首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of pH-control modes on cell growth and exopolysaccharide production by Tremella fuciformis was evaluated in a 5-L bioreactor. The results show that the maximal dry cell weight (DCW) and exopolysaccharide production were 23.57 and 4.48 g L−1 in pH-stat fermentation, where the maximal specific growth rate (μmax) and specific production rate of exopolysaccharide (PP/X) were 1.03 and 0.24 d−1, respectively; under pH-shift cultivation, the maximal DCW and exopolysaccharide production were 30.57 and 3.90 g L−1, where the μmax and PP/X were 1.21 and 0.06 d−1. Unlike batch fermentation, maximal DCW and exopolysaccharide production merely reached 15.04 and 2.0 g L−1, where the μmax and PP/X were 0.86 and 0.05 d−1, respectively. These results suggest that a pH-stat strategy is a more efficient way of performing the fermentation process to increase exopolysaccharide production. Furthermore, this research has also proved that the three-stage pH-control mode is effective for cell growth.  相似文献   

2.
Wang B  Lan CQ 《Bioresource technology》2011,102(10):5639-5644
Biomass productivity of 350 mg DCW L−1 day−1 with a final biomass concentration of 3.15 g DCW L−1 was obtained with Neochloris oleoabundans grown in artificial wastewater at sodium nitrate and phosphate concentrations of 140 and 47 mg L−1, respectively, with undetectable levels of residual N and P in effluents. In secondary municipal wastewater effluents enriched with 70 mg N L−1, the alga achieved a final biomass concentration of 2.1 g DCW L−1 and a biomass productivity of 233.3 mg DCW L−1 day−1. While N removal was very sensitive to N:P ratio, P removal was independent of N:P ratio in the tested range. These results indicate that N. oleoabundans could potentially be employed for combined biofuel production and wastewater treatment.  相似文献   

3.
4.
The Iberian Peninsula encompasses more than 80% of the species richness of European aquatic ranunculi. The floristic diversity of the phytocoenosis characterised by aquatic Ranunculus and the main physical–chemical factors of the water were studied in 43 localities of the central Iberian Peninsula. Four aquatic Ranunculus communities are found in most of the aquatic environments. These are species-poor and have an uneven distribution: three species of Batrachium are heterophyllous and their communities are distributed in different aquatic ecosystems on silicated substrates; one species is homophyllous and its community occurs in various aquatic ecosystems with carbonated waters. In the Mediterranean climate, Ranunculus species are present in different habitats, as shown by the results of all the statistical analyses. Ranunculus trichophyllus communities occur in base-rich waters with a high buffering capacity (2273.44 ± 794.57 mg CaCO3 L−1) and a high concentration of cations (Ca2+, 121 ± 33.12 mg L−1; Mg2+, 71.64 ± 82.77 mg L−1), nitrates (2.89 ± 4.80 mg L−1), ammonium (2.19 ± 1.36 mg L−1) and sulphates (216.25 ± 218.54 mg L−1). Ranunculus penicillatus communities are found in flowing waters with a high concentration of phosphates (0.48 ± 0.6 mg L−1) and intermediate buffering capacity (683.66 ± 446.76 mg CaCO3 L−1). Both Ranunculus pseudofluitans and Ranunculus peltatus communities grow in waters with low buffering capacity (R. pseudofluitans, 385.91 ± 209.2 mg CaCO3 L−1; R. peltatus, 263.3 ± 180.36 mg CaCO3 L−1), and a low concentration of cations (R. pseudofluitans: Ca2+, 12.57 ± 9.42 mg L−1; Mg2+, 3.42 ± 1.67 mg L−1; R. peltatus: Ca2+, 15 ± 18.26 mg L−1; Mg2+, 6.26 ± 8.89 mg L−1) and nutrients (R. pseudofluitans: nitrates, 0.23 ± 0.2 mg L−1; phosphates, 0.09 ± 0.1 mg L−1; R. peltatus: nitrates, 0.19 ± 0.21 mg L−1; phosphates, 0.09 ± 0.12 mg L−1); the first in flowing waters, the latter in still waters.  相似文献   

