首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究细叶远志皂苷(tenuifolin,TEN)在Aβ25-35诱导SH-SY5Y细胞氧化损伤中的作用,并探讨其作用机制。建立Aβ25-35诱导的细胞损伤模型,细叶远志皂苷以及自噬抑制剂3-MA进行干预,显微镜观察细胞形态变化,试剂盒检测细胞氧化应激水平,RT-qPCR和Westernblot检测细叶远志皂苷以及自噬抑制剂干预前后Beclin-1、LC3、mTOR、AMPK和ULK1mRNA及蛋白水平变化。结果发现,TEN改善Aβ25-35诱导的SH-SY5Y细胞形态损伤和细胞活力下降;降低ROS和MDA浓度,并提高SOD、GSH-Px及过氧化氢酶的活性;增加AMPK和ULK1的表达,减少mTOR的表达及增加Beclin-1和LC3-Ⅱ/Ⅰ的表达水平。而加入3-MA会拮抗TEN的作用。总之,TEN可能通过调控AMPK/mTOR/ULK1通路,增加Beclin-1及LC3-Ⅱ/Ⅰ蛋白水平激活自噬,进而改善Aβ25-35诱导的细胞形态损伤和细胞活力下降,提高细胞抗氧化应激能力,发挥神经保护作用。  相似文献   

2.
3.
Autophagy is a cellular degradation process that is up-regulated upon starvation. Nutrition-dependent regulation of mTOR (mammalian target of rapamycin) is a major determinant of autophagy. RTK (receptor tyrosine kinase) signalling and AMPK (AMP-activated protein kinase) converge upon mTOR to suppress or activate autophagy. Nutrition-dependent regulation of autophagy is mediated via mTOR phosphorylation of the serine/threonine kinase ULK1 (unc51-like kinase 1). In the present study, we also describe ULK1 as an mTOR-independent convergence point for AMPK and RTK signalling. We initially identified ULK1 as a 14-3-3-binding protein and this interaction was enhanced by treatment with AMPK agonists. AMPK interacted with ULK1 and phosphorylated ULK1 at Ser(555) in vitro. Mutation of this residue to alanine abrogated 14-3-3 binding to ULK1, and in vivo phosphorylation of ULK1 was blocked by a dominant-negative AMPK mutant. We next identified a high-stringency Akt site in ULK1 at Ser(774) and showed that phosphorylation at this site was increased by insulin. Finally, we found that the kinase-activation loop of ULK1 contains a consensus phosphorylation site at Thr(180) that is required for ULK1 autophosphorylation activity. Collectively, our results suggest that ULK1 may act as a major node for regulation by multiple kinases including AMPK and Akt that play both stimulatory and inhibitory roles in regulating autophagy.  相似文献   

4.
Vascular smooth muscle cells (VSMCs) switch from a contractile to a synthetic phenotype in human cardiovascular disease such as atherosclerosis and restenosis after angioplasty. VSMCs show reduced expression of contractile proteins and are capable of responding to mitogens by increasing expression of growth factor receptors. Fibroblast growth factor receptor-1 (FGFR1) signaling is one of several signaling pathways involved in this VSMC phenotypic switching. The aim of this study was to examine the signaling pathway downstream of FGFR1 in the regulation of SM marker gene expression. We found that FGFR1 activated Akt/mTOR pathway and that the mTOR inhibitor rapamycin partially reversed FGFR1-mediated downregulation of SM marker gene expression. Furthermore, we showed that mTOR forms a multi-protein complex with FGFR1 in VSMCs. These findings provide novel information for future development of therapeutic strategies for the treatment of human cardiovascular disease.  相似文献   

