首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Tight junction: a co-ordinator of cell signalling and membrane trafficking   总被引:16,自引:0,他引:16  
Increasing evidence indicates that the tight junction plays a role in membrane transport. Various signalling and trafficking molecules localize to the sites of cell-cell junctions in epithelial cells, including Rab proteins, a family of small GTPases that regulate different steps of vesicular transport along the endocytic and exocytic pathways. We have recently shown that Rab13 controls protein kinase A activity, demonstrating a clear biochemical and functional link between Rab13 and protein kinase A signalling during tight junction assembly in epithelial cells. The present article focuses on how protein kinase A signalling and protein trafficking events could be integrated at tight junctions in epithelial cells.  相似文献   

2.
The Rab3 family small G proteins (Rab3A-D) are involved in the regulated secretory pathway of brain and secretory tissues. Among Rab3-interacting proteins, Rabphilin-3, Rim, and Noc2, all of which contain a conserved Rab3-binding domain (RBD3), are generally recognized Rab3 effector proteins in neurons and secretory cells. Although Rab3B was also detected in epithelial cells, its function remained unknown. We isolated cDNA sequences from human epithelial Caco2-cell mRNA by degenerate RT-PCR based on the conserved amino acid sequence of RBD3. Multiple cDNA clones were identified as encoding Noc2. Northern blot analysis revealed that Noc2 mRNA was expressed not only in secretory tissues but also in epithelial tissues and cell lines. A pull-down assay demonstrated that Noc2 bound to Rab3B in a GTP-dependent manner. When Noc2 was co-expressed with the GTP-bound form of Rab3B, it was recruited from the cytosol to perinuclear membranes. Furthermore, overexpression of Noc2 inhibited the cell-surface transport of basolateral vesicular stomatitis virus glycoprotein. These results suggest that Noc2 functions as a potential Rab3B effector protein in epithelial cells.  相似文献   

3.
Vesicular pathways coupling the neuromuscular junction with the motor neuron soma are essential for neuronal function and survival. To characterize the organelles responsible for this long-distance crosstalk, we developed a purification strategy based on a fragment of tetanus neurotoxin (TeNT H(C)) conjugated to paramagnetic beads. This approach enabled us to identify, among other factors, the small GTPase Rab7 as a functional marker of a specific pool of axonal retrograde carriers, which transport neurotrophins and their receptors. Furthermore, Rab5 is essential for an early step in TeNT H(C) sorting but is absent from axonally transported vesicles. Our data demonstrate that TeNT H(C) uses a retrograde transport pathway shared with p75(NTR), TrkB, and BDNF, which is strictly dependent on the activities of both Rab5 and Rab7. Therefore, Rab7 plays an essential role in axonal retrograde transport by controlling a vesicular compartment implicated in neurotrophin traffic.  相似文献   

4.
Autophagy (macroautophagy) is a highly conserved intracellular and lysosome-dependent degradation process in which autophagic substrates are enclosed and degraded by a double-membrane vesicular structure in a continuous and dynamic vesicle transport process. The Rab protein is a small GTPase that belongs to the Ras-like GTPase superfamily and regulates the vesicle traffic process. Numerous Rab proteins have been shown to be involved in various stages of autophagy. Rab1, Rab5, Rab7, Rab9A, Rab11, Rab23, Rab32, and Rab33B participate in autophagosome formation, whereas Rab9 is required in non-canonical autophagy. Rab7, Rab8B, and Rab24 have a key role in autophagosome maturation. Rab8A and Rab25 are also involved in autophagy, but their role is unknown. Here, we summarize new findings regarding the involvement of Rabs in autophagy and provide insights regarding future research on the mechanisms of autophagy regulation.  相似文献   

5.
During epithelial junctional development, both vesicle transport and reorganization of the actin cytoskeleton must be spatiotemporally regulated. Coordination of these cellular functions is especially important, but the precise mechanism remains elusive. Previously, we identified junctional Rab13-binding protein (JRAB)/molecules interacting with CasL-like 2 (MICAL-L2) as an effector of the Rab13 small G protein, and we found that the Rab13-JRAB system may be involved in the formation of cell-cell adhesions via transport of adhesion molecules. Here, we showed that JRAB interacts with two actin-binding proteins, actinin-1 and -4, and filamentous actin via different domains and regulates actin cross-linking and stabilization through these interactions. During epithelial junctional development, JRAB is prominently enriched in the actin bundle at the free border; subsequently, JRAB undergoes a Rab13-dependent conformational change that is required for maturation of cell-cell adhesion sites. These results suggest that Rab13 and JRAB regulate reorganization of the actin cytoskeleton throughout epithelial junctional development from establishment to maturation of cell-cell adhesion.  相似文献   

