首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper analyzes the diversity of dung and carrion beetles (Scarabaeinae and Silphidae) in four human-induced habitats of a disturbed tropical montane cloud forest: polyspecific shade coffee plantations, monospecific shade coffee plantations, tropical montane cloud forest fragments, and clear cuts. The four habitats had similar richness, species composition, and assemblage structure of dung and carrion beetles. Differences were found in abundance and biomass levels for the four dominant species in the landscape. Dung beetles were more abundant than carrion beetles, but the biomass was higher for the latter. Carrion beetles were seasonal, while dung beetles were clearly not. When forest fragments and shade coffee plantations were compared to other similar habitats in the region, the same general pattern was observed. However, forests with high disturbance and monospecific shade coffee plantations had lower species richness than forests with low and medium disturbance and polyspecific shade coffee plantations. Thus shade coffee plantations maintain connectivity between patches of cloud forest in a landscape that is strongly affected by human activities. Protecting landscape diversity appears to ensure high species richness.  相似文献   

2.
Ellen Andresen 《Biotropica》2005,37(2):291-300
Dung beetles are important components of most terrestrial ecosystems. In tropical rain forests, dung beetle communities can be very rich in number of species and individuals, and they are known to be useful bioindicators of habitat disturbance. In contrast, very little is known about the organization of dung beetle communities in tropical dry forests. The aim of this study was to describe in detail the dung beetle community of a Mexican tropical dry forest and to assess the relative importance of rainfall seasonality and forest structure in affecting the temporal and spatial dynamics of this community. Dung beetles were captured with pitfall traps at the beginning of the rainy season, the middle of the rainy season, and the middle of the dry season, in two distinct forest types: deciduous forest (DF) and semideciduous forest (SDF) at the Estación de Biología Chamela. Both rainfall seasonality and forest structure affected the community organization of dung beetles. During both rainy periods, 14 species were captured, but only three during the dry season. Dung beetles captured during the dry season were only found in the SDF. When comparing the beginning and the middle of the rainy season, differences in abundance and guild structure were also observed between both periods and between forest types, but these differences were much less pronounced.  相似文献   

3.
Riparian forests provide important habitat for many wildlife species and are sensitive to landscape change. Among terrestrial invertebrates, dung beetles have been used to investigate the effects of environmental disturbances on forest structure and diversity. Since many studies demonstrated a negative response of dung beetle communities to increasing forest fragmentation, and that most dung beetle species had a more pronounced occurrence during warmest seasons, three hypotheses were tested: (1) Scarabaeinae richness, abundance, diversity and evenness are lower in thinner riparian zone widths than in wider widths during the warmest seasons; (2) Scarabaeinae richness and abundance are positively influenced by leaf litter coverage and height and canopy cover; and (3) Scarabaeinae composition varies with the reduction in riparian vegetation and among annual seasons. We selected four fragments with different riparian zone widths in three secondary streams in southern Brazil. In each fragment, four sampling periods were carried out seasonally between spring 2010 and winter 2011. We collected dung beetles using pitfall traps with two types of bait. We collected 1289 specimens distributed among 29 species. In spring and summer, dung beetle richness was higher in fragments with the widest riparian zone than in those with a thinner riparian zone, and it did not vary between fragments in fall and winter seasons. Dung beetle abundance did not differ among fragments with different riparian zone widths, but it was higher in spring and summer than fall and winter. Richness and abundance were positively influenced by leaf litter. While dung beetle diversity was higher in fragments with wider riparian zone widths than in those with thinner widths, the evenness was similar among fragments. Dung beetle composition differed between the fragments with the widest and thinnest riparian zones, and it also varied among the seasons. Our results suggest that decreased riparian zones affect negatively to dung beetle community structure in southern Brazil. Fragments with thinner riparian zones had lower beetle richness in warmest seasons and an altered community composition. In this sense, the dung beetles are potentially good indicators of riparian forest fragmentation since some species were indicators of a particular riparian zone width. From a conservation perspective, our results demonstrate that the new Brazilian Forest Code will greatly jeopardize not only the terrestrial and aquatic biodiversity of these ecosystems, but also countless other ecological functions.  相似文献   