5.
Many pathological conditions linked to cigarette smoking are caused by the production of reactive oxygen species (ROS). The present study was conducted to analyze the effect of ROS on the lungs of Swiss mice exposed to cigarette smoking, focusing on autophagy-mediated mechanisms, and investigate the involvement of SESN2, AMPK, and mTOR signaling. Mice were exposed to cigarette smoke (CS) for 7, 15, 30, 45, and 60 days; the control group was not exposed to CS. Only mice exposed to CS for 45 days were selected for subsequent N-acetylcysteine (NAC) supplementation and smoke cessation analyses. Exposure to CS increased the production of ROS and induced molecular changes in the autophagy pathway, including an increase in phosphorylated AMPK and ULK1, reduction in phosphorylated mTOR, and increases in SESN2, ATG12, and LC3B levels. NAC supplementation reduced ROS levels and reversed all molecular changes observed upon CS treatment, suggesting the involvement of oxidative stress in inducing autophagy upon CS exposure. When exposure to CS was stopped, there were decreases in the levels of oxidative stress, AMPK and ULK1 phosphorylation, and autophagy-initiating molecules and increase in mTOR phosphorylation. In conclusion, these results suggest the involvement of ROS, SESN2, AMPK, and mTOR in the CS-induced autophagic process in the lung.  相似文献   

6.
The association of AMPK with ULK1 regulates autophagy   总被引:1,自引:0,他引:1  
Lee JW  Park S  Takahashi Y  Wang HG 《PloS one》2010,5(11):e15394
Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex.  相似文献   

7.
Phosphoserine phosphatase (PSPH), a key enzyme of the l -serine synthesis pathway, has been involved in cancer progression and survival. However, limited evidence revealed the PSPH influence on hepatocellular carcinoma (HCC). Herein, we observed that PSPH expression was upregulated in both HCC tissues and cell lines, which was determined by western blotting. TCGA database showed that the PSPH protein levels were significantly upregulated and affected patient survival rates in HCC. Then gain- and loss-of-function manipulations were performed by transfection with a pcDNA-PSPH expression vector or a specific short interfering RNA against PSPH in Huh7 cells. Huh7 cell proliferation, stemness, invasion, and apoptosis were assessed by using CCK-8 test, colony formation assay, Transwell assay, and Flow cytometry analysis, respectively, and levels of autophagy-related proteins were detected by using western blotting. The results showed that PSPH could induce Huh7 cell autophagy, promote cell proliferation and invasion, and inhibit apoptosis. The knockdown of PSPH could inhibit Huh7 cell proliferation, invasion, and autophagy. Furthermore, PSPH activated Liver kinase B1 (LKB1) and TGF beta-activated kinase 1 (TAK1), affected the adenosine 5′-monophosphate-activated protein kinase (AMPK)/mTOR/ULK1 signaling pathway, but could not activate calcium/calmodulin-dependent protein kinase kinase (CaMKK) in Huh7 cells. Inhibition of either LKB1, TAK1, or AMPK could eliminate the effect of PSPH overexpression on Huh7 cell behaviors. However, inhibition of CaMKK could not influence the effect of PSPH overexpression on Huh7 cell behaviors. In conclusion, PSPH could induce autophagy, promote proliferation and invasion, and inhibit apoptosis in HCC cells via the AMPK/mTOR/ULK1 signaling pathway.  相似文献   

8.
Polyphyllin VII (PP7), a pennogenyl saponin isolated from Rhizoma Paridis, exhibited strong anticancer activities in various cancer types. Previous studies found that PP7 induced apoptotic cell death in human hepatoblastoma cancer (HepG2) cells. In the present study, we investigated whether PP7 could induce autophagy and its role in PP7-induced cell death, and elucidated its mechanisms. PP7 induced a robust autophagy in HepG2 cells as demonstrated by the conversion of LC3B-I to LC3B-II, degradation of P62, formation of punctate LC3-positive structures, and autophagic vacuoles tested by western blot analysis or InCell 2000 confocal microscope. Inhibition of autophagy by treating cells with autophagy inhibitor (chloroquine) abolished the cell death caused by PP7, indicating that PP7 induced an autophagic cell death in HepG2 cells. C-Jun N-terminal kinase (JNK) was activated after treatment with PP7 and pretreatment with SP600125, a JNK inhibitor, reversed PP7-induced autophagy and cell death, suggesting that JNK plays a critical role in autophagy caused by PP7. Furthermore, our study demonstrated that PP7 increased the phosphorylation of AMPK and Bcl-2, and inhibited the phosphorylation of PI3K, AKT and mTOR, suggesting their roles in the PP7-induced autophagy. This is the first report that PP7 induces an autophagic cell death in HepG2 cells via inhibition of PI3K/AKT/mTOR, and activation of JNK pathway, which induces phosphorylation of Bcl-2 and dissociation of Beclin-1 from Beclin-1/Bcl-2 complex, leading to induction of autophagy.  相似文献   