6.
Rab proteins belong to a subfamily of small GTP-binding protein genes of the Ras superfamily and play an important role in intracellular vesicular targeting. The presence of members of this protein family was examined in Caco-2 cells by a PCR-based strategy. Twenty-five different partial cDNA sequences were isolated, including 18 Rab protein family members. Seven novel human sequences, representing Rab2B, Rab6A', Rab6B, Rab10, Rab19B, Rab21 and Rab22A, were identified. For one clone, encoding Rab21, full-length cDNA was isolated from a Caco-2 cDNA library. Northern blot analysis showed a ubiquitous expression pattern of Rab21. To study Rab21 protein expression in Caco-2 cells, polyclonal antibodies were raised against GST-Rab21 fusion protein and characterised. The antibodies recognised Rab21 as a protein of approximately 25 kDa. Interestingly, the protein shows a general ER-like staining in nonpolarised Caco-2 cells in contrast to an apically located vesicle-like staining in polarised Caco-2 cells. Furthermore, immunohistochemical staining on human jejunal tissue showed a predominant expression of Rab21 in the epithelial cell layer with high expression levels in the apical region, whereas stem cells in the crypts were negative. We therefore suggest an alternative role for Rab21 in the regulation of vesicular transport in polarised intestinal epithelial cells.  相似文献   

7.
Rab6A and Rab6A' GTPases play non-overlapping roles in membrane trafficking   总被引:8,自引:2,他引:6  
The closely related Rab6 isoforms, Rab6A and Rab6A', have been shown to regulate vesicular trafficking within the Golgi and post-Golgi compartments, but studies using dominant active or negative mutant suggested conflicting models. Here, we report that reduction in the expression of Rab6 isoform using specific small interfering RNA reveals noticeable differences in the Rab6A and Rab6A' biological functions. Surprisingly, Rab6A seems to be largely dispensable in membrane trafficking events, whereas knocking down the expression of Rab6A' hampers the intracellular transport of the retrograde cargo marker, the Shiga Toxin B-subunit along the endocytic pathway, and causes defects in Golgi- associated protein recycling through the endoplasmic reticulum. We also showed that Rab6A' is required for cell cycle progression through mitosis and identify Ile(62) as a key residue for uncoupling Rab6A' functions in mitosis and retrograde trafficking. Thus, our work shows that Rab6A and Rab6A' perform different functions within the cell and suggests a novel role for Rab6A' as the major Rab6 isoform regulating previously described Rab6-dependent transport pathways.  相似文献   

8.
The regulation of hedgehog signaling by vesicular trafficking was exemplified by the finding that Rab23, a Rab-GTPase vesicular transport protein, is mutated in open brain mice. In this study, the localization of Rab23 was analyzed by light and immunoelectron microscopy after expression of wild-type (Rab23-GFP), constitutively active Rab23 (Rab23Q68L-GFP), and inactive Rab23 (Rab23S23N-GFP) in a range of mammalian cell types. Rab23-GFP and Rab23Q68L-GFP were predominantly localized to the plasma membrane but were also associated with intracellular vesicular structures, whereas Rab23S23N-GFP was predominantly cytosolic. Vesicular Rab23-GFP colocalized with Rab5Q79L and internalized transferrin-biotin, but not with a marker of the late endosome or the Golgi complex. To investigate Rab23 with respect to members of the hedgehog signaling pathway, Rab23-GFP was coexpressed with either patched or smoothened. Patched colocalized with intracellular Rab23-GFP but smoothened did not. Analysis of patched distribution by light and immunoelectron microscopy revealed it is primarily localized to endosomal elements, including transferrin receptor-positive early endosomes and putative endosome carrier vesicles and, to a lesser extent, with LBPA-positive late endosomes, but was excluded from the plasma membrane. Neither patched or smoothened distribution was altered in the presence of wild-type nor mutant Rab23-GFP, suggesting that despite the endosomal colocalization of Rab23 and patched, it is likely that Rab23 acts more distally in regulating hedgehog signaling.  相似文献   

