首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary The effects of stepwise concentration changes of K+ and HCO 3 in the basolateral solution on the basolateral membrane potential (V bl) of proximal tubule cells of the doubly-perfusedNecturus kidney were examined using conventional microelectrodes. Apparent transference numbers were calculated from changes inV bl after alterations in external K+ concentration from 1.0 to 2.5mm (t K, 1.0–2.5), 2.5 to 10, and in external HCO 3 concentration (at constant pH) from 5 to 10mm (t HCO3, 5–10), 10 to 20, or 10 to 50.t K, 2.5–10 was 0.38±0.02 under control conditions but was sharply reduced to 0.08±0.03 (P>0.001) by 4mm Ba++. This concentration of Ba++ reducedV bl by 9±1 mV (at 2.5 external K+). Perfusion with SITS (5×10–4 m) for 1 hr hyperpolarizedV bl by 10±3 mV and increasedt K, 2.5–10 significantly to 0.52±0.01 (P<0.001). Ba++ application in the presence of SITS depolarizedV bl by 22±3 mV. In control conditionst HCO3, 10–50 was 0.63±0.05 and was increased to 0.89±0.07 (P<0.01) by Ba++ but was decreased to 0.14±0.02 (P<0.001) by SITS. In the absence of apical and basolateral chloride, the response ofV bl to bicarbonate was diminished but still present (t HCO3, 10–20 was 0.35±0.03). Intracellular pH, measured with liquid ion-exchange microelectrodes, increased from 7.42±0.19 to 7.57±0.17 (P<0.02) when basolateral bicarbonate was increased from 10 to 20mm at constant pH. These data show that the effects of bicarbonate onV bl are largely independent of effects on the K+ conductance and that there is a significant current-carrying bicarbonate pathway in the basolateral membrane. Hence, both K+ and HCO 3 gradients are important in the generation ofV bl, and their relative effects vary reciprocally.  相似文献   

2.
Summary The purpose of this study was to characterize the basolateral membrane of the S3 segment of the rabbit proximal tubule using conventional and ion-selective microelectrodes. When compared with results from S1 and S2 segments, S3 cells under control conditions have a more negative basolateral membrane potential (V bl=–69 mV), a higher relative potassium conductance (t K=0.6), lower intracellular Na+ activity (A Na=18.4mm), and higher intracellular K+ activity (A K=67.8mm). No evidence for a conductive sodium-dependent or sodium-independent HCO 3 pathway could be demonstrated. The basolateral Na–K pump is inhibited by 10–4 m ouabain and bath perfusion with a potassium-free (0-K) solution. 0-K perfusion results inA Na=64.8mm,A K=18.5mm, andV bl=–28 mV. Basolateral potassium channels are blocked by barium and by acidification of the bathing medium. The relative K+ conductance, as evaluated by increasing bath K+ to 17mm, is dependent upon the restingV bl in both S2 and S3 cells. In summary, the basolateral membrane of S3 cells contains a pump-leak system with similar properties to S1 and S2 proximal tubule cells. The absence of conductive bicarbonate pathways results in a hyperpolarized cell and larger Na+ and K+ gradients across the cell borders, which will influence the transport properties and intracellular ion activities in this tubule segment.  相似文献   

3.
Summary The ability of early proximal tubule cells of theNecturus kidney to regulate volume was evaluated using light microscopy, video analysis and conventional microelectrodes.Necturus proximal tubule cells regulate volume in both hyperand hyposmotic solutions. Volume regulation in hyperosmotic fluids is HCO 3 dependent and is associated with a decrease in the relative K+ conductance of the basolateral cell membrane and a decrease in the resistance ratio,R a /R bl . Volume regulation in hyposmotic solutions is also dependent upon the presence of HCO 3 but is also inhibited by 2mm Ba2+ in the basolateral solution. Hyposmotic regulation is accompanied by an increase in the relative K+ conductance of the basolateral cell membrane and an increase inR a /R bl . Neither hypo- nor hyposmotic regulation have any affect on the depolarization of the basolateral cell membrane potential induced by HCO 3 removal. We conclude that volume regulation in the early proximal tubule of the kidney involves both HCO 3 -dependent transport systems and the basolateral K+ conductance.  相似文献   