9.
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell''s compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.  相似文献   

10.
Vascular calcification is common in patients with peripheral artery diseases and coronary artery diseases. The osteoblastic differentiation of vascular smooth muscle cells (VSMCs) contributes significantly to vascular calcification. Adiponectin has been demonstrated to exert a protective effect in osteoblastic differentiation of VSMCs through regulating mTOR activity. However, the upstream and downstream signaling molecules of adiponectin-regulated mTOR signaling have not been identified in VSMCs with osteoblastic differentiation. In this study, the VSMC differentiation model was established by beta-glycerophosphate (β-GP) induction. The mineralization was identified by Alizarin Red S staining. Protein expression and phosphorylation were detected by Western blot or immunofluorescence. Adiponectin attenuated osteoblastic differentiation and mineralization of β-GP-treated VSMCs. Adiponectin inhibited osteoblastic differentiation of VSMCs through increasing the level of p-AMPKα. Pretreatment of VSMCs with AMPK inhibitor blocked while AMPK activator enhanced the effect of adiponectin on osteoblastic differentiation of VSMCs. Adiponectin upregulated TSC2 expression and downregulated mTOR and S6K1 phosphorylation in β-GP-treated VSMCs. Adiponectin treatment significantly attenuates the osteoblastic differentiation and calcification of VSMCs through modulation of AMPK–TSC2–mTOR–S6K1 signal pathway.  相似文献   

11.
摘要 目的:探讨红景天苷(Sal)调节单磷酸腺苷活化蛋白激酶(AMPK)/哺乳动物雷帕霉素靶蛋白(mTOR)/Unc51样激酶1(ULK1)信号通路对结肠癌SW480细胞裸鼠肝脏损伤的影响。方法:通过皮下注射SW480细胞悬浮液建立肝转移裸鼠模型,将造模后的裸鼠随机分为模型组、Sal低剂量(Sal-L,50 mg/kg Sal)组、Sal中剂量(Sal-M,100 mg/kg Sal)组、Sal高剂量(Sal-H,200 mg/kg Sal)组,Sal-H+AMPK抑制剂(Compound C,200 mg/kg Sal+10 mg/kg Compound C)组,以未接种SW480细胞悬液的裸鼠作为对照组。腹部主动脉取血,检测裸鼠血清中丙氨酸氨基转移酶(AST)、天冬氨酸氨基转移酶(ALT)水平;处死裸鼠,检测肝转移瘤数目及肝脏重量;HE染色观察肝脏组织病理变化;qRT-PCR检测肝脏组织中AMPK、mTOR、ULK1 mRNA表达水平;Western blot检测肝脏组织中自噬(Beclin1、p62)蛋白及通路相关蛋白表达。结果:与对照组相比,模型组裸鼠组织中出现肝转移瘤,肝脏重量、AST、ALT水平、mTORmRNA、ULK1 mRNA、p62表达显著增加(P<0.05);Beclin1、AMPK mRNA及蛋白表达显著降低(P<0.05);与模型组相比,Sal-L、Sal-M、Sal-H组肝转移瘤数目、肝脏重量、AST、ALT水平、mTORmRNA、ULK1 mRNA、p62表达显著降低(P<0.05);Beclin1、AMPK mRNA及蛋白表达显著增加(P<0.05);与Sal-H组相比,Sal-H+Compound C组肝转移瘤数目、肝脏重量、AST、ALT水平、mTORmRNA、ULK1 mRNA、p62表达显著增加(P<0.05);Beclin1、AMPK mRNA及蛋白表达显著降低(P<0.05)。结论:Sal可通过减少裸鼠肝转移瘤形成,保护裸鼠肝脏,其机制可能与激活AMPK/mTOR/ULK1信号通路,促进肝脏自噬有关。  相似文献   