9.
The molecular mechanism underlying the transport of G protein-coupled receptors from the endoplasmic reticulum (ER) to the cell surface is poorly understood. This issue was addressed by determining the role of Rab1, a Ras-related small GTPase that coordinates vesicular protein transport in the early secretory pathway, in the subcellular distribution and function of the angiotensin II type 1A receptor (AT1R), beta2-adrenergic receptor (AR), and alpha2B-AR in HEK293T cells. Inhibition of endogenous Rab1 function by transient expression of dominant-negative Rab1 mutants or Rab1 small interfering RNA (siRNA) induced a marked perinuclear accumulation and a significant reduction in cell-surface expression of AT1R and beta2-AR. The accumulated receptors were colocalized with calregulin (an ER marker) and GM130 (a Golgi marker), consistent with Rab1 function in regulating protein transport from the ER to the Golgi. In contrast, dominant-negative Rab1 mutants and siRNA had no effect on the subcellular distribution of alpha2B-AR. Similarly, expression of dominant-negative Rab1 mutants and siRNA depletion of Rab1 significantly attenuated AT1R-mediated inositol phosphate accumulation and ERK1/2 activation and beta2-AR-mediated ERK1/2 activation, but not alpha2B-AR-stimulated ERK1/2 activation. These data indicate that Rab1 GTPase selectively regulates intracellular trafficking and signaling of G protein-coupled receptors and suggest a novel, as yet undefined pathway for movement of G protein-coupled receptors from the ER to the cell surface.  相似文献   

10.
The Rab coupling protein (RCP) is a recently identified novel protein that belongs to the Rab11-FIP family. RCP interacts specifically with Rab4 and Rab11, small guanosine-5'-triphosphatases that function as regulators along the endosomal recycling pathway. We used fluorescence confocal microscopy and biochemical approaches to evaluate the participation of RCP during particle uptake and phagosome maturation. In macrophages, RCP is predominantly membrane-bound and displays a punctuate vesicular pattern throughout the cytoplasm. RCP is mainly associated with transferrin-containing structures and Rab11-labeled endosomes. Overexpression of H13, the carboxyl-terminal region of RCP that contains the Rab binding domain, results in an abnormal endosomal compartment. Interestingly, we found that RCP is associated as discrete patches or protein domains to early phagosomal membranes. In macrophages, overexpression of full-length RCP stimulates recycling from the phagosomal compartment, whereas overexpression of H13 diminishes this vesicular transport step. It is likely that acting as an intermediate between Rab4 and Rab11, RCP regulates membrane flux along the phagocytic pathway via recycling events.  相似文献   

11.
During epithelial morphogenesis, adherens junctions (AJs) and tight junctions (TJs) undergo dynamic reorganization, whereas epithelial polarity is transiently lost and reestablished. Although ARF6-mediated endocytic recycling of E-cadherin has been characterized and implicated in the rapid remodeling of AJs, the molecular basis for the dynamic rearrangement of TJs remains elusive. Occludin and claudins are integral membrane proteins comprising TJ strands and are thought to be responsible for establishing and maintaining epithelial polarity. Here we investigated the intracellular transport of occludin and claudins to and from the cell surface. Using cell surface biotinylation and immunofluorescence, we found that a pool of occludin was continuously endocytosed and recycled back to the cell surface in both fibroblastic baby hamster kidney cells and epithelial MTD-1A cells. Biochemical endocytosis and recycling assays revealed that a Rab13 dominant active mutant (Rab13 Q67L) inhibited the postendocytic recycling of occludin, but not that of transferrin receptor and polymeric immunoglobulin receptor in MTD-1A cells. Double immunolabelings showed that a fraction of endocytosed occludin was colocalized with Rab13 in MTD-1A cells. These results suggest that Rab13 specifically mediates the continuous endocytic recycling of occludin to the cell surface in both fibroblastic and epithelial cells.  相似文献   

12.
Dong C  Wu G 《Cellular signalling》2007,19(11):2388-2399
Three Rab GTPases, Rab1, Rab2 and Rab6, are involved in protein transport between the endoplasmic reticulum (ER) and the Golgi. Whereas Rab1 regulates the anterograde ER-to-Golgi transport, Rab2 and Rab6 coordinate the retrograde Golgi-to-ER transport. We have previously demonstrated that Rab1 differentially modulates the export trafficking of distinct G protein-coupled receptors (GPCRs). In this report, we determined the role of Rab2 and Rab6 in the cell-surface expression and signaling of alpha(2B)-adrenergic (alpha(2B)-AR), beta(2)-AR and angiotensin II type 1 receptors (AT1R). Expression of the GTP-bound mutant Rab2Q65L significantly attenuated the cell-surface expression of both alpha(2B)-AR and beta(2)-AR, whereas the GTP-bound mutant Rab6Q72L selectively inhibited the transport of beta(2)-AR, but not alpha(2B)-AR. Similar results were obtained by siRNA-mediated selective knockdown of endogenous Rab2 and Rab6. Consistently, Rab2Q65L and Rab2 siRNA inhibited alpha(2B)-AR and beta(2)-AR signaling measured as ERK1/2 activation and cAMP production, respectively, whereas Rab6Q72L and Rab6 siRNA reduced signaling of beta(2)-AR, but not alpha(2B)-AR. Similar to the beta(2)-AR, AT1R expression at the cell surface and AT1R-promoted inositol phosphate accumulation were inhibited by Rab6Q72L. Furthermore, the nucleotide-free mutant Rab6N126I selectively attenuated the cell-surface expression of beta(2)-AR and AT1R, but not alpha(2B)-AR. These data demonstrate that Rab2 and Rab6 differentially influence anterograde transport and signaling of GPCRs. These data also provide the first evidence indicating that Rab6-coordinated retrograde transport selectively modulates intracellular trafficking and signaling of GPCRs.  相似文献   