4.
Summary In a previous study we presented evidence that chloride transport across the basolateral membrane inNecturus proximal tubule cells occurs predominantly via exchange for both Na+ and HCO 3 . In this study the regulation of intracellular chloride was further examined in the doubly-perfused kidney preparation using conventional and chloride-sensitive microelectrodes. Application of hypertonic basolateral solutions containing 80mm raffinose stimulated an efflux of chloride such that chloride activity remained unchanged at control levels. Membrane potential did not change in these experiments. Inhibition of Cl exit across the basolateral cell membrane by removal of either HCO 3 or Na+ from the perfusion solution resulted in a significant increase in intracellular chloride activity,a Cl i , when basolateral osmolarity was raised. Hypertonic basolateral solutions also produced a significant rise ina Cl i in the presence of SITS.This study provides further evidence that chloride is transported across the basolateral cell membrane in exchange for both Na+ and HCO 3 . Since this exchange mechanism is activated in response to hypertonic solutions, these studies suggest a functional role for this exchanger in the regulation ofa Cl i in theNecturus proximal tubule cell during volume changes.  相似文献   

5.
Summary Enhanced cellular cAMP levels have been shown to increase apical membrane Cl and HCO 3 conductances in epithelia. We found that the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine (IBMX) increases cAMP levels inNecturus gallbladder. We used conventional open-tip and double-barreled Cl-selective microelectrodes to study the effects of IBMX on membrane conductances and intracellular Cl activities in gallbladders mounted in a divided chamber and bathed with Ringer's solutions at 23°C and pH 7.4. In HCO 3 -free media, 0.1mM IBMX added to the mucosal medium depolarized the apical membrane potentialV a , decreased the fractional resistanceF R , and significantly reduced intracellular Cl activity (a Cl i ). Under control conditions,a Cl i was above the value corresponding to passive distribution across the apical cell membrane. In media containing 25mM HCO 3 , IBMX caused a small transient hyperpolarization ofV a followed by a depolarization not significantly different from that observed in HCO 3 -free Ringer's. Removal of mucosal Cl, Na+ or Ca2+ did not affect the IBMX-induced depolarization inV a . The basolateral membrane ofNecturus gallbladder is highly K+ permeable. Increasing serosal K+ from 2.5 to 80mM, depolarizedV a . Mucosal IBMX significantly reduced this depolarization. Addition of 10mM Ba2+, a K+ channel blocker, to the serosal medium depolarizedV a and, essentially, blocked the depolarization induced by IBMX. These results indicate that mucosal IBMX increases apical HCO 3 conductance and decreases basolateral K+ conductance in gallbladder epithelial cells via a cAMP-dependent mechanism. The latter effect, not previously reported in epithelial tissues, appears to be the major determinant of the IBMX-induced depolarization ofV a .  相似文献   

6.
Summary Cellular impalements were used in combination with standard transepithelial electrical measurements to evaluate some of the determinants of the spontaneous lumen-positive voltage,V e , which attends net Cl absorption,J Cl net , and to assess how ADH might augment bothJ Cl met andV e in the mouse medullary thick ascending limb of Henle microperfusedin vitro. Substituting luminal 5mm Ba++ for 5mm K+ resulted in a tenfold increase in the apical-to-basal membrane resistance ratio,R c /R bl , and increasing luminal K+ from 5 to 50mm in the presence of luminal 10–4 m furosemide resulted in a 53-mV depolarization of apical membrane voltage,V a . Thus K+ accounted for at least 85% of apical membrane conductance. Either with or without ADH. 10–4 m luminal furosemide reducedV e andJ Cl net to near zero values and hyperpolarized bothV a andV bl , the voltage across basolateral membranes; however, the depolarization ofV bl was greater in the presence than in the absence of hormone while the hormone had no significant effect on the depolarization ofV a , Thus ADH-dependent increases inV b were referable to greater depolarizations ofV bl in the presence of ADH than in the absence of ADH 68% of the furosemide-induced hyperpolarization ofV a was referable to a decrease in the K+ current across apical membranes, but, at a minimum, only 19% of the hyperpolarization ofV bl could be accounted for by a furosemide-induced reduction in basolateral membrane Cl current. Thus an increase in intracellular Cl activity may have contributed to the depolarization ofV bl during net Cl absorption, and the intracellular Cl activity was likely greater with ADH than without hormone. Since ADH increases apical K+ conductance and since the chemical driving force for electroneutral Na+,K+,2Cl cotransport from lumen to cell may have been less in the presence of ADH than in the absence of hormone, the cardinal effects of ADH may have been to increase the functional number of both Ba++-sensitive conductance K+ channels and electroneutral Na+,K+,2Cl cotransport units in apical plasma membranes.  相似文献   