5.
To investigate the coupled technology for advanced wastewater treatment and microalgal biomass production, a photo-membrane bioreactor was constructed. The microalga Scenedesmus sp. LX1 was cultured in the bioreactor using liquor prepared from the effluent of an electronic device factory. The algal cell growth, nitrate nitrogen removal, orthophosphate phosphorus removal were investigated. When cultured with batch operation, the average specific growth rate was about 0.09 d−1, and low nitrogen (N), phosphorus (P) concentrations in the liquor were achieved. However, under continuous operation with an inflow of 60 L h−1, the average specific growth rate was only 0.02 d−1, and removal rates of 100% for orthophosphate P and 46% for nitrate N were achieved. With the inflow of 120 L h−1, the accumulated metal ions in the bioreactor adversely affected the algal cells. The algal cells were much easier to settle, and the removal efficiency for N and P decreased.  相似文献   

6.
The porcelain crab Petrolisthes elongatus is a particulate suspension feeding species common to coastal areas of New Zealand (NZ). Consistent with the responses of other suspension feeding species, it is likely to be negatively influenced by elevated suspended sediment concentrations. Laboratory experiments were conducted to quantify the effect of temperature (12 °C, 15 °C and 18 °C) and suspended sediment concentration (total particulate matter (TPM): low < 100 mg L− 1; medium 100-1000 mg L− 1; high > 1000 mg L− 1) on the clearance rate (CR in L h− 1), oxygen uptake rate (VO2 in mL h−1), net absorption efficiency (AE), and net energy budget (NEB in J h− 1) of P. elongatus across a range of sizes. Variation in CR and AE was independent of temperature and of body size, but were significantly different (P < 0.05) at low and medium suspended sediment concentrations compared with high suspended sediment concentrations. CR responded in a non-linear manner to changes in TPM, increasing with TPM up to a maximum value at medium-low concentrations (approximately 250 mg L− 1) and then decreasing thereafter. CR had almost completely shut down at TPM concentrations of > 1000 mg L− 1 and at particulate organic matter (POM) concentrations of > 250 mg L− 1. AE was zero at approximate TPM and POM values of 1200 mg L− 1 and 300 mg L− 1, respectively. VO2 was positively correlated with body size and with temperature, but was independent of TPM. NEB values for P. elongatus were low (approx 110 J g− 1 h− 1) at low sediment concentrations, were high (approx 320 J g− 1 h− 1) at medium sediment concentrations, and were negative (approx − 114 J g− 1 h− 1) at high sediment concentrations. These findings indicate that P. elongatus is likely to be food-limited at sediment concentrations of < 100 mg L− 1, and severely negatively affected at sediment concentrations of > 1000 mg L− 1, at least for the duration of such events which may persist for 2-3 days in coastal environments where this crab occurs.  相似文献   

7.
Much attention has been devoted recently to the fate of pharmaceutically active compounds such as tetracycline antibiotics in soil and water. Tetracycline (TC) biodegradability by activated sludge derived from membrane bioreactor (MBR) treating swine wastewater via CO2-evolution was evaluated by means of modified Sturm test, which was also used to evaluate its toxicity on carbon degradation. The impact of tetracycline on a semi-industrial MBR process was also examined and confronted to lab-scale experiments. After tetracycline injection in the pilot, no disturbance was detected on the elimination of organic matters and ammonium (nitrification), reaching after injection 88% and 99% respectively; only denitrification was slightly affected. Confirming the ruggedness and the superiority of membrane bioreactors over conventional bioreactors, no toxicity was observed at the considered level of TC in the pilot (20 mg TOC L−1), while at lab-scale sodium benzoate biodegradation was completely inhibited from 10 mg TOC L−1 TC. The origin of the activated sludge showed a significant impact on the performances, since the ultimate biodegradation was in the range −50% to −53% for TC concentrations in the range 10–20 mg TOC L−1 with conventional bioreactor sludge and increased to 18% for 40 mg TOC L−1 of TC with activated sludge derived from the MBR pilot. This confirmed the higher resistance of activated sludge arising from membrane bioreactor.  相似文献   

