首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The objective of this study was to determine the heavy-metal concentrations (Cu, Pb, Zn, Ni, Mn, Fe, As, Cd, Cr, and Hg), evaluate the pollution levels, and determine the concentration of chlorophyll-a and organic carbon in the surface sediments of the Uzunçay?r Dam Lake, Tunceli, Turkey, between 2015 and 2016. In order to evaluate the effect of the pollution level in the study area, the contamination factor (CF), enrichment factor, potential ecological risk index, and pollution load index were used. The concentrations of the studied heavy metals were ordered as follows: Fe > Mn > Ni > Cr > Zn > Cu > Pb > As > Cd > Hg. The highest CF value was found for the Ni element among the studied heavy metals in the Dam Lake. Moreover, the highest CF mean value was found for the As contamination level. According to the toxicity analyses in the study area, the potential toxic effect of sediments was not at a very serious level.  相似文献   

2.
Xijiang River is the main surface water source in Guangxi province, South China. This study was carried out to investigate the distribution and potential ecological risks of seven heavy metals (Cu, Pb, Zn, As, Cd, Ni, and Cr) in surface sediments in Xijiang River basin. The results illustrated that the average concentrations of Zn, Pb, Cd, Cu, As, Ni, and Cr were 483.9, 207.5, 13.35, 23.50, 312.1, 28.75, and 50.62 mg/kg, respectively. Among them, Zn, Pb, Cd, and As were the major heave metals with concentration exceeding Class 3 threshold value of Chinese national standard. The result also showed samples with high ecological risk were mainly located in the upstream of Xijiang River basin as Diaojiang River, Hongshui River, Jincheng River, and Dahuan River. Based on the pollution risk assessment, the area manifested composite pollution of heavy metals in the sediments, signifying As, Pb, and Cd as the dominant heavy metals, and there were high ecological risk in sediments for these metals. According to correlation matrix and factor analysis (FA), the seven heavy metals were divided into three types/classes, Cd, as and Zn attributed by anthropogenic sources, natural sources corresponds for Ni and Cr while both natural and anthropogenic sources were attributed to Cu.  相似文献   

3.
湘西河流表层沉积物重金属污染特征及其潜在生态毒性风险   总被引:14,自引:0,他引:14  
朱程  马陶武  周科  刘佳  彭巾英  任博 《生态学报》2010,30(15):3983-3993
花垣河和峒河是湘西地区受到锰矿和铅锌矿生产影响严重的两条河流。通过表层沉积物采样分析了Cd、Pb、Cu、Ni、Cr、Zn和Mn的总量,根据BCR连续提取程序分析沉积物样品中重金属的地球化学赋存形态,采用内梅罗指数法和地积累指数法评价了沉积物重金属污染特征,根据重金属的富集程度探讨了重金属污染来源,采用淡水生态系统沉积物质量基准(SQGs,TEL/PEL)和毒性单位评价了花垣河和峒河沉积物中重金属元素的生态毒性风险。结果表明,花垣河和峒河绝大多数位点的表层沉积物中Cd、Pb、Cu、Ni、Cr、Zn和Mn的总量高于参照点,形成严重的复合污染,花垣河沉积物中重金属的污染水平明显高于峒河,但沿程变化规律不明显,而峒河沉积物中重金属的沿程变化较有规律,即上游含量低,中下游含量较高。两条河流表层沉积物中富集程度居前列的均为Cd、Pb、Zn和Mn。花垣河和峒河沉积物重金属污染主要来源于矿业生产所产生废渣和废水的点排放。在花垣河和峒河的大多数位点,Cd、Pb和Mn的形态具有共同特征,其生物可利用态均较大程度地超过生物不可利用态,而且Mn和Cd的生物可直接利用态所占比例远高于其它重金属,而Cu和Cr的生物可直接利用态所占比例很低。花垣河沉积物中Cd、Pb和Zn在所有位点极大地超过PEL,在峒河中下游,Cd、Pb、Ni和Zn超过PEL,具有较大的潜在生物毒性。除上游S1位点外,花垣河的其余各位点都具有明显的急性毒性,峒河中下游各位点具有明显的急性毒性,这些河段需要重点治理。  相似文献   