13.
14.
The p75 neurotrophin receptor (p75(NTR)) plays multiple roles in neuronal physiology through interactions with many ligands and coreceptors. However, its intracellular neuronal trafficking prior to and after neurotrophin activation is still poorly characterized. We have previously shown that in response to nerve growth factor (NGF), p75(NTR) is retrogradely transported along the axons of motor neurons (MNs) in carriers shared with NGF, brain-derived neurotrophic factor and the tyrosine kinase receptor TrkB. Here, we report that NGF does not enhance the internalization or degradation of p75(NTR), which undergoes a rapid dynamin-dependent and clathrin-independent recycling process in MNs. Instead, incubation of cells with NGF leads to the redirection of a pool of plasma membrane p75(NTR) into clathrin-coated pits. The subsequent internalization of p75(NTR) via clathrin-mediated endocytosis, as well as the activity of Rab5, are essential for the sorting of the p75(NTR)-containing endosomes to the axonal retrograde transport pathway and for the delivery of p75(NTR) to the soma. Our findings suggest that the spatial regulation of p75(NTR) signalling is controlled by these ligand-driven routes of endocytosis.  相似文献   

15.
The AP-1B clathrin adaptor complex plays a key role in the recognition and intracellular transport of many membrane proteins destined for the basolateral surface of epithelial cells. However, little is known about other components that act in conjunction with AP-1B. We found that the Rab8 GTPase is one such component. Expression of a constitutively activated GTP hydrolysis mutant selectively inhibited basolateral (but not apical) transport of newly synthesized membrane proteins. Moreover, the effects were limited to AP-1B-dependent basolateral cargo; basolateral transport of proteins containing dileucine targeting motifs that do not interact with AP-1B were targeted normally despite overexpression of mutant Rab8. Similar results were obtained for a dominant-negative allele of the Rho GTPase Cdc42, previously implicated in basolateral transport but now shown to be selective for the AP-1B pathway. Rab8-GFP was localized to membranes in the TGN-recycling endosome, together with AP-1B complexes and the closely related but ubiquitously expressed AP-1A complex. However, expression of active Rab8 caused a selective dissociation of AP-1B complexes, reflecting the specificity of Rab8 for AP-1B-dependent transport.  相似文献   

16.
The GTPase Rab13 regulates the assembly of functional epithelial tight junctions (TJs) through a yet unknown mechanism. Here, we show that expression of the GTP-bound form of Rab13 inhibits PKA-dependent phosphorylation and TJ recruitment of the vasodilator-stimulated phosphoprotein, an actin remodelling protein. We demonstrate that Rab13GTP directly binds to PKA and inhibits its activity. Interestingly, activation of PKA abrogates the inhibitory effect of Rab13 on the recruitment of vasodilator-stimulated phosphoprotein, ZO-1, and claudin1 to cell-cell junctions. Rab13 is, therefore, the first GTPase that controls PKA activity and provides an unexpected link between PKA signaling and the dynamics of TJ assembly.  相似文献   

17.
Rab GTPases are master regulators of membrane trafficking events and template the directionality of protein transport through the secretory and endocytic pathways. Certain Rabs recruit the guanine nucleotide exchange factor (GEF) that activates a subsequent acting Rab protein in a given pathway; this process has been termed a Rab cascade. We show here that the medial Golgi-localized Rab33B GTPase has the potential to link functionally to the late Golgi, Rab6 GTPase, by its capacity for association with Ric1 and Rgp1 proteins. In yeast, Ric1p and Rgp1p form a complex that catalyzes guanine nucleotide exchange by Ypt6p, the Rab6 homolog. Human Ric1 and Rgp1 both bind Rab6A with preference for the GDP-bound conformation, characteristic of a GEF. Nevertheless, both Ric1 and Rgp1 proteins are needed to catalyze nucleotide exchange on Rab6A protein. Ric1 and Rgp1 form a complex, but unlike their yeast counterparts, most of the subunits are not associated, and most of the proteins are cytosolic. Loss of Ric1 or Rgp1 leads to destabilization of Rab6, concomitant with a block in Rab6-dependent retrograde transport of mannose 6-phosphate receptors to the Golgi. The C terminus of Ric1 protein contains a distinct binding site for Rab33B-GTP, supporting the existence of a Rab cascade between the medial and trans Golgi. This study thus identifies a GEF for Rab6A in human cells.  相似文献   