12.
《Autophagy》2013,9(8):1197-1214
Autophagy is activated in response to a variety of cellular stresses including metabolic stress. While elegant genetic studies in yeast have identified the core autophagy machinery, the signaling pathways that regulate this process are less understood. AMPK is an energy sensing kinase and several studies have suggested that AMPK is required for autophagy. The biochemical connections between AMPK and autophagy, however, have not been elucidated. In this report, we identify a biochemical connection between a critical regulator of autophagy, ULK1, and the energy sensing kinase, AMPK. ULK1 forms a complex with AMPK, and AMPK activation results in ULK1 phosphorylation. Moreover, we demonstrate that the immediate effect of AMPK-dependent phosphorylation of ULK1 results in enhanced binding of the adaptor protein YWHAZ/14-3-3ζ; and this binding alters ULK1 phosphorylation in vitro. Finally, we provide evidence that both AMPK and ULK1 regulate localization of a critical component of the phagophore, ATG9, and that some of the AMPK phosphorylation sites on ULK1 are important for regulating ATG9 localization. Taken together these data identify an ULK1-AMPK signaling cassette involved in regulation of the autophagy machinery.  相似文献   

13.
Cucurbitacins, the natural triterpenoids possessing many biological activities, have been reported to suppress the mTORC1/p70S6K pathway and to induce autophagy. However, the correlation between such activities is largely unknown. In this study, we addressed this issue in human cancer cells in response to cucurbitacin E (CuE) treatment. Our results showed that CuE induced autophagy as evidenced by the formation of LC3-II and colocalization of punctate LC3 with the lysosomal marker LAMP2 in HeLa and MCF7 cells. However, CuE induced much lower levels of autophagy in ATG5-knocked down cells and failed to induce autophagy in DU145 cells lacking functional ATG5 expression, suggesting the dependence of CuE-induced autophagy on ATG5. Consistent with autophagy induction, mTORC1 activity (as reflected by p70S6K and ULK1S758 phosphorylation) was inhibited by CuE treatment. The suppression of mTORC1 activity was further confirmed by reduced recruitment of mTOR to the lysosome, which is the activation site of mTORC1. In contrast, CuE rapidly activated AMPK leading to increased phosphorylation of its substrates. AMPK activation contributed to CuE-induced suppression of mTORC1/p70S6K signaling and autophagy induction, since AMPK knockdown diminished these effects. Collectively, our data suggested that CuE induced autophagy in human cancer cells at least partly via downregulation of mTORC1 signaling and upregulation of AMPK activity.  相似文献   

14.
Adiponectin (APN), an adipose-derived adipokine, offers cardioprotective effects although the precise mechanism of action remains unclear. This study was designed to examine the role of APN in high fat diet-induced obesity and cardiac pathology. Adult C57BL/6 wild-type and APN knockout mice were fed a low or high fat diet for 22 weeks. After 40 day feeding, mice were treated with 2 mg/kg rapamycin or vehicle every other day for 42 days on respective fat diet. Cardiomyocyte contractile and Ca2 + transient properties were evaluated. Myocardial function was evaluated using echocardiography. Dual energy X-ray absorptiometry was used to evaluate adiposity. Energy expenditure, metabolic rate and physical activity were monitored using a metabolic cage. Lipid deposition, serum triglyceride, glucose tolerance, markers of autophagy and fatty acid metabolism including LC3, p62, Beclin-1, AMPK, mTOR, fatty acid synthase (FAS) were evaluated. High fat diet intake induced obesity, systemic glucose intolerance, cardiac hypertrophy, dampened metabolic ability, cardiac and intracellular Ca2 + derangements, the effects of which were accentuated by APN knockout. Furthermore, APN deficiency augmented high fat diet-induced upregulation in the autophagy adaptor p62 and the decline in AMPK without affecting high fat diet-induced decrease in LC3II and LC3II-to-LC3I ratio. Neither high fat diet nor APN deficiency altered Beclin-1. Interestingly, rapamycin negated high fat diet-induced/APN-deficiency-accentuated obesity, cardiac hypertrophy and contractile dysfunction as well as AMPK dephosphorylation, mTOR phosphorylation and p62 buildup. Our results collectively revealed that APN deficiency may aggravate high fat diet-induced obesity, metabolic derangement, cardiac hypertrophy and contractile dysfunction possibly through decreased myocardial autophagy.  相似文献   