4.
为了解华南地区典型燃煤电厂周边表层土壤重金属空间分布特征,对韶关市燃煤电厂周边20处农田表层土壤中7种重金属(镍(Ni)、铜(Cu)、锌(Zn)、镉(Cd)、铅(Pb)、铬(Cr)及砷(As))的总量进行检测,并分析了其相应的空间分布规律,同时评估了周边土壤重金属的生态风险并分析其来源。结果表明:该燃煤电厂周边土壤中重金属Ni、Cu、Zn、Cd、Pb、Cr及As的平均含量分别是17.79、19.59、159.08、3.14、111.01、96.61 mg/kg和21.48 mg/kg,Cd、Pb污染情况突出,重金属Zn、Cd、Pb、Cr的分布与盛行风向密切相关。综合污染指数法表明,Cd、Pb及Zn处于重污染状态;潜在生态风险指数法表明,Cd处于严重潜在生态风险状态;地累积指数法表明,Ni、Cu整体处于无污染状态,Cd整体处于高污染状态。多种统计方法表明,Zn、Cd、Pb及Cr受燃煤电厂影响明显,Cu、As的来源不仅受燃煤电厂等工业的影响,还与该地区农业灌溉用水密切相关,Ni的分布最为均匀,受自然因素影响明显。  相似文献   

5.
Abstract

The distribution, contamination status, and ecological risks of heavy metals in Tahaddart estuary were investigated. 24 surface sediment samples and two cores were collected and analyzed for major (Al and Fe), heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn), and grain size composition. The heavy metals assessment was carried out using different environmental indices. The results indicated that the spatial distribution patterns of Al, Fe, and Zn were mainly determined by the distribution of the finer grained fraction (<63?μm) in the sediment. In contrast, As, Cd, Cr, Cu, Ni, and Pb concentrations were controlled by anthropogenic activities (vehicular traffic from Highway Bridge and thermal power plant). The distribution of heavy metals in sediment cores showed an upward enrichment in heavy metals with high concentration found in the uppermost may related to the increasing in human activities. The pollution indexes confirmed that the Tahaddart estuary sediment was considerably to high contaminated by heavy metals near to different anthropogenic inputs. Similarly, the potential ecological risk index and the biological risk index present 21% probability of toxicity posing potential risk to the aquatic organisms. These results provide basic information that can be used to protect and improve the quality of this ecosystem.  相似文献   

6.
The distribution of Cd, Pb, Ni, Cr, Cu, Mn, Fe, and Zn in sediment and surface water, and some physico-chemical characteristics of Orogodo river sediments, were evaluated. The sediment pH ranged from 5.1–7.3; conductivity values ranged from 34.5 to 389.0 μScm?1. Total nitrogen values ranged from 0.06–0.10%, NH3-N values ranged from 0.25–0.44 mgkg?1, percent total organic carbon ranged from 0.21–1.68%, and total phosphorus values ranged from 0.004–0.02% for dry and wet seasons. The sand fraction consists of 87–95%, silt fractions ranged from 0–2%, and clay fraction between 4–13%. The mean concentrations of metals (dry weight basis) in the streambed sediments ranged from 1.92–17.37 mgkg?1 for Cu, 0.98–4.78 mgkg?1 for Ni, 0.01–32.98 mgkg?1 for Mn, 353.22–2045.64 mgkg?1 for Fe, 69.96–100.16 mgkg?1 for Zn, 0.21–1.32 mgkg?1 for Cr, and Cd was less than 0.001 mgkg?1 for wet and dry seasons. The mean concentrations of metals in the surface water ranged between 0.01–0.05–0.05 mg/L for Cu, nd-0.11 mg/L for Ni, 0.001–0.31 mg/L for Pb, 0.001–1.82 mg/L Mn, 0.01–3.52 mg/L for Fe, 0.16–0.61 mg/L for Zn, nd-0.007 mg/L for Cr, and <0.001 mg/L for Cd. Based on principal component analysis, two main sources of metals in the Orogodo River can be identified: (i) Cr, Cu, Pb, and Fe are mainly derived from industrial sources; (ii) Mn, Zn, and Ni associated with traffic activities. No element examined had a contamination/pollution index value greater than unity (pollution ranges). This implies that the multiple pollution indices obtained from the analysis showed that Orogodo River sediments were not polluted with heavy metals.  相似文献   