4.
Acridid communities are sensitive to anthropogenic disturbance and the community structure of acridids plays vital role in functioning the forest ecosystem. They are potentially useful bioindicators for conservation planning and habitat disturbances. Acridid assemblages of three different habitat types based on degree of disturbance as follows five natural sites, five moderately disturbed sites and five highly disturbed sites in Chaupahari forest, West Bengal, India were studied. Diversity, abundance, equitability and species richness of acridid were observed in respect to undisturbed and disturbed habitats. The species richness and diversity of the sites tracked the intensity of disturbance, the greatest value being associated with the natural site followed by the moderately disturbed site and highly disturbed site. The highest species richness and diversity index indicate the suitable habitat for acridid population. Statistical analysis infers that different species show different behavior and the sites are also different in relation to different habitat types.  相似文献   

5.
In this paper we address the effects of anthropogenic disturbance and replacement of Brazilian Coastal sandy vegetation (restingas) on dung beetles communities. We sampled dung beetles in the four main vegetative physiognomies of Guriri Island, Espírito Santo State: forest restinga, restinga Clusia, disturbed restinga (from burning events), and pastures. We placed four sets of two pitfall traps (baited with horse and human dung) in four independent areas of each vegetation type, and collected 14,534 individuals of 13 dung beetle species. Neither log10 of individuals nor log10 of species richness were good predictors of restinga disturbance. However, a significant amount of variation in dung beetle abundance and richness could be explained by bait type. Ordination of these sites using hybrid multidimensional scaling revealed a gradient of habitat disturbance from undisturbed restinga samples to pasture. Dung beetle communities along this gradient demonstrated a complete turnover in species composition, from restinga‐specialists to invasive and generalists species respectively. This complete turnover signals the local extirpation of forest‐adapted species in disturbed and converted areas. Only a single dung beetle species in preserved restingas is protected by Brazilian law (Dichotomius schiffleri). Given the extent of the clearing of restinga habitat, the conservation status of dung beetles associated with restinga forest gives cause for concern.  相似文献   

6.
Dung beetles provide important ecosystem services in the habitats where they occur. The activity of dung beetles enhances soil nutrient cycling and increases the soil’s ability to absorb and hold water. Consequently, these beetles are particularly important in semi-arid environments. This study analyses the importance of remaining wooded habitat patches (bushland) for the survival of a diverse dung beetle fauna in an otherwise cultivated landscape in semi-arid Tanzania. Dung beetles were sampled by pitfall trapping in maize fields and bushland habitats. In total, 6037 dung beetles (Scarabaeidae: Scarabaeinae), representing 77 species from 25 genera, were collected. Many species, particularly amongst the ball-rollers, showed a clear preference for wooded patches, species richness being significantly higher in the bushland patches than in the cultivated sites. The number of trapped specimens in bushland was also considerably higher than that found in maize fields, although the differences were not significant. In conclusion, bushland fragments appear to have an important conservation value as to maintaining a high diversity and abundance of dung beetles, thereby enhancing the ecosystem services provided by these beneficial insects.  相似文献   

7.
Dung beetles (Scarabaeinae y Aphodiinae) were used to evaluate the effects of human activities in the area surrounding La Planada Natural Reserve, southwestern Colombia. During 1993 we monitored three habitats: primary and secondary forest, and open fields used for cattle grazing. A total of 55,296 trap/hours, evenly distributed among the three habitat types, captured 9,115 individuals (18 species, 11 genera). There were differences in species richness between habitats (F2,9 = 29.88; P < 0.001), an in number of individuals (F 2,9 = 36.22; P < 0.001). Collecting sites differed within habitats. Cluster analyses show that species composition differs between habitats with and without tree cover. Open areas act as barriers for movements of forest species. Differences between habitats and collecting sites may reflect high environmental heterogeneity, land use history of the sites or the influence of nearby disturbance. Some of the species found in open fields come from lower elevations and are usually associated with intense human disturbance. The proportion of digging and rolling species is similar in both primary and secondary forest, nocturnal species are more abundant; in open areas rolling species are absent and the number of diurnal species increases. We found no relationship between rainfall and species richness (r2 = 0.26; P = 0.41), nor between rainfall and number of individuals collected throughout the year (r2 = 0.07; P = 0.84). For all species the number of individuals collected decreased during dry season and during the onset of the rainy season.  相似文献   