8.
“Reduced minus oxidized” difference extinction coefficients Δ? in the α-bands of Cyt b559 and Cyt c550 were determined by using functionally and structurally well-characterized PS II core complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus. Values of 25.1 ± 1.0 mM−1 cm−1 and 27.0 ± 1.0 mM−1 cm−1 were obtained for Cyt b559 and Cyt c550, respectively. Anaerobic redox titrations covering the wide range from −250 up to +450 mV revealed that the heme groups of both Cyt b559 and Cyt c550 exhibit homogenous redox properties in the sample preparation used, with Em values at pH 6.5 of 244 ± 11 mV and −94 ± 21 mV, respectively. No HP form of Cyt b559 could be detected. Experiments performed on PS II membrane fragments of higher plants where the content of the high potential form of Cyt b559 was varied by special treatments (pH, heat) have shown that the α-band extinction of Cyt b559 does not depend on the redox form of the heme group. Based on the results of this study the Cyt b559/PSII stoichiometry is inferred to be 1:1 not only in thermophilic cyanobacteria as known from the crystal structure but also in PSII of plants. Possible interrelationships between the structure of the QB site and the microenvironment of the heme group of Cyt b559 are discussed.  相似文献   

9.
We evaluated the kinetic culture characteristics of the microalgae Cyanobium sp. grown in vertical tubular photobioreactor in semicontinuous mode. Cultivation was carried out in vertical tubular photobioreactor for 2 L, in 57 d, at 30 °C, 3200 Lux, and 12 h light/dark photoperiod. The maximum specific growth rate was found as 0.127 d−1, when the culture had blend concentration of 1.0 g L−1, renewal rate of 50%, and sodium bicarbonate concentration of 1.0 g L−1. The maximum values of productivity (0.071 g L−1 d−1) and number of cycles (10) were observed in blend concentration of 1.0 g L−1, renewal rate of 30%, and bicarbonate concentration of 1.0 g L−1. The results showed the potential of semicontinuous cultivation of Cyanobium sp. in closed tubular bioreactor, combining factors such as blend concentration, renewal rate, and sodium bicarbonate concentration.  相似文献   

10.
An anaerobic digestion technique was applied to textile dye wastewater aiming at the colour and COD removal. Pet bottles of 5 L capacity were used as reactor which contains methanogenic sludge of half a liter capacity which was used for the treatment of combined synthetic textile dye and starch wastewater at different mixing ratios of 20:80, 30:70, 40:60, 50:50 and 60:40 with initial COD concentrations as 3520, 3440, 3360, 3264 and 3144 mg L−1, respectively. The reactor was maintained at room temperature (30 ± 3 °C) with initial pH of 7. The maximum COD and colour removal were 81.0% and 87.3% at an optimum mixing ratio of 30:70 of textile dye and starch wastewaters. Both Monod’s and Haldane’s models were adopted in this study. The kinetic constants of cell growth under Haldane’s model were satisfactory when compared to Monod’s model. The kinetic constants obtained by Haldane’s model were found to be in the range of μmax = 0.037-0.146 h−1, Ks = 651.04-1372.88 mg L−1 and Ki = 5681.81-18727.59 mg L−1.  相似文献   