7.
于2011年8月采集了珠江口桂山岛海域12个站点的表层沉积物, 对沉积物中重金属的含量进行了测定。结果表明, 桂山岛沉积物中重金属含量与国内外港湾相比属于中等水平, Pb、Cr、Ni、Cu、Zn、Mn平均含量分别为40.06、31.29、14.17、30.67、100.18、599.76 mg/kg。富集系数法和 Hakanson潜在生态风险指数法评价表明:桂山岛沉积物各重金属元素的富集顺序为Cu﹥Pb﹥Zn﹥Mn﹥Cr﹥Ni, 其中Cu、Pb、Zn和Mn富集系数大于1;该海域重金属潜在生态风险总体上处于低水平, 从空间上看, S11危害最为严重。进一步通过主成分分析研究沉积物中重金属的来源, 发现前2个主成分贡献率分别为44.38%、42.61%, 表明重金属主要有2个来源:工业和生活污水排放、岩石的自然风化与侵蚀过程。  相似文献   

8.
Aquatic ecosystems in eastern China are suffering threats from heavy metal pollution because of rapid economic development and urbanization. Heavy metals in surface sediments were determined in five different aquatic ecosystems (river, reservoir, estuary, lake, and wetland ecosystems). The average Cd, Cr, Cu, Ni, Pb, and Zn concentrations were 0.716, 118, 37.3, 32.7, 56.6, and 204 mg/kg, respectively, and the higher concentrations were mainly found in sediment samples from river ecosystems. Cd was the most anthropogenically enriched pollutant, followed by Zn and Pb, indicated by enrichment factors >1.5. According to consensus-based sediment quality guidelines, potential ecological risk indices, and risk assessment codes, all five types of aquatic ecosystems were found to be polluted with heavy metals, and the most polluted ecosystems were mainly rivers. Cd was the most serious pollutant in all five aquatic ecosystems, and it was mainly found in the exchangeable fraction (about 30% of the total Cd concentration, on average). The results indicate that heavy metal contamination, especially of Cd, in aquatic ecosystems in eastern China should be taken into account in the development of management strategies for protecting the aquatic environment.  相似文献   

9.
某农药工业园区周边土壤重金属含量与风险评价   总被引:11,自引:0,他引:11  
Shi NN  Ding YF  Zhao XF  Wang QS 《应用生态学报》2010,21(7):1835-1843
以苏南某农药工业园区周边30km2区域为研究区,采用同心圆法采集土壤样品183个,分析了农药工业园区周边土壤Cd、Cr、Cu、Ni、Pb、Zn、Hg和As8种重金属含量、空间变异性、来源及潜在风险.结果表明:以自然背景值为评价标准,研究区表层土壤Hg、Cu、Cd和Pb平均含量超过自然背景值,其中Hg和Cu含量最高;以国标二级标准为评价标准,土壤Cd、Cr、Ni、Pb、Zn、As6种重金属的单项污染指数平均值均小于1,Hg和Cu分别为1.59和1.05.在农药工业园区周边土壤重金属污染较重的东南方向和西北方向,随着与园区距离的增加,土壤Cd、Ni、Pb、Cr、As、Hg、Zn和Cu含量先上升、后下降、再趋于平稳.通过分析农药工业园区周边土壤重金属综合污染指数发现,距离园区约200~1000m周边土壤污染的风险较大,而1000m以外逐渐达到安全范围.利用地统计学和GIS相结合进行分析发现,8种重金属污染指数有明显的空间变异.依据相关分析与主成分分析结果推测,Zn、Ni、Cr、Pb和As主要来源于成土母质,而Hg、Cu和Cd主要与人类活动有关.  相似文献   