8.
Philip Nyeko 《Biotropica》2009,41(4):476-484
Very little is known about the diversity of arthropods in the fast-disappearing fragments of natural forests in sub-Saharan Africa. This study investigated: (1) the influence of forest fragment characteristics on dung beetle species richness, composition, abundance, and diversity; and (2) the relationship between dung beetle assemblages and rainfall pattern. Beetles were sampled through 12 mo using dung baited pitfall traps. A total of 18,073 dung beetles belonging to three subfamilies and 45 species were captured. The subfamily Scarabaeinae was the most abundant (99%) and species rich (89%). Fast-burying tunnellers (paracoprids) were the most dominant functional group. Catharsius sesostris, Copris nepos , and Heliocopris punctiventris were the three most abundant species, and had the highest contributions to dissimilarities between forests. With few exceptions, dung beetle abundance, species richness, and diversity were generally higher in larger forest fragments (100–150 ha) than in smaller ones (10–50 ha) and the nature reserve (1042 ha). Forest fragment size had a highly significant positive relationship with beetle abundance, but only when the nature reserve is excluded in the analysis. Dung beetle abundance and species richness showed direct weak relationships with litter depth (positive) and groundcover (negative) but not tree density, tree species richness, and fragment isolation distance. Dung beetle abundance and species richness were strongly correlated with monthly changes in rainfall. Results of this study indicate that forest fragments on agricultural lands in the Budongo landscape, especially medium-sized (100–150 ha) ones, represent important conservation areas for dung beetles.  相似文献   

9.
In many regions of tropical Asia, the expansion of rubber monoculture plantations is conducted by replacement of natural forest areas and strongly affects biodiversity and movement patterns of wild species, including insects. Against this background, we conducted a study on selected insect groups (longhorn beetles, bark beetles, wild bees and hoverflies) along transects between rainforest patches, open uncultivated land and rubber plantation habitats in a region of Xishuangbanna (southern Yunnan, China), with the objectives to identify (a) movement directions and patterns of selected insect groups based on their abundances in modified Malaise traps in the different habitats, and (b) the role of remaining natural rainforest patches and rubber plantations, respectively, for insect diversity maintenance and conservation. The highest total numbers of species and individuals of bark beetles, longhorn beetles and wild bees were recorded from the natural forest edge compared to open land and rubber plantation edge. This result clearly indicates that the natural forest plays an important role in maintenance of these three insect groups. However, the highest number of hoverfly species and individuals was recorded from the open land sites, indicating the most relevant habitat type for this group of species. Overall, the lowest species and individual numbers were recorded from the rubber plantation edge, indicating the unsuitability of this habitat type for all insect groups considered. The distribution of species and individuals in the opposite trap sides along the transect indicates that longhorn beetles, bark beetles and wild bees show not only movements from the forest to the surrounding habitats, but also return back after encountering the unsuitable rubber plantation habitat. Bark beetle composition showed the relatively highest similarity between all trap sites and opposite trap sides among the insect groups considered, indicating a higher movement activity than the other groups. The four insect groups considered in this study show different movement modes between the forest, open land and rubber plantation, which are not the same for all taxa. Except for hoverflies, the natural forest was found to be the most important habitat for the maintenance of species diversity in the different land use types of the study area.  相似文献   

10.
The impacts of land use change on biodiversity and ecosystem functions are variable, particularly in fragmented tropical rainforest systems with high diversity. Dung beetles (Scarabaeinae) are an ideal group to investigate the relationship between land use change, diversity and ecosystem function as they are easily surveyed, sensitive to habitat modification and perform many ecosystem functions. Although this relationship has been investigated for dung beetles in some tropical regions, there has been no study assessing how native dung beetles in Australia's tropical rainforests respond to deforestation, and what the corresponding consequences are for dung removal (a key ecosystem function fulfilled by dung beetles). In this study we investigated the relationship between dung beetle community attributes (determined through trapping) and function (using dung removal experiments that allowed different dung beetle functional groups to access the dung) in rainforest and cleared pasture in a tropical landscape in Australia's Wet Tropics. Species richness, abundance and biomass were higher in rainforest compared to adjacent pasture, and species composition between these land use types differed significantly. However, average body size and evenness in body size were higher in pasture than in rainforest. Dung removal was higher in rainforest than in pasture when both functional groups or tunnelers only could access the dung. Increased dung removal in the rainforest was explained by higher biodiversity and dominance of a small number of species with distinct body sizes, as dung removal was best predicted by the evenness in body size of the community. Our findings suggest that functional traits (including body size and dung relocation behaviour) present in a dung beetle community are key drivers of dung removal. Overall, our results show that deforestation has reduced native dung beetle diversity in Australian tropical landscapes, which negatively impacts on the capacity for dung removal by dung beetles in this region.  相似文献   