11.
Nitrate (NO3) loss from agriculture to shallow groundwater and transferral to sensitive aquatic ecosystems is of global concern. Denitrifying bioreactor technology, where a solid carbon (C) reactive media intercepts contaminated groundwater, has been successfully used to convert NO3 to di-nitrogen (N2) gas. One of the challenges of groundwater remediation research is how to track denitrification potential spatially and temporally within reactive media and subsoil. First, using δ15N/δ18O isotopes, eight wells were divided into indicative transformational processes of ‘nitrification’ or ‘denitrification’ wells. Then, using N2/argon (Ar) ratios these wells were divided into ‘low denitrification potential’ or high denitrification potential’ categories. Secondly, using falling head tests, the saturated hydraulic conductivity (Ksat) in each well was estimated, creating two groups of ‘slow’ (0.06 m day−1) and ‘fast’ (0.13 m day−1) wells, respectively. Thirdly, two ‘low denitrification potential’ wells (one fast and one slow) with high NO3 concentration were amended with woodchip to enhance denitrification. Water samples were retrieved from all wells using a low flow syringe to avoid de-gassing and analysed for N2/Ar ratio using membrane inlet mass spectrometry. Results showed that there was good agreement between isotope and chemical (N2/Ar ratio and dissolved organic C (DOC)) and physio-chemical (dissolved oxygen, temperature, conductivity and pH) parameters. To explain the spatial and temporal distribution of NO3 and other parameters on site, the development of predictive models using the available datasets for this field site was examined for NO3, Cl, N2/Ar and DOC. Initial statistical analysis was directed towards the testing of the effect of woodchip amendment. The analysis was formulated as a repeated measures analysis of the factorial structure for treatment and time. Nitrate concentrations were related to Ksat and water level (p < 0.0001 and p = 0.02, respectively), but did not respond to woodchip addition (p = 0.09). This non-destructive technique allows elucidation of denitrification potential over time and could be used in denitrifying bioreactor technology to assess denitrification hotspots in reactive media, while developing a NO3 spatial and temporal predictive model for bioreactor site specific conditions.  相似文献   

12.
Microbial treatment of high-strength perchlorate wastewater   总被引:5,自引:0,他引:5  
To treat wastewater containing high concentrations of perchlorate, a perchlorate reducing-bacterial consortium was obtained by enrichment culture grown on high-strength perchlorate (1200 mg L−1) feed medium, and was characterized in a sequence batch reactor (SBR) over a long-time operation. The consortium removed perchlorate in the SBR with high reduction rates (35-90 mg L−1 h−1) and stable removal efficiency over 200-day operations. The maximum specific perchlorate reduction rate (qmax), half saturation constant (Ks), and optimal pH range were 0.67 mg-perchlorate mg-dry cell weight−1 h−1, 193.8 mg-perchlorate L−1, and pH 7-9, respectively. The perchlorate reduction yield was 0.48 mol-perchlorate mol-acetate−1. A clone library prepared using the amplicons of cld gene encoding chlorate dismutase showed that the dominant (per)chlorate reducing bacteria in the consortium were Dechlorosoma sp. (53%), Ideonella sp. (28%), and Dechloromonas sp. (19%).  相似文献   

13.
He SY  Lin YH  Hou KY  Hwang SC 《Bioresource technology》2011,102(10):5609-5616
Airlift bioreactor containing polyvinyl-alcohol-immobilized cell beads was investigated for its capability of biodegradation of dimethyl sulfoxide (DMSO) in term of sludge characteristics including the strategy of acclimation with sucrose and the protection of microorganism from poisoning of DMSO by PVA cell beads. Media condition with sucrose at 50 mg L−1 was beneficial to the biodegradation of DMSO in the fresh PVA entrapped-sludge, but became insignificant in the acclimated one as for tolerance of DMSO toxicity. The removal efficiency of DMSO had the highest rate at 1.42-kg DMSO per kilogram of suspended solid per day after series acclimation batches in the oxygen-enriched airlift bioreactor treated with the 1187.4 mg L−1 of DMSO. Microbial consortium was required for the complete biodegradation of DMSO without any dimethyl sulfide produced. Pseudomonas sp. W1, excreting extracellular monooxygenase identified by indole, was isolated to be one of the most effective DMSO-degrading microorganism in our airlift bioreactor.  相似文献   