10.
A total of 195 farmland soil samples were collected in Yanqi Basin, Xinjiang, northwest China, and the concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn were analyzed for their concentrations and pollution levels using the Nemerow comprehensive index. The health risk assessment model introduced by USEPA was utilized to evaluate the human health risks of heavy metals. Results indicated that the average concentrations of these seven metals were lower than the allowed soil environmental quality standards of China, while the average concentrations of Cd, Cr, Ni, Pb and Zn exceeded the background values of irrigation soils in Xinjiang. The average contamination factor (CF) for Pb indicated the heavy pollution, whereas the CF for Cd, Zn, Ni, Cu and Cr indicated the moderate pollution. The average PLI of heavy metals indicated the low pollution. The non-carcinogenic hazard index were below the threshold values, and the total carcinogenic risks due to As and Cr were within the acceptable range for both children and adults. As and Pb were the main non-carcinogenic factors, while As was the main carcinogenic factor in the study area. Special attentions should be paid to these priority control metals in order to target the lowest threats to human health.  相似文献   

11.
新疆焉耆盆地辣椒地土壤重金属污染及生态风险预警   总被引:5,自引:0,他引:5  
从新疆加工辣椒主产地(焉耆盆地)采集105个辣椒地典型土壤样品,测定其中As、Cd、Cr、Cu、Mn、Ni、Pb和Zn等8种重金属元素的含量。采用污染负荷指数(Pollution load index,PLI)、潜在生态风险指数(Potential ecological risk index,RI)和生态风险预警指数(Ecological risk warning index,I_(ER))对辣椒地土壤重金属污染及生态风险进行评价。结果表明:(1)焉耆盆地辣椒地土壤Cd、Cr、Ni、Pb和Zn含量的平均值分别超出新疆灌耕土背景值的1.65、1.40、1.32、3.21、6.42倍。辣椒地土壤Pb和Zn呈现重度污染,Cd、Cr和Ni轻度污染,As、Mn和Cu无污染。(2)土壤PLI平均值为1.40,呈现轻度污染。各重金属元素单项生态风险指数从大到小依次为:Cd、Ni、As、Cu、Pb、Cr、Zn。土壤RI平均值为18.40,属于轻微生态风险态势,IER平均值为-4.78,属于无警态势;博湖县辣椒地污染水平、潜在生态风险程度与生态风险预警等级最高,焉耆县污染水平、潜在生态风险程度与生态风险预警等级最低。(3)辣椒地土壤As、Cd、Pb与Zn主要受到人类活动的影响,Cr、Cu、Mn和Ni主要受到土壤地球化学作用的控制。Cd是焉耆盆地辣椒地生态风险等级最高的重金属元素,研究区农业生产过程中要防范Cd的污染风险。  相似文献   

12.
Concentrations of aluminium, cadmium, chromium, cobalt, copper, iron, lead, nickel and zinc were determined in surface water, benthic sediments, and the gills, liver and stomach muscle tissues of Oreochromis niloticus and Clarias gariepinus in peri-urban lakes Chivero and Manyame, Zimbabwe. Five sites were sampled in each lake once per month in November 2015, February, May, August and November 2016. Pollution load index detected no metal contamination, whereas the geo-accumulation index reflected heavy to extreme sediment pollution, with Fe, Cd, Zn, Cr, Ni and Cu present in both lakes. Significant spatial temporal variations were detected for Al, Cr, Cu and Pb across sites within and between the two lakes. High Fe, Al and Cr concentrations in water and sediments in lakes Chivero and Manyame derive from geogenic background sources in addition to anthropogenic loads and intensity. Elevated concentrations of Al, Pb, Cu, Cd, Fe and Zn detected in gills, liver and stomach tissue of catfish corroborate concentrations in water and sediments, and pose the highest ecological and health risk for hydrobionts in lakes Chivero and Manyame. Contiguity of peri-urban lakes exposes them to similar threats, necessitating creative water management strategies, which ensure ecological continuity.  相似文献   