7.
Summary The ionic dependencies of the transepithelial and intracellular electrical parameters were measured in the isolated frog cornea. In NaCl Ringer's the intracellular potential differenceV sc measured under short-circuit conditions depolarized by nearly the same amount after either increasing the stromal-side KCl concentration from 2.5 to 25mm or exposure to 2mm BaCl2 (K+ channel blocker). With Ba2+ the depolarization of theV sc by 25mm K+ was reduced to one-quarter of the control change. If the Cl-permselective apical membrane resistanceR o remained unchanged, the relative basolateral membrane resistanceR i, which includes the lateral intercellular space, increased at the most by less than twofold after Ba2+. These effects in conjunction with the depolarization of theV sc by 62 mV after increasing the stromal-side K+ from 2.5 to 100mm in Cl-free Ringer's as well as the increase of the apparent ratio of membrane resistances (a=R o/Ri) from 13 to 32 are all indicative of an appreciable basolateral membrane K+ conductance. This ratio decreased significantly after exposure to either 25mm K+ or Ba2+. The decline ofR o/Ri with 25mm K+ appears to be anomalous since this decrease is not consistent with just an increase of basolateral membrane conductance by 25mm K+, but rather perhaps a larger decrease ofR o thanR iAlso an increase of lateral space resistance may offset the effect of decreasingR i with 25mm K+. In contrast,R o/Ri did transiently increase during voltage clamping of the apical membrane potential differenceV o and exposure to 25mm K+ on the stromal side. This increase and subsequent decrease ofR o/Ri supports the idea that increases in stromal K+ concentration may produce secondary membrane resistance changes. These effects onR o/Ri show that the presence of asymmetric ionic conductance properties in the apical and basolateral membranes can limit the interpretative value of this parameter. The complete substitution of Na+ withn-methyl-glucamine in Cl-free Ringer's on the stromal side hyperpolarized theV sc by 6 mV whereas 10–4 m ouabain depolarized theV sc by 7 mV. Thus the basolateral membrane contains K+, Na+ and perhaps Cl pathways in parallel with the Na/K pump component.  相似文献   

8.
Cyclic AMP and intracellular ionic activities innecturus gallbladder   总被引:2,自引:0,他引:2  
Summary Open-tip and liquid ion-exchanger microelectrodes were used to study the effects of cAMP (6mm, added to the serosal medium) on apical membrane potential (E m ) and intracellular sodium, potassium, and chloride activities (a Na i ,a K i ,a Cl i ) inNecturus gallbladder under open-circuit conditions. Transepithelial potential difference (E Tr ) was also measured. In the presence of cAMP,a Cl i fell from about 1.5 times its equilibrium value to a level that corresponded to electrochemical equilibrium across the apical and basolateral cell membranes. Under these conditionsa Na i decreased anda K i increased,E m was unchanged andE Tr increased from virtually zero to a small but significant serosal positive value. The cAMP-induced increase ina K i was abolished when Cl-free incubation media were used. Addition of the Ca++-ionophore A23187 (0.5 g/ml) to the serosal medium had no effect onE m ,E Tr , ora Cl i . When A23187 was added to the mucosal medium,E m and the basolateral membrane potential hyperpolarized by about 20 mV and an increase in the outwardly directed electrochemical driving force for Cl was observed. These results indicate that cAMP inhibits coupled transapical Na–Cl entry into epithelial cells ofNecturus gallbladder and suggest that this inhibition may not be mediated by an increase in intracellular Ca++ concentration.  相似文献   