11.
With the aim of determining what kind of landscape mosaics might sustainmaximum diversity and minimum species loss, dung beetles were sampled withbaited pitfall traps to compare species richness and species composition in atract of continuous forest, forest fragments and a habitat island consisting ofa mosaic of forest and arboreal crops in Los Tuxtlas, southern Mexico. Wecaptured 7332 dung beetles representing 33 species. Similar numbers of specieswere captured in the three habitats. However, 56% of individuals were capturedin the continuous forest, 29% in the mosaic habitat and 15% in the forestfragments. Eight species (Canthon femoralis,Copris laeviceps, Canthidium centrale,Onthophagus batesi, Deltochilumpseudoparile, O. rhinolophus, Canthonviridis vazquezae and Dichotomius satanus) accounted for 90% of thecaptures, but their relative dominance varied among habitats. A clear trend wasevident in the number of dung beetles captured in the dung processing guilds(rollers/tunnelers) as well as in the diurnal and nocturnal guilds, withcaptures decreasing from the continuous forest to the mosaic habitat to theforest fragments. A similar trend was detected in detection rates for medium andsmall size dung producing mammals. Species richness of forest fragments andmosaic habitat did not differ from that found in the continuous forest, butthese habitats differ significantly in species richness from isolated shaded andunshaded plantations, linear strips of vegetation, the forest–pasture edge andpastures according to rarefaction analysis. The co-occurrence of the continuousforest, the mosaic habitat and the cluster of forest fragments in closeproximity seems to be preserving a diverse assemblage of dung beetle species inthe local landscape.  相似文献   

12.
为探讨小兴安岭凉水自然保护区森林生态系统中地表鞘翅目成虫群落对不同人为干扰梯度的响应,于2015年7月、8月和10月分别对轻度干扰[原始阔叶红松林(KY)和谷地云冷杉林(YL)]、中度干扰[阔叶红松择伐林(ZF)和次生白桦林(BH)]及重度干扰[落叶松人工林(RL)和红松人工林(RHS)]的6个林型进行取样调查。结果表明:(1)整个采样周期共捕获地表鞘翅目成虫879只,隶属9科44物种;其中轻度干扰生境共捕获6科29种251只(KY捕获5科21种150只,YL捕获4科20种101只),中度干扰生境捕获6科27种276只(ZF捕获3科20种144只,BH捕获6科23种132只),重度干扰生境捕获6科29种352只(RL捕获4科22种232只,RHS捕获5科17种120只)。(2)7月和8月步甲科和葬甲科占据数量优势,10月步甲科和葬甲科成虫数量明显减少而隐翅虫科数量占优势;不同林型及不同干扰梯度地表鞘翅目成虫物种总数和总个体数于7、8、10月均表现为下降趋势,且群落多样性也呈不同程度下降。(3)林型和月份对地表鞘翅目成虫群落结构具有显著影响,干扰梯度对群落结构无显著影响;6个林型之间地表鞘翅目成虫个体数量具有显著差异,但在物种组成上无显著差异;不同干扰梯度间地表鞘翅目成虫个体数、物种数无显著差异,且随干扰梯度变化没有明显的梯度性规律;相似性系数和聚类分析表明,属于同一干扰梯度的两个林型没有表现出高度的相似性。本研究表明干扰梯度不是决定各林型间地表鞘翅目成虫群落多样性存在差异的主要原因,凉水森林生态系统地表鞘翅目成虫对不同干扰梯度的响应不符合中度干扰假说,林型和时间则是影响地表鞘翅目成虫群落组成的显著因素,本实验为地表生物多样性保护和森林生态系统管理提供数据支撑。  相似文献   