13.
To identify sources of heavy metal(loid) (HM) contamination in agricultural soils of Huzhou, surface soil samples were sampled from 89 different agricultural regions in 2012. Concentrations of heavy metal(loid)s, along with pH, total phosphorus (TP), total nitrogen (TN), and soil organic matter (SOM), were determined. Ecological risk was then assessed using a modified Hakanson ecological risk index, and the sources of contamination were determined using principal component analysis (PCA). Mean concentrations of heavy metal(loid)s were 10.26, 23.21, 83.75, 22.81, 0.25, 61.86, 33.03, and 0.15 mg kg?1 for As, Cu, Zn, Ni, Cd, Cr, Pb, and Hg, respectively. Cu, Zn, Ni, Cr, Cd, Hg, and Pb were correlated positively with TP and there were obvious positive correlations among Cu, Zn, Ni, Cr, and Cd. Risk index (RI) values varied from 39 to 1246 with a mean value of 137. Enrichment of Pb, Zn, Cu, and especially Cd can be attributed to excessive use of nitrogen and phosphorus fertilizers containing heavy metals, as well to surface irrigation and natural soil formation. While the ecological risk of most agricultural soils in Huzhou is low, it is recommended that the use of phosphate and nitrogen fertilizers be restricted and production technology be improved to reduce the heavy metal(loid) concentrations. Results suggest that the Chinese environmental quality standard for soil should be revised to better address heavy metal(loid) contamination.  相似文献   

14.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

15.
赣江上游沉积物重金属空间分布及污染特征   总被引:1,自引:0,他引:1  
为了解赣江上游表层沉积物重金属污染特征,采集赣江上游38个样品,采用电感耦合等离子体质谱仪(ICP-MS,Agilent 8800)分析沉积物中重金属含量,结合内梅罗综合污染指数法、地累积指数法、主成分分析及沉积物质量基准等研究赣江上游沉积物中重金属污染程度,分析污染物可能的来源及评价其存在的生态风险。结果表明:赣江上游沉积物中W、Cr、Mn、Cu、Zn、As、Cd、Hg、Pb等9种重金属的平均含量分别为12.30、4.40、999.84、9.72、293.81、47.66、2.85、1.34、63.68 mg·kg-1;除Cr和Cu外,其余7种重金属的平均值均超过江西省土壤背景值。内梅罗综合污染评价表明,赣江上游表层沉积物中47.37%的采样点呈严重污染,28.95%采样点污染明显,其中污染程度章水段>桃江段>贡江段;地积累指数法显示,Mn、As、W、Pb呈轻度污染,Cd和Hg呈中度或偏重度污染;主成分分析显示,As、W、Hg、Pb具有相似的污染源,Cr和Mn具有相似的污染源;沉积物质量基准分析表明,对底栖生物可能产生毒性效应的重金属主要是Cd和Hg,主要分布在章水段和桃江段。  相似文献   

16.
The purpose of this study was to determine the contamination level, distribution, health risk and potential sources of Cr, Cd, Pb, Zn, Cu, Ni and As in 66 topsoil samples from industrial areas in Bandar Abbas County. The geoaccumulation index, pollution index and pollution load index were calculated to assess the pollution level in the industrial soils. The hazard index and carcinogenic risk were used to assess human health risk of heavy metals. Results showed that the contamination levels of heavy metals were in the descending order of Cu> Cd> Pb> Zn> As> Ni> Cr. Moreover, based on principal component analysis, Cd, Zn, Cu, and Pb originated mainly from anthropogenic sources, including power plants, oil and gas refinery, steel and zinc production factories and municipal waste landfills. For non-carcinogenic effects, hazard index of studied metals decreased in the order of Cr> As> Cd> Pb> Ni > Cu> Zn. Arsenic, chromium and cadmium were regarded as the priority pollutants. Carcinogenic risks due to Cd and As in suburban soils were within tolerable risk to human health; however, children faced more health risk in their daily life than adults via their unconscious ingestion and dermal contact pathway.  相似文献   

17.
为探讨油茶(Camellia oleifera)产地土壤和油茶果实中金属元素分布和富集特征,在油茶果实成熟期,对浙江5个油茶产地土壤及油茶果实中金属元素进行污染分析和富集能力评价。结果表明,浙江油茶产地土壤中Pb、Cr、Cd、As、Hg、Ni、Cu和Zn含量低于农用地土壤污染风险筛选值,综合污染等级为安全。个别产区常山县土壤中As、Ni、Cu和江山县土壤中Pb、Cr、Fe含量显著高于其他产地;常山和建德土壤中Cd单因子污染指数分别为0.93和0.81,处于污染警戒线。Cr、Ni、Cu、Zn主要分布在油茶籽中,Hg主要分布在壳中,Pb、Cd、As、Fe和Mn主要分布在青皮中。油茶籽中Cu、Fe、Mn的富集系数大于0.4,吸收能力强,Ni、Zn的富集系数小于0.4,具有一定吸收能力,Pb、Cr、Cd、As和Hg的富集系数小于0.1,吸收能力低;壳中Cu、Mn的富集系数大于0.4,吸收能力强,Fe的富集系数小于0.4,具有一定吸收能力,Pb、Cr、Cd、As、Hg、Ni、Zn的富集系数小于0.1,吸收能力低;青皮中Cu、Fe、Mn的富集系数大于0.4,吸收能力强,Pb、Cr、Cd、As、Hg、Ni、Zn的富集系数小于0.1,吸收能力低。浙江油茶主产区土壤质量安全,适合油茶种植。油茶果实对Cu、Fe、Mn有一定富集能力,对Pb、Cr、Cd、As和Hg无富集能力。  相似文献   