15.
Ginsenoside Rg1 promotes antioxidative protection and intracellular calcium homeostasis in cardiomyocytes hypoxia/reoxygenation (H/R) model. However, the pharmacological effects of G-Rg1 on autophagy in cardiomyocytes have not been reported. In this study, we employed H9c2 cardiomyocytes as a model to investigate the effects of G-Rg1 on autophagy in cardiomyocytes under H/R stress. Our results showed that H/R induced increased level of LC3B-2, an autophagy marker, in a time-dependent manner in association with decreased cell viability and cellular ATP content. H/R-induced autophagy and apoptosis were further confirmed by morphological examination. 100 μmol/l Rg1-inhibited H/R induced autophagy and apoptosis, and this was associated with the increase of cellular ATP content and the relief of oxidative stress in the cells. Mechanistically, we found that Rg1 inhibited the activation of AMPKα, promoted the activation of mTOR, and decreased the levels of LC3B-2 and Beclin-1. In conclusion, our data suggest that H/R induces autophagy in H9c2 cells leading to cell injury. Rg1 inhibits autophagosomal formation and apoptosis in the cells, which may be beneficial to the survival of cardiomyocytes under H/R.  相似文献   

16.
Osteoclasts are highly differentiated terminal cells formed by fusion of hematopoietic stem cells. Previously, osteoprotegerin (OPG) inhibit osteoclast differentiation and bone resorption by blocking receptor activator of nuclear factor-κB ligand (RANKL) binding to RANK indirect mechanism. Furthermore, autophagy plays an important role during osteoclast differentiation and function. However, whether autophagy is involved in OPG-inhibited osteoclast formation and bone resorption is not known. To elucidate the role of autophagy in OPG-inhibited osteoclast differentiation and bone resorption, we used primary osteoclast derived from mice bone marrow monocytes/macrophages (BMM) by induced M-CSF and RANKL. The results showed that autophagy-related proteins expression were upregulated; tartrate-resistant acid phosphatase-positive osteoclast number and bone resorption activity were decreased; LC3 puncta and autophagosomes number were increased and activated AMPK/mTOR/p70S6K signaling pathway. In addition, chloroquine (as the autophagy/lysosome inhibitor, CQ) or rapamycin (as the autophagy/lysosome inhibitor, Rap) attenuated osteoclast differentiation and bone resorption activity by OPG treatment via AMPK/mTOR/p70S6K signaling pathway. Our data demonstrated that autophagy plays a critical role in OPG inhibiting osteoclast differentiation and bone resorption via AMPK/mTOR/p70S6K signaling pathway in vitro.  相似文献   

17.
Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells.Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death.Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.  相似文献   

18.
Vitamin E succinate (VES), a derivative of vitamin E, is a promising cancer chemopreventive agent that inhibits tumor promotion by inducing apoptotic cell death. The effects of VES on autophagy, an intricate programmed process which helps cells survive in some stressed situations by degrading some cytoplasmic material, are unclear. When human gastric cancer cells SCG-7901 were exposed to VES, both the level of microtubule-associated protein 1 light chain 3 and the yeast ATG6 homolog Beclin-1 increased, and related autophagy genes were activated, thereby suggesting that autophagy was induced by VES. We also observed that VES-induced autophagy was accompanied by the activation of AMP-activated protein kinases (AMPK). VES-induced autophagy decreased when AMPK was inhibited by using small interfering RNA (siRNA), thereby suggesting that VES-induced autophagy is mediated by AMPK. Moreover, further studies revealed that the decreased activity of mammalian target of rapamycin (mTOR) and its downstream targets P70S6K and 4EBP-1 were involved in VES-activated autophagy associated with AMPK activation. The experiments also showed that the activity of protein kinases B (Akt)-mTOR axis was inhibited by VES. VES-induced AMPK activation could be attenuated by Akt activation. Overall, our studies demonstrated that AMPK was involved in the VES-induced autophagy. Crosstalk exists between AMPK and the Akt/mTOR axis. The results elucidated the mechanism of VES-induced autophagy in human gastric cancer cells.  相似文献   