13.
This study examines the effects of deforestation, and the habitat value of coffee and regenerated forest for tropical dung beetles, a functionally significant insect group. Pitfall trapping was conducted at 22 sites in a montane region of central Peru during April and November/December of 2002. Sites included primary and secondary forest, shade-coffee, regenerated forest and open farms (mainly with banana, yuca, and corn). Ordination techniques indicated that beetle assemblages in forests, regenerated forest and coffee were relatively similar. However, assemblage compositions in forested areas differed even at similar altitudes under the influence of biogeographical factors, and the assemblages at disturbed sites (farms/coffee) were influenced by beetle dispersal from adjacent forests. During dry months, when beetle activity is low, communities at all habitat types tended to converge because fewer unique species were recorded in forests at that time and habitat/season generalists were dominant. Preliminary results also indicate that beetles in shady crops such as bananas responded to plant growth: as the banana canopy closed-in, producing more shade, open-habitat specialists retreated and forest/shade specialists invaded the sites. Chronosequence data at two of the sites demonstrate the rapid and dramatic changes in species richness and assemblage composition caused by deforestation. As forests become increasingly fragmented, and open farms continue to expand, dung beetles will become more restricted to the remaining fragments and reserves. In the mosaic landscape studied here, shade crops, like coffee, act as habitat and corridors for many dung beetle species. Small farm size and the consequent magnitude of edge effects, likely contributed to beetle movement between habitat types and determined the apparent generalist nature of many of the dung beetle species in this study.  相似文献   

14.
The loss of natural habitats is one of the main drivers of biodiversity decline. Anthropogenic land uses preserving biotic and abiotic conditions of the native ecosystem are more suitable to preserve the native biodiversity. In this study, we explored changes in species richness and composition in different land uses of the southern Atlantic forest, considering three independent factors: (1) canopy (presence–absence), (2) type of vegetation (native–exotic) and (3) livestock (presence–absence). We expected a gradient of response in the richness and composition of the native forest dung beetle community, from land uses preserving canopy and native vegetation to open land uses with exotic vegetation. Dung beetles were sampled in protected native forests and four land uses, using two potential food resources: human dung and carrion. The species richness and composition of each habitat, as well as differences in composition and the influence of factors over diversity, were then analyzed. As expected, our results showed that land uses preserving canopy and native vegetation maintain the dung beetle diversity of the native forest. Moreover, while the three factors analyzed influenced dung beetle diversity, canopy cover was the main driver of dung beetle diversity loss. The main conclusion of this study is that the conservation of canopy (either native or exotic) is determinant to preserve highly diverse dung beetle communities and subsequently, the ecological functions performed by this taxon. However, the ecophysiological mechanism behind the response of dung beetles to habitat disturbance is poorly understood.  相似文献   

15.
Identifying and making use of ecological indicators becomes an essential task in the conservation of tropical systems, mainly in fragmented landscapes where land use intensification and habitat loss are confounding factors in the detection of species’ responses to human-caused disturbance. We aimed to analyze the importance of anthropogenic land use and fragmentation-related effects on dung beetle (Coleoptera: Scarabaeinae) persistence according to the interior–exterior non-linear gradient (forest + matrix) in a fragmented Atlantic Forest landscape used to sugar cane production and cattle ranching/farming. We offer scores for a comprehensive set of community-level attributes, from beetle abundance to taxonomic and ecological composition (i.e. species body size), including a list of indicator species of different forest habitats and adjacent matrix. Dung beetles were surveyed by traps across forest interiors (i.e. core forest areas) and edges of a primary forest, small fragments, sugar cane fields and pastures in a total of 60 sites. Indicator analyses were conducted across the landscape, using two well-established methods (IndVal and SIMPER). Our results suggest that (1) cross-habitat taxonomic distinctness is associated with the presence of indicator species, (2) some species benefit or are dependent of open habitats created by human-disturbances, such as forest edges (e.g. Canthon nigripennis) and matrices (e.g. Canthon aff. piluliformis, Dichotomius nisus and Trichilum externepunctatum), (3) although landscape habitats exhibit reduced beta diversity, dung beetle assemblages are spatially organized in response to the presence of both forest habitats and matrix and fragment area, (4) forest interior supports beetle assemblages biased toward large-bodied species, (5) accordingly forest interior, forest edges and matrix support taxonomically distinct assemblages, both contributing to the bulk of species richness at landscape level, (6) the response of dung beetles to the interior–exterior non-linear gradient (i.e. forest edge + matrix) reveals a similar pattern regardless of the nature of the matrix, and (7) there is no within-habitat variation in beetle abundance and species richness associated with distance from forest edge. Given that there is a high number of forest-dependent or forest-interior specialist species (e.g. Aphengium aff. sordidum, Ateuchus aff. alipioi, Dichotomius mormon, Ontherus aff. erosus and Onthophagus aff. clypeatus) dung beetle persistence in human-modified landscape is highly dependent on the presence of core areas, although edge-affected and matrix habitats may be complementary. This information is essential to permit a better prospect for dung beetle persistence in human-modified landscapes as they continue to move toward edge-dominated landscapes with intensively managed matrices.  相似文献   