9.
Summary The effects of short (1 sec) and long (1 min) transepithelial current clamps on membrane voltages and resistances ofNecturus gallbladder were investigated. Transepithelial and cell membrane current-voltage relationships determined from 1-sec clamps revealed that: a) depolarization of the apical membrane voltage (V mc) results in a marked decrease in apical membrane fractional resistance (fR a), whereas hyperpolarization ofV mc results in either no change infR a or a small increase, and b) the voltage-dependent changes infR a are essentially complete within 500 msec. Exposure of the tissue to 5mm TEA+ on the mucosal side caused no significant change in baselineV mc (–69±2 mV) and yet virtually abolished the voltage dependence offR a. A possible interpretation of these results is that two types of K+ channels exist in the apical membrane, with different voltage dependencies and TEA+ sensitivities. Acidification or Ba2+ addition to the mucosal solution also reduced the voltage-dependent changes infR a. The time courses of the changes infR a and in the cable properties of the epithelium were assessed during 1-min transepithelial current clamps (±200 A/cm2). No secondary change infR a was observed with mucosa-to-serosa currents, but a slow TEA+-sensitive decrease infR a (half-time of seconds) was evident with serosa-to-mucosa currents. Cable analysis experiments demonstrated that the initial (<500 msec) voltage-dependent decrease infR a is due to a fall in apical membrane resistance. The later decrease infR a is due to changes in both cell membrane resistances attributable to the increase in transcellular current flow resulting from a fall in paracellular conductance. The voltage dependence of the apical membrane conductance is a more significant problem in estimatingfR a than the current-induced effects on the lateral intercellular spaces. In principle, TEA+ can be used to prevent the nonlinear behavior ofR a during measurements of the voltage divider or membrane resistance ratio.  相似文献   

10.
Summary pH gradient-dependent sodium transport in highly purified rat parotid basolateral membrane vesicles was studied under voltage-clamped conditions. In the presence of an outwardly directed H+ gradient (pHin=6.0, pHout=8.0)22Na uptake was approximately ten times greater than uptake measured at pH equilibrium (pHin=pHout=6.0). More than 90% of this sodium flux was inhibited by the potassium-sparing diuretic drug amiloride (K 1 =1.6 m) while the transport inhibitors furosemide (1mm), bumetanide (1mm) SITS (0.5mm) and DIDS (0.1mm) were without effect. This transport activity copurified with the basolateral membrane marker K+-stimulatedp-nitrophenyl phosphatase. In addition22Na uptake into the vesicles could be driven against a concentration gradient by an outwardly directed H+ gradient. pH gradient-dependent sodium flux exhibited a simple Michaelis-Menten-type dependence on sodium concentration cosistent with the existence of a single transport system withK M =8.0mm at 23°C. A component of pH gradient-dependent, amiloride-sensitive sodium flux was also observed in rabbit parotid basolateral membrane vesicles. These results provide strong evidence for the existence of a Na+/H+ antiport in rat and rabbit parotid acinar basolateral membranes and extend earlier less direct studies which suggested that such a transporter was present in salivary acinar cells and might play a significant role in salivary fluid secretion.  相似文献   

11.
Summary Mouse hepatocytes in primary monolayer culture (4 hr) were exposed for 10 min at 37°C to anisosmotic medium of altered NaCl concentration. Hepatocytes maintained constant relative cell volume (experimental volume/control volume) as a function of external medium relative osmolality (control mOsm/experimental mOsm), ranging from 0.8 to 1.5. In contrast, the relative cell volume fit a predicted Boyle-Van't Hoff plot when the experiment was done at 4°C. Mouse liver slices were used for electrophysiologic studies, in which hepatocyte transmembrane potential (V m ) and intracellular K+ activity (a K i ) were recorded continuously by open-tip and liquid ion-exchanger ion-sensitive glass microelectrodes, respectively. Liver slices were superfused with control and then with anisosmotic medium of altered NaCl concentration.V m increased (hyperpolarized) with hypoosmotic medium and decreased (depolarized) with hyperosmotic medium, and ln [10(experimentalV m /controlV m )] was a linear function of relative osmolality (control mOsm/experimental mOsm) in the range 0.8–1.5. Thea K i did not change when medium osmolality was decreased 40–70 mOsm from control of 280 mOsm. Similar hypoosmotic stress in the presence of either 60mm K+ or 1mm quinine HCl or at 27°C resulted in no change inV m compared with a 20-mV increase inV m without the added agents or at 37°C. We conclude that mouse hepatocytes maintain their volume anda K i in response to anisosmotic medium; however,V m behaves as an osmometer under these conditions. Also, increases inV m by hypoosmotic stress were abolished by conditions or agents that inhibit K+ conductance.  相似文献   