14.
Our study aimed to test the ability of aquatic plants to use bicarbonate when acclimated to three different bicarbonate concentrations. To this end, we performed experiments with the three species Ceratophyllum demersum, Egeria densa, Lagarosiphon major to determine photosynthetic rates under varying bicarbonate concentrations. We measured bicarbonate use efficiency, photosynthetic performance and respiration. For all species, our results revealed that photosynthetic rates were highest in replicates grown at low alkalinity. Thus, E. densa had approx. five times higher rates at low (264 ± 15 μmol O2 g−1 DW h−1) than at high alkalinity (50 ± 27 μmol O2 g−1 DW h−1), C. demersum had three times higher rates (336 ± 95 and 120 ± 31 μmol O2 g−1 DW h−1), and L. major doubled its rates at low alkalinity (634 ± 114 and 322 ± 119 μmol O2 g−1 DW h−1). Similar results were obtained for bicarbonate use efficiency by E. densa (136 ± 44 and 43 ± 10 μmol O2 mequiv. L−1 g−1 DW h−1) and L. major (244 ± 29 and 82 ± 24 μmol O2 mequiv. L−1 g−1 DW h−1). As to C. demersum, efficiency was high but unaffected by alkalinity, indicating high adaptation ability to varied alkalinities. A pH drift experiment supported these results. Overall, our results suggest that the three globally widespread worldwide species of our study adapt to low inorganic carbon availability by increasing their efficiency of bicarbonate use.  相似文献   

15.
The redox potentials Em(QA/) of the primary quinone electron acceptor QA in oxygen-evolving photosystem II complexes of three species were determined by spectroelectrochemistry. The Em(QA/) values were experimentally found to be −162 ± 3 mV for a higher plant spinach, −171 ± 3 mV for a green alga Chlamydomonas reinhardtii and −104 ± 4 mV vs. SHE for a red alga Cyanidioschyzonmerolae. On the basis of possible deviations for the experimental values, as estimated to differ by 9-29 mV from each true value, plausible causes for such remarkable species-dependence of Em(QA/) are discussed, mainly by invoking the effects of extrinsic subunits on the delicate structural environment around QA.  相似文献   

16.
We studied microbial N2 production via anammox and denitrification in the anoxic water column of a restored mining pit lake in Germany over an annual cycle. We obtained high-resolution hydrochemical profiles using a continuous pumping sampler. Lake Rassnitzer is permanently stratified at ca. 29 m depth, entraining anoxic water below a saline density gradient. Mixed-layer nitrate concentrations averaged ca. 200 μmol L−1, but decreased to zero in the anoxic bottom waters. In contrast, ammonium was <5 μmol L−1 in the mixed layer but increased in the anoxic waters to ca. 600 μmol L−1 near the sediments. In January and October, 15N tracer measurements detected anammox activity (maximum 504 nmol N2 L−1 d−1 in 15NH4+-amended incubations), but no denitrification. In contrast, in May, N2 production was dominated by denitrification (maximum 74 nmol N2 L−1 d−1). Anammox activity in May was significantly lower than in October, as characterized by anammox rates (maximum 6 vs. 16 nmol N2 L−1 d−1 in incubations with 15NO3), as well as relative and absolute anammox bacterial cell abundances (0.56% vs. 0.98% of all bacteria, and 2.7×104 vs. 5.2×104 anammox cells mL−1, respectively) (quantified by catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) with anammox bacteria-specific probes). Anammox bacterial diversity was investigated with anammox bacteria-specific 16S rRNA gene clone libraries. The majority of anammox bacterial sequences were related to the widespread Candidatus Scalindua sorokinii/brodae cluster. However, we also found sequences related to Candidatus S. wagneri and Candidatus Brocadia fulgida, which suggests a high anammox bacterial diversity in this lake comparable with estuarine sediments.  相似文献   