16.
Economic and biological consequences are associated with exotic ambrosia beetles and their fungal associates. Despite this, knowledge of ambrosia beetles and their ecological interactions remain poorly understood, especially in the oak-hickory forest region. We examined how forest stand and site characteristics influenced ambrosia beetle habitat use as evaluated by species richness and abundance of ambrosia beetles, both the native component and individual exotic species. We documented the species composition of the ambrosia beetle community, flight activity, and habitat use over a 2-yr period by placing flight traps in regenerating clearcuts and older oak-hickory forest stands differing in topographic aspect. The ambrosia beetle community consisted of 20 species with exotic ambrosia beetle species dominating the community. Similar percentages of exotic ambrosia beetles occurred among the four forest habitats despite differences in stand age and aspect. Stand characteristics, such as stand age and forest structure, influenced ambrosia beetle richness and the abundances of a few exotic ambrosia beetle species and the native ambrosia beetle component. Topographic aspect had little influence on ambrosia beetle abundance or species richness. Older forests typically have more host material than younger forests and our results may be related to the amount of dead wood present. Different forms of forest management may not alter the percent contribution of exotic ambrosia beetles to the ambrosia beetle community.  相似文献   

17.
Abstract:  We evaluated the preferred home ranges of three saproxylic beetle taxa along transects from the open field into the forest interior, and from the forest floor up to the canopy. By means of trap sets on metal scaffolds, vertical and horizontal strata were sampled across two types of forest edges: soft-edge ecotones with a gradual transition from the field into the forest and hard edges with an abrupt transition. The forest edges consisted of different strata such as herbaceous fringe, shrub belt, unmanaged forest and managed forest. The thermophilic buprestids were mainly caught in the open land (herbaceous fringe and agricultural land) and in the upper forest mantle. In general, the cerambycids were most abundant in the open land and the lower forest mantle, but a few species favoured the forest interior. The bark beetles (Scolytinae) were equally distributed in all habitats. These distribution patterns of the taxa were observed in terms of both species numbers and abundances. Each species with at least five collected specimens was assigned to one of the three habitat types: open land, forest mantle and forest interior. Of 74 ranked species, only 16% were prevalent in the forest interior and are thus considered to be true forest species. The other 84% of the species were attributed to open land or the forest mantle and are, therefore, forest edge species. Soft forest edges generally supported a higher species richness than hard edges, particularly as regards Cerambycidae and Scolytinae. In terms of Shannon diversity, soft edges tended to be more diverse in buprestids and cerambycids. Overall, the forest interior showed the least species richness and diversity. Therefore, for the conservation of saproxylic beetles, not only the amount and quality of dead wood is important, but also the presence and design of forest boundary structures.  相似文献   