12.
Summary Intracellular potassium activity (a K i ) was measured in control conditions in mid-cortical rabbit proximal convoluted tubule using two methods: (i) by determination of the K+ equilibrium potential (E K) using Ba2+-induced variations in the basolateral membrane potential (V BL) during transepithelial current injections and (ii) with double-barrel K-selective microelectrodes. Using the first method, the meanV BL was –48.5±3.2 mV (n=16) and the meanE K was –78.4±4.1 mV corresponding to aa K i of 68.7mm. With K-selective microelectrodes,V BL was –36.6±1.1 mV (n=19),E K was –64.0±1.1 mV anda K i averaged 40.6±1.7mm. While these lastE K andV BL values are significantly lower than the corresponding values obtained with the first method (P<0.001 andP<0.01, respectively), the electrochemical driving force for K transport across the basolateral membrane ( K =V BLE K) is not significantly different for both techniques (30.1±3.3 mV for the first technique and 27.6±1.8 mV for ion-selective electrodes). This suggests an adequate functioning of the selective barrel but an underestimation ofV BL by the reference barrel of the double-barrel microelectrode. Such double-barrel microelectrodes were used to measure temporal changes ina K i and K in different experimental conditions where Na reabsorption rate (J Na) was reduced.a K i was shown to increase by 12.2±2.7 (n=5) and 14.1±4.4mm (n=5), respectively, whenJ Na was reduced by omitting in the luminal perfusate: (i) 5.5mm glucose and 6mm alanine and (ii) glucose, alanine, other Na-cotransported solutes and 110mm Na. In terms of the electrochemical driving force for K exit across the basolateral membrane, K, a decrease of 5.4±2.0 mV (P<0.05,n=5) was measured when glucose and alanine were omitted in the luminal perfusate while K remained unchanged whenJ Na was more severely reduced (mean change =–1.7±2.1 mV, NS,n=5). In the latter case, this means that the electrochemical driving force for K efflux across the basolateral membrane has not changed while both the active influx through the Na–K pump and the passive efflux in steady state are certainly reduced. If the main pathway for K transport is through the basolateral K conductance, this implies that this conductance must have decreased in the same proportion as that of the reduction in the Na–K pump activity.  相似文献   

13.
Summary The effects of bathing solution HCO 3 /CO2 concentrations on baseline cell membrane voltages and resistances were measured inNecturus gallbladder epithelium with conventional intracellular microelectrode techniques. Gallbladders were bathed in either low HCO 3 /CO2 Ringer's solutions (2.4mm HCO 3 /air or 1mm HEPES/air) or a high HCO 3 /CO2 Ringer's (10mm HCO 3 /1% CO2). The principal finding of these studies was that the apical membrane fractional resistance (fR a) was higher in tissues bathed in the 10mm HCO 3 /CO2 Ringer's, averaging 0.87±0.06, whereasfR a averaged 0.63±0.07 and 0.48±0.08 in 2.4mm HCO 3 and 1mm HEPES, respectively. Intraepithelial cable analysis was employed to obtain estimates of the individual apical (R a) and basolateral membrane (R b) resistances in tissues bathed in 10mm HCO 3 /1% CO2 Ringer's. Compared to previous resistance measurements obtained in tissues bathed in a low HCO 3 /CO2 Ringer's, the higher value offR a was found to be due to both an increase inR a and a decrease inR b. The higher values offR a and lower values ofR b confirm the recent observations of others. To ascertain the pathways responsible for these effects, cell membrane voltages were measured during serosal solution K+ and Cl substitutions. The results of these studies suggest that an electrodiffusive Cl transport mechanism exists at the basolateral membrane of tissues bathed in a 10mm HCO 3 /1% CO2 Ringer's, which can explain in part the fall inR b. The above observations are discussed in terms of a stimulatory effect of solution [HCO 3 /PCO2 on transepithelial fluid transport, which results in adaptive changes in the conductive properties of the apical and basolateral membranes.  相似文献   