17.
Salt marshes near urban, industrial and mining areas are often affected both by heavy metals and by eutrophic water. The aim of this study was to assess and evaluate the main processes involved in the decrease of nitrate concentration in pore water of mine wastes flooded with eutrophic water, considering the presence or absence of plant rhizhosphere. Basic (pH ∼ 7.8) carbonated loam mine wastes and free-carbonated acidic (pH ∼ 6.2) sandy-loam mine wastes were collected from polluted coastal salt marshes of SE Spain which regularly receive nutrient-enriched water. The wastes were put in pots and flooded for 15 weeks with eutrophic water (dissolved organic carbon ∼26 mg L−1, PO43− ∼23 mg L−1, NO3 ∼180 mg L−1). Three treatments were assayed for each type of waste: pots with Sarcocornia fruticosa, pots with Phragmites australis and unvegetated pots. Soluble organic carbon, nitrate, soluble Cd, Pb and Zn, pH and Eh were monitored. But the 2nd day of flooding, nitrate concentrations had decreased between 70% and 90% (equivalent to 1.01-1.12 g N-NO3 m−2 day−1) with respect to the content in the water used for flooding, except in unvegetated pots with acidic wastes. Denitrification was the main mechanism associated with the removal of nitrate. The role of vegetation in improving the rhizospheric environment was relevant in the acidic wastes because higher sand content, lower pH and higher soluble metal concentrations might strongly hinder microbial activity Hence, revegetation of salt marshes polluted by acidic sandy mining wastes might improve the capacity of this type of environment to act as a green filter against excessive nitrate contents flowing through them.  相似文献   

18.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

19.
Flavodiiron proteins (FDPs) are enzymes identified in prokaryotes and a few pathogenic protozoa, which protect microorganisms by reducing O2 to H2O and/or NO to N2O. Unlike most prokaryotic FDPs, the protozoan enzymes from the human pathogens Giardia intestinalis and Trichomonas vaginalis are selective towards O2. UV/vis and EPR spectroscopy showed that, differently from the NO-consuming bacterial FDPs, the Giardia FDP contains an FMN with reduction potentials for the formation of the single and the two-electron reduced forms very close to each other (E1 = −66 ± 15 mV and E2 = −83 ± 15 mV), a condition favoring destabilization of the semiquinone radical. Giardia FDP contains also a non-heme diiron site with significantly up-shifted reduction potentials (E1 = +163 ± 20 mV and E2 = +2 ± 20 mV). These properties are common to the Trichomonas hydrogenosomal FDP, and likely reflect yet undetermined subtle structural differences in the protozoan FDPs, accounting for their marked O2 specificity.  相似文献   

20.
The present paper describes a new tripodal ligand containing imidazole and pyridine arms and its first cis-[RuIII(L)(Cl)2]ClO4 complex (1). The crystal structure of 1 shows RuIII in a distorted octahedral geometry, in which two chloride ions, cis-positioned to each other, are coordinated besides the four nitrogen atoms from the tetradentate ligand L. The cyclic voltammogram of 1 exhibits three redox processes at −67, +73 and +200 mV versus SCE, which are attributed to the RuIII/RuII couple in the cis-[RuIII(L)(Cl)2]+, cis-[RuII(L)(H2O)(Cl)]+ and cis-[RuII(L)(H2O)2]2+, respectively. After chemical reduction (Zn(Hg) or EuII) only the cis-[RuII(L)(H2O)2]2+ species is observed in the cyclic voltammetry. Complex 1 absorbs at 470 nm (ε=1.4×103 mol−1 L cm−1), 335 nm (ε=7.9×103 mol−1 L cm−1), 301 nm (ε=6.7×103 mol−1 L cm−1) and 264 nm (ε=9.9×103 mol−1 L cm−1), in water solution (CF3COOH, 0.01 mol L−1, μ=0.1 mol L−1 with CF3COONa). Spectroelectrochemical experiments show a decrease of the bands at 335 and 301 nm, which are attributed to LMCT transitions from the chloride to the RuIII center and the appearance of a broad band at 402 nm ascribed to MLCT transition from the RuII center to the pyridine ligand. The lability of the water ligands in the cis-[RuII(L)(H2O)2]2+ species has been investigated using the auxiliary ligand pyrazine. Reactions in the presence of stoichiometric and excess of pyrazine yield the same species, cis-[RuII(L)(H2O)(pz)]2+, which exhibits a reversible redox process at 493 mV versus SCE and absorbs at 438 nm (ε=5.1×103 mol−1 L cm−1) and 394 nm (ε=4.2×103 mol−1 L cm−1). Experiments performed with a large excess of pyrazine gave a specific rate constant k1=(2.8±0.5)×10−2 M−1 s−1, at 25 °C, in CF3COOH, 0.01 mol L−1, μ=0.1 mol L−1 (with CF3COONa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号