18.
Traditional agro-pastoral practices are in decline over much of the Alps, resulting in the complete elimination of livestock grazing in some areas. Natural reforestation following pastoral abandonment may represent a significant threat to alpine biodiversity, especially that associated with open habitats. This study presents the first assessment of the potential effects of natural reforestation on dung beetles by exploring the relationships between the beetle community (abundance, diversity, species turnover and assemblage structure) and the vegetation stages of ecological succession following pastoral abandonment. A hierarchical sampling design was used in the montane belt of the Sessera Valley (north-western Italian Alps). Dung beetles were sampled across 16 sampling sites set in four habitat types corresponding to four different successional stages (pasture, shrub, pioneer forest and beech forest) at two altitudinal levels. The two habitats at the extremes of the ecological succession, i.e. pasture and beech forest, had the greatest effect on the structure of local dung beetle assemblages. Overall, dung beetle abundance was greater in beech forest, whereas species richness, Shannon diversity and taxonomic diversity were significantly higher in pasture, hence suggesting this latter habitat can be considered as a key conservation habitat. Forests and pastures shared a lower number of species than the other pairs of habitats (i.e. species turnover between these two habitats was the highest). The two intermediate seral stages, i.e. shrub and pioneer forest, showed low dung beetle abundance and diversity values. Local dung beetle assemblages were also dependent on season and altitude; early-arriving species were typical of pastures of high elevation, whereas late-arriving species were typical of beech forests. It is likely that grazing in the Alps will continue to decrease in the future leading to replacement of open habitats by forest. This study suggests therefore that, at least in the montane belt, reforestation may have potentially profound and negative effects on dung beetle diversity. Maintaining traditional pastoral activities appears to be the most promising approach to preserve open habitats and adjacent beech forests, resulting in the conservation of species of both habitats.  相似文献   

19.
In the tropical dry forest of the central Pacific coast of Mexico the pollination and reproductive success of the bombacaceous tree Ceiba grandiflora was negatively affected by habitat disruption. Two of the three bat species that function as effective pollinators for this species ( Glossophaga soricina and Musonycteris harrisoni) visited flowers found in trees in disturbed habitats significantly less than trees found in undisturbed habitats. A similar pattern was observed for the effective bat pollinator, Leptonycteris curasoae; however the difference was not significant. The three nectarivorous bats that functioned as effective pollinators of C. grandiflora also visited flowers to exclusively feed on pollen by biting or pulling off an anther (see Fig. S1 of Electronic Supplementary Material). The number of pollen grains deposited on stigmas from flowers in undisturbed areas was significantly greater than from flowers in disturbed habitats. The greater visitation rate and the greater number of pollen grains deposited on flowers from trees in undisturbed forest resulted in a significantly greater fruit set for trees in these areas. Our study demonstrates the negative effect that habitat disruption has on bat pollinators in tropical dry forest ecosystems and documents the negative consequences for the plants they pollinate.  相似文献   

20.
Pselaphine beetles (Coleoptera: Staphylinidae: Pselaphinae) are cosmopolitan, species‐rich, and yet poorly studied, particularly in the tropics. We sampled beetles in three types of primary forest and two types of disturbed forest habitats in eastern Thailand to assess the utility of pselaphine beetles as bioindicators of forest disturbance. We simultaneously measured leaf litter mass, soil moisture, soil acidity and canopy cover at each site to infer which environmental factors affect pselaphine beetle diversity and abundance. At each site, pselaphine beetles were extracted from ten 1 m2 samples of leaf litter and soil with Tullgren funnels. We sampled 1867 adult beetles representing six supertribes, 51 genera and 114 morphospecies; 7% of the genera and 92% of the species were undescribed. Forest types differed significantly in species richness, abundance, diversity and evenness. Primary forest had greater numbers of species and individuals, and higher diversity indices (H′). Teak plantation and secondary forest had substantially fewer individuals and species of pselaphine beetles. Species composition differed between primary and degraded forests. Canopy cover, soil moisture, and leaf litter mass positively correlated with beetle species richness and abundance. Leaf litter mass and soil moisture were the two most important factors affecting the diversity of pselaphine beetle assemblages. Among the 114 morphospecies collected, 43 morphospecies were specific to two or three habitats and 64 morphospecies were found only in a single habitat. Thus pselaphine beetles appear to have rather narrow habitat requirements and their presence/absence was correlated with environmental differences. These traits make pselaphine beetles a suitable bioindicator taxon for assessing forest litter diversity and monitoring habitat change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号