14.
Summary Phloridzin-insensitive, Na+-independentd-glucose uptake into isolated small intestinal epithelial cells was shown to be only partially inhibited by trypsin treatment (maximum 20%). In contrast, chymotrypsin almost completely abolished hexose transport. Basolateral membrane vesicles prepared from rat small intestine by a Percoll® gradient procedure showed almost identical susceptibility to treatment by these proteolytic enzymes, indicating that the vesicles are predominantly oriented outside-out. These vesicles with a known orientation were employed to investigate the kinetics of transport in both directions across the membrane. Uptake data (i.e. movement into the cell) showed aK t of 48mm and aV max of 1.14 nmol glucose/mg membrane protein/sec. Efflux data (exit from the cell) showed a lowerK t of 23mm and aV max of 0.20 nmol glucose/mg protein/sec.d-glucose uptake into these vesicles was found to be sodium independent and could be inhibited by cytochalasin B. TheK t for cytochalasin B as an inhibitor of glucose transport was 0.11 m and theK D for binding to the carrier was 0.08 m.d-glucose-sensitive binding of cytochalasin B to the membrane preparation was maximized withl- andd-glucose concentrations of 1.25m. Scatchard plots of the binding data indicated that these membranes have a binding site density of 8.3 pmol/mg membrane protein. These results indicate that the Na+-independent glucose transporter in the intestinal basolateral membrane is functionally and chemically asymmetric. There is an outward-facing chymotrypsin-sensitive site, and theK t for efflux from the cell is smaller than that for entry. These characteristics would tend to favor movement of glucose from the cell towards the bloodstream.  相似文献   

15.
Summary The properties of Ca2+-activated K+ channels in the apical membrane of theNecturus choroid plexus were studied using single-channel recording techniques in the cell-attached and excised-patch configurations. Channels with large unitary conductances clustered around 150 and 220 pS were most commonly observed. These channels exhibited a high selectivity for K+ over Na+ and K+ over Cs+. They were blocked by high cytoplasmic Na+ concentrations (110mm). Channel activity increased with depolarizing membrane potentials, and with increasing cytoplasmic Ca2+ concentrations. Increasing Ca2+ from 5 to 500nm, increased open probability by an order of magnitude, without changing single-channel conductance. Open probability increased up to 10-fold with a 20-mV depolarization when Ca2+ was 500nm. Lowering intracellular pH one unit, decreased open probability by more than two orders of magnitude, but pH did not affect single-channel conductance. Cytoplasmic Ba2+ reduced both channel-open probability and conductance. The sites for the action of Ba2+ are located at a distance more than halfway through the applied electric field from the inside of the membrane. Values of 0.013 and 117mm were calculated as the apparent Ba2+ dissociation constants (K d (0 mV) for the effects on probability and conductance, respectively. TEA+ (tetraethylammonium) reduced single-channel current. Applied to the cytoplasmic side, it acted on a site 20% of the distance through the membrane, with aK d (0 mV)=5.6mm. A second site, with a higher affinity,K d (0 mV)=0.23mm, may account for the near total block of chanel conductance by 2mm TEA+ applied to the outside of the membrane. It is concluded that the channels inNecturus choroid plexus exhibit many of the properties of maxi Ca2+-activated K+ channels found in other tissues.  相似文献   