19.
B cell activating factor from the TNF family (BAFF) is implicated in not only the physiology of normal B cells, but also the pathophysiology of aggressive B cells related to malignant and autoimmune diseases. Autophagy plays a crucial role in balancing the beneficial and detrimental effects of immunity and inflammation. However, little is known about whether and how excessive BAFF mediates autophagy contributing to B-cell proliferation and survival. Here, we show that excessive human soluble BAFF (hsBAFF) inhibited autophagy with a concomitant reduction of LC3-II in normal and B-lymphoid (Raji) cells. Knockdown of LC3 not only potentiated hsBAFF inhibition of autophagy, but also attenuated hsBAFF activation of Akt/mTOR pathway, thereby diminishing hsBAFF-induced B-cell proliferation/viability. Further, we found that hsBAFF inhibition of autophagy was Akt/mTOR-dependent. This is supported by the findings that hsBAFF increased mTORC1-mediated phosphorylation of ULK1 (Ser757); Akt inhibitor X, mTORC1 inhibitor rapamycin, mTORC1/2 inhibitor PP242, expression of dominant negative Akt, or knockdown of mTOR attenuated hsBAFF-induced phosphorylation of ULK1, decrease of LC3-II level, and increase of cell proliferation/viability. Chelating intracellular free Ca2+ ([Ca2+]i) with BAPTA/AM or preventing [Ca2+]i elevation using EGTA or 2-APB profoundly blocked hsBAFF-induced activation of Akt/mTOR, phosphorylation of ULK1 and decrease of LC3-II, as well as increase of cell proliferation/viability. Similar effects were observed in the cells where CaMKII was inhibited by KN93 or knocked down by CaMKII shRNA. Collectively, these results indicate that hsBAFF inhibits autophagy promoting cell proliferation and survival through activating Ca2+-CaMKII-dependent Akt/mTOR signaling pathway in normal and neoplastic B-lymphoid cells. Our findings suggest that manipulation of intracellular Ca2+ level or CaMKII, Akt, or mTOR activity to promote autophagy may be exploited for prevention of excessive BAFF-induced aggressive B lymphocyte disorders and autoimmune diseases.  相似文献   

20.
Yuan  Yajing  Xia  Fei  Gao  Rong  Chen  Yang  Zhang  Yu  Cheng  Zhongping  Zhao  Hongwei  Xu  Liming 《Neurochemical research》2022,47(8):2187-2197

Ischemia/reperfusion (I/R) caused by ischemic stroke treatments leads to brain injury and its pathological mechanism is related to autophagy. The underlying mechanism of kaempferol on cerebral I/R injury needs to be explored. To establish I/R injury, we used a middle cerebral artery occlusion-reperfusion (MCAO) model in rats. MCAO rats were treated with the same amount of saline (I/R group); Treatment group rats were treated orally with kaempferol (50, 100, 200 mg/kg) for 7 days before surgery. After reperfusion for 24 h, the scores of neurological deficits and infarct volume in each group were evaluated. LC3, Beclin-1 p62, AMPK and mTOR protein expression levels were examined by TTC staining, immunofluorescence staining, qRT-PCR and western blotting assay. H&E and TTC staining showed that compared with model group, the infarction size of rats in kaempferol group was markedly reduced. Meanwhile, the results showed that kaempferol had a dose-dependent nerve function repairability. Nissl and TUNEL staining showed that kaempferol could reduce neuronal apoptosis and ameliorate neuronal impairment after I/R. Western blotting and qRT-PCR results showed that kaempferol could protect the brain from ischemia reperfusion by activating autophagy. In addition, add AMPK inhibitor, western blotting and immumohistochemical staining showed that kaempferol mediated AMPK/mTOR signal pathway in MCAO rats. Kaempferol could mediate the AMPK signal pathway to regulate autophagy and inhibit apoptosis to protect brain against I/R injury.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号