18.
Rab proteins are a large family of monomeric GTPases with 60 members identified in the human genome. Rab GTPases require an isoprenyl modification to their C-terminus for membrane association and function in the regulation of vesicular trafficking pathways. This reaction is catalysed by Rab geranylgeranyl transferase, which recognises as protein substrate any given Rab in a 1:1 complex with Rab Escort Protein (REP). REP is therefore able to bind many distinct Rab proteins but the molecular basis for this activity is still unclear. We recently identified conserved motifs in Rabs termed RabF motifs, which we proposed to mediate a conserved mode of interaction between Rabs and REPs. Here, we tested this hypothesis. We first used REP1 as a bait in the yeast two-hybrid system and isolated strictly full-length Rabs, suggesting that REP recognises multiple regions within and properly folded Rabs. We introduced point mutations in Rab3a as a model Rab and assessed the ability of the mutants to interact with REP using the yeast two-hybrid system and an in vitro prenylation assay. We identified several residues that affect REP:Rab binding in the RabF1, RabF3, and RabF4 regions (which include parts of the switch I and II regions), but not other RabF regions. These results support the hypothesis that Rabs bind REP via conserved RabF motifs and provide a molecular explanation for the preferential recognition of the GDP-bound conformation of Rab by REP.  相似文献   

19.
The assembly of tight junctions (TJs) and adherens junctions (AJs) is regulated by the transport of integral TJ and AJ proteins to and/or from the plasma membrane (PM) and it is tightly coordinated in epithelial cells. We previously reported that Rab13 and a junctional Rab13-binding protein (JRAB)/molecule interacting with CasL-like 2 (MICAL-L2) mediated the endocytic recycling of an integral TJ protein occludin and the formation of functional TJs. Here, we investigated the role of Rab13 and JRAB/MICAL-L2 in the transport of other integral TJ and AJ proteins claudin-1 and E-cadherin to the PM by using a Ca(2+)-switch model. Although knockdown of Rab13 specifically suppressed claudin-1 and occludin but not E-cadherin transport, knockdown of JRAB/MICAL-L2 and expression of its Rab13-binding domain (JRAB/MICAL-L2-C) inhibited claudin-1, occludin, and E-cadherin transport. We then identified Rab8 as another JRAB/MICAL-L2-C-binding protein. Knockdown of Rab8 inhibited the Rab13-independent transport of E-cadherin to the PM. Rab8 and Rab13 competed with each other for the binding to JRAB/MICAL-L2 and functionally associated with JRAB/MICAL-L2 at the perinuclear recycling/storage compartments and PM, respectively. These results suggest that the interaction of JRAB/MICAL-L2 with Rab8 and Rab13 coordinates the assembly of AJs and TJs.  相似文献   

20.
Osteoclasts are bone-resorbing multinucleated cells that undergo drastic changes in their polarization due to heavy vesicular trafficking during the resorption cycle. These events require the precise orchestration of membrane traffic in order to maintain the unique characteristics of the different membrane domains in osteoclasts. Rab proteins are small GTPases involved in regulation of most, if not all, steps of vesicle trafficking. The investigators studied RAB genes in human osteoclasts and found that at least 26 RABs were expressed in osteoclasts. Out of these, RAB13 gene expression was highly upregulated during differentiation of human peripheral blood monocytic cells into osteoclasts. To study its possible function in osteoclasts, the investigators performed immunolocalization studies for Rab13 and various known markers of osteoclast vesicular trafficking. Rab13 localized to small vesicular structures at the superior parts of the osteoclast between the trans-Golgi network and basolateral membrane domain. Rab13 localization suggests that it is not involved in endocytosis or transcytosis of bone degradation products. In addition, Rab13 did not associate with early endosomes or recycling endosomes labeled with EEA1 or TRITC-conjugated transferrin, respectively. Its involvement in glucose transporter traffic was excluded as well. It is suggested that Rab13 is associated with a putative secretory function in osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号