16.
Summary We have previously shown that stimulation of apical Na-coupled glucose and alanine transport produces a transient depolarization of basolateral membrane potential (V bl) in rabbit proximal convoluted tubule (PCT. Sl segment). The present study is aimed at understanding the origin of the membrane repolarization following the intial effect of addition of luminal cotransported solutes. Luminal addition of 10–15mMl-alanine produced a rapid and highly significant depolarization ofV bl (20.3±1.1 mV,n=15) which was transient and associated with an increase in the fractional K+ conductance of the basolateral membrane (t K) from 8 to 29% (P<0.01,n=6). Despite the significant increase int K, the repolarization was only slightly reduced by the presence of basolateral Ba2+ (2mM,n=6) or quinine (0.5 mM,n=5). The repolarization was greatly reduced in the presence of 0.1 mM 4-acetamino-4isothiocyamostilbene-2,2-disulfonic acid (SITS) and blunted by bicarbonate-free solutions. Intracellular pH (pH i ) determined with the fluorescent dye 2, 7-bis-2-carboxyethyl-5(and-6)-carboxyfluorescein (BCECF), averaged 7.39±0.02 in control solution (n=9) and increased to 7.50±0.03 in the first 15 sec after the luminal application of alanine. This was followed by a significant acidification averaging 0.16±0.01 pH unit in the next 3 min. In conclusion, we believe that, contrary to other leaky epithelia, rabbit PCT can regulate its basolateral membrane potential not only through an increase in K+ conductance but also through a cellular acidification reducing the basolateral HCO 3 exit through the electrogenic Na-3(HCO3) cotransport mechanism.  相似文献   

17.
Summary The present study was designed to investigate the apical and basolateral transport processes responsible for intracellular pH regulation in the thin descending limb of Henle. Rabbit thin descending limbs of long-loop nephrons were perfused in vitro and intracellular pH (pH i ) was measured using BCECF. Steady-state pH i in HEPES buffered solutions (pH 7.4) was 7.18±0.03. Following the removal of luminal Na+, pH i decreased at a rate of 1.96±0.37 pH/min. In the presence of luminal amiloride (1mm), the rate of decrease of pH i was significantly less, 0.73±0.18 pH/min. Steady-state pH i decreased 0.18 pH units following the addition of amiloride (1mm) to the lumen (Na+ 140mm lumen and bath). When Na+ was removed from the basolateral side of the tubule, pH i decreased at a rate of 0.49±0.05 pH/min. The rate of decrease of pH i was significantly less in the presence of 1mm basolateral amiloride, 0.29±0.04 pH/min. Addition of 1mm amiloride to the basolateral side (Na+ 140mm lumen and bath) caused steady-state pH i to decrease significantly by 0.06 pH units. When pH i was acutely decreased to 5.87±0.02 following NH4Cl removal (lumen, bath), pH i failed to recover in the absence of Na+ (lumen, bath). Addition of 140mm Na+ to the lumen caused pH i to recover at a rate of 2.17±0.59 pH/min. The rate of pH i recovery was inhibited 93% by 1mm luminal amiloride. When 140mm Na+ was added to the basolateral side, pH i recovered only partially at 0.38±0.07 pH/min. Addition of 1mm basolateral amiloride inhibited the recovery of pH i , by 97%. The results demonstrate that the rabbit thin descending limb of long-loop nephrons possesses apical and basolateral Na+/N+ antiporters. In the steady state, the rate of Na+-dependent H+ flux across the apical antiporter exceeds the rate of Na+-dependent H+ flux via the basolateral antiporter. Recovery of pH i following acute intracellular acidification is Na+ dependent and mediated primarily by the luminal antiporter.  相似文献   

18.
Summary Cellular potential and pH measurements (pH i ) were carried out in the perfused kidney ofNecturus on proximal tubules with standard and recessed-tip glass microelectrodes under control conditions and after stimulation of tubular bicarbonate reabsorption. Luminal pH and net bicarbonate reabsorption were measured in parallel experiments with recessed-tip glass or antimony electrodes, both during stationary microperfusions as well as under conditions of isosmotic fluid transport. A mean cell pH of 7.15 was obtained in control conditions. When the luminal bicarbonate concentration was raised to 25 and 50mm, pH i rose to 7.44 and 7.56, respectively. These changes in pH i were fully reversible. Under all conditions intracellular H+ was below electrochemical equilibrium. Thus the maintenance of intracellular pH requires active H+ extrusion across one or both of the cell membranes. The observed rise in pH i and the peritubular depolarization after stimulation of bicarbonate reabsorption are consistent with enhanced luminal hydrogen ion secretion and augmentation of peritubular bicarbonate exit via an anion-conductive transport pathway.  相似文献   

