a part of the Scarab beetle community of native forests or late secondary forests; (3) habitats largely differ in terms of species richness, taxonomic diversity and ecological composition, supporting exclusive and indicator species. We selected areas of native forest, agriculture, pasture for extensive livestock and secondary forests in different stages of regeneration. Our results show that the Scarabaeidae species were not indifferent to the gradient of structural changes represented by the studied areas. In fact, their patterns of habitat preference reveals communities more abundant and diverse in pristine habitats. In contrast, disturbed habitats, dominated by agricultural activities and pasture, indicated clear detrimental effects on the abundance of all forest Scarab beetle specialists. On the other hand, the generalist species, mainly associated with open environments, seemed to be favoured by the prevailing conditions induced by agricultural activities. Overall, the composition of the Scarab beetle communities is variable and sensitive to those structural gradients and, therefore, capable of responding as useful ecological indicators for assessing the extent of land use change or degradation.  相似文献   

18.
Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales.  相似文献   

19.
1. The structure of bryophyte communities in streams in relation to habitat characteristics, especially disturbance, is described. Disturbance in rivers is quantified as movement of the stream bed, whereas in small streams water level fluctuation is used as an indicator of disturbance frequency. 2. Canonical correspondence analysis differentiated frequently disturbed sites from more stable ones. The existence of a disturbance gradient was confirmed in a subset of the study sites using long-term records of discharge variation. A parallel change was detected in the species composition of bryophyte communities with low-statured, potentially fast colonizers dominating the disturbed end and large perennial species the stable end of the gradient. 3. A consistent pattern of zonation of bryophyte species was found along the gradient from continually submersed to persistently dry conditions in small streams and lake outlets. An abrupt increase in species richness occurred at or just above the water line, where facultatively aquatic species tolerant of both conditions formed the bulk of the community. 4. The relationship between species richness and standing crop in stream bryophyte communities was consistent with the hump-backed model of Grime (1979), especially at the within-habitat scale. Quadrats of low and very high standing crop were characterized by low species richness, while peak richness was observed at intermediate standing crops. 5. A few perennial species (e.g. Fontinalis spp. and Rhynchostegium riparioides) capable of monopolizing space dominated the most stable habitats. Species composition in low biomass sites was more variable, yet only one basic growth-form (small-statured species with high allocation to spore production) seemed possible in these highly disturbed streams. In habitats of intermediate biomass, small-scale disturbances apparently allow the formation of a more varied bryophyte community. 6. A habitat templet for stream bryophyte life strategies and community structure is presented. Disturbance is proposed to be the factor filtering out traits unsuitable for a given environment. The potential of stream bryophytes for testing and developing general ecological theory is emphasized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号