18.
Due to rapid industrialization and urbanization during the last two decades, contamination of urban agricultural soils by heavy metals is on an increase all over China. In this study, fifty soil samples were collected from urban vegetable fields in a chemical industrial area and non chemical industrial area in Jilin City to investigate the heavy metal pollution level. The mean Pb, Cr, Cu, Ni, Zn, and Cd contents (30.84, 65.65, 26.41, 23.07, 135.14, and 0.1434 mg kg?1 dry weight, respectively) in the urban vegetable soils were higher than their corresponding natural background values. The principal component analysis (PCA) was performed to identify the possible sources of metal contamination in the study area. The results indicated that Cu and Zn were mainly from industrial activities, while Pb and Cd were derived from traffic activities and agricultural activities, and Cr and Ni tended to be from parent material. The distribution of comprehensive pollution index values showed that Pb, Cr, Cu, Ni, Zn, and Cd concentrations in most of the agricultural fields did not exceed the baseline values affecting the safety of agricultural production and human health according to the soil environmental quality standard of China, indicating an insignificant contamination of these metals in Jilin City.  相似文献   

19.
对防城港临时性海洋倾倒区表层沉积物重金属的含量和分布进行了对比分析,并采用污染指数法和Hakanson潜在生态风险指数法对其重金属的污染特征及潜在生态风险程度进行了评价。结果表明,倾倒区沉积物Hg、Pb、As和Zn的含量显著性升高;总体污染程度为中等污染,各重金属元素的污染程度由高到低排序依次为As(3.59)>Hg(2.19)>Pb(1.42)>Zn(1.20)>Cu(1.05)>Cd(0.91),其中As是主要污染因子;该海域表层沉积物重金属总体潜在生态风险程度为中等,各重金属元素的潜在生态风险程度由高到低排序依次为Hg(87.74)>As(35.89)>Cd(27.27)>Pb(7.08)>Cu(5.23)>Zn(1.20),其中Hg为主要潜在生态风险因子。  相似文献   

20.
To understand the effect of intense human activities in suburbs on environmental quality, we obtained 758 measurements of the heavy metals in certain farmland soils of the Beijing suburbs. Multivariate statistical analysis and geostatistical analysis were used to conduct a basic analysis of the heavy metal concentrations, the distribution characteristics and the sources of pollution of the farmland soils in these suburbs. The results showed the presence of eight heavy metals in the agricultural soils at levels exceeding the background values for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. In particular, all the measured Cr concentrations exceeded the background value, while As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were present at 1.13, 1.68, 1.95, 1.43, 1.63, 0.79, 0.92 and 1.36 times their background values, respectively. The results of correlation, factor and spatial structure analyses showed that Cd, Cu, Pb and Zn were strongly homologous, whereas Cr and Hg showed a degree of heterogeneity. The analysis further indicated that in addition to natural factors, Cd, Cu, Pb and Zn in the soil were mainly associated with distribution from road traffic and land use status. Different agricultural production measures in the various areas were also important factors that affected the spatial distribution of the soil Cr concentration. The major sources of Hg pollution were landfills for industrial waste and urban domestic garbage, while the spatial distribution of As was more likely to be a result of composite pollution. The regional distribution of the heavy metals indicated that except for Cr and Hg, the high heavy metal levels occurred in districts and counties with higher organic matter concentrations, such as the northwestern and southeastern suburbs of Beijing. There was no significant Ni pollution in the agricultural soils of the Beijing suburbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号