19.
Summary The apical membrane K+ permeability of the newt proximal tubular cells was examined in the doubly perfused isolated kidney by measuring the apical membrane potential change (V a change) during alteration of luminal K+ concentration and resultant voltage deflections caused by current pulse injection into the lumen.V a change/decade for K+ was 50 mV at K+ concentration higher than 25mm, and the resistance of the apical membrane decreased bt 58% of control when luminal K+ concentration was increased from 2.5 to 25mm. Ba2+ (1mm in the lumen) reducedV a change/decade to 24 mV and increased the apical membrane resistance by 70%. These data support the view that Ba2+-sensitive K+ conductance exists in the apical membrane of the newt proximal tubule. Furthermore, intracellular K+ activity measured by K+-selective electrode was 82.4 ± 3.6 meq/liter, which was higher than that predicted from the Nernst equation for K+ across both cell membranes. Thus, it is concluded that cell K+ passively diffuses, at least in part, through the K+ conductive pathway of the apical membrane.  相似文献   

20.
Summary We have measured the intracellular potassium activity, [K+]i and the mechanisms of transcellular K+ transport in reabsorptive sweat duct (RSD) using intracellular ion-sensitive microelectrodes (ISMEs). The mean value of [K+]i in RSD is 79.8±4.1mm (n=39). Under conditions of microperfusion, the [K+]i is above equilibrium across both the basolateral membrane, BLM (5.5 times) and the apical membrane, APM (7.8 times). The Na+/K+ pump inhibitor ouabain reduced [K+]i towards passive distribution across the BLM. However, the [K+]i is insensitive to the Na+/K+/2 Cl cotransport inhibitor bumetanide in the bath. Cl substitution in the lumen had no effect on [K+]i. In contrast, Cl substitution in the bath (basolateral side) depolarized BLM from –26.0±2.6 mV to –4.7*±2.4 mV (n=3;* indicates significant difference) and decreased [K+]i from 76.0±15.2mm to 57.7* ±12.7mm (n=3). Removal of K+ in the bath decreased [K+]i from 76.3±15.0mm to 32.3*±7.6mm (n=4) while depolarizing the BLM from –32.5±4.1 mV to –28.3*±3.0 mV (n=4). Raising the [K+] in the bath by 10-fold increased [K+]i from 81.7±9.0mm to 95.0*±13.5mm and depolarized the BLM from –25.7±2.4 mV to –21.3*±2.9 mV (n=4). The K+ conductance inhibitor, Ba2+, in the bath also increased [K+]i from 85.8±6.7mm to 107.0*±11.5mm (n=4) and depolarized BLM from –25.8±2.2 mV to –17.0*±3.1 mV (n=4). Amiloride at 10–6 m increased [K+]i from 77.5±18.8mm to 98.8*±21.6mm (n=4) and hyperpolarized both the BLM (from –35.5±2.6 mV to –47.8*±4.3 mV) and the APM (from –27.5±1.4 mV to –46.0* ±3.5 mV,n=4). However, amiloride at 10–4 m decreased [K+]i from 64.5±0.9mm to 36.0*±9.9mm and hyperpolarized both the BLM (from –24.7±1.4 mV to –43.5*±4.2 mV) and APM (from –18.3±0.9 mV to –43.5*±4.2 mV,n=6). In contrast to the observations at the BLM, substitution of K+ or application of Ba2+ in the lumen had no effect on the [K+]i or the electrical properties of RSD, indicating the absence of a K+ conductance in the APM. Our results indicate that (i) [K+]i is above equilibrium due to the Na+/K+ pump; (ii) only the BLM has a K+ conductance; (iii) [K+]i is subject to modulation by transport status; (iv) K+ is probably not involved in carrier-mediated ion transport across the cell membranes; and (v) the RSD does not secrete K+ into the lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号