首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
Accumulating evidence indicates that autophagy and inflammatory responses contributes to secondary brain injury after traumatic brain injury (TBI), and toll-like receptor 4 (TLR4) is considered to involvement of this cascade and plays an important role. The present study was designed to determine the hypothesis that administration of resatorvid (TAK-242), a TLR4 antagonist, might provide a neuroprotective effect by inhibit TLR4-mediated pathway in a TBI rat model. Rat subjected to controlled cortical impact injury were injected with TAK-242 (0.5 mg/kg, i.v. injected) 10 min prior to injury. The results demonstrated that TAK-242 treatment significantly attenuated TBI-induced neurons loss, brain edema, and neurobehavioral impairment in rats. Immunoblotting analysis showed that TAK-242 treatment reduced TBI-induced TLR4, Beclin 1, and LC3-II levels, and maintained p62 levels at 24 h. Double immunolabeling demonstrated that LC3 dots co-localized with the hippocampus pyramidal neurons, and TLR4 was localized with the hippocampus neurons and astrocytes. In addition, the expression of TLR4 downstream signaling molecules, including MyD88, TRIF, NF-κB, TNF-α, and IL-1β, was significantly downregulated in hippocampus tissue by Western blot analysis. In conclusion, our findings indicate that pre-injury treatment with TAK-242 could inhibit neuronal autophagy and neuroinflammation responses in the hippocampus in a rat model of TBI. The neuroprotective effects of TAK-242 may be related to modulation of the TLR4-MyD88/TRIF-NF-κB signaling pathway. Furthermore, the study also suggests that TAK-242, an attractive potential drug, may be a promising drug candidate for TBI.  相似文献   

2.

Background

Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. Toll-like receptors (TLRs) are signaling receptors in the innate immune system, although emerging evidence indicates their role in brain injury. We have therefore investigated the role played by TLR4 signaling pathway in the development of mechanisms of secondary inflammatory process in traumatic brain injury (TBI) differ in mice that lack a functional TLR4 signaling pathway.

Methods/Principal Findings

Controlled cortical impact injury was performed on TLR4 knockout (KO) mice (C57BL/10ScNJ) and wild-type (WT) mice (C57BL/10ScNJ). TBI outcome was evaluated by determination of infarct volume and assessment of neurological scores. Brains were collected at 24 h after TBI. When compared to WT mice, TLR4 KO mice had lower infarct volumes and better outcomes in neurological and behavioral tests (evaluated by EBST and rotarod test). Mice that lacked TLR4 had minor expression of TBI-induced GFAP, Chymase, Tryptase, IL-1β, iNOS, PARP and Nitrotyrosine mediators implicated in brain damage. The translocation of expression of p-JNK, IκB-α and NF-κB pathway were also lower in brains from TLR4 KO mice. When compared to WT mice, resulted in significant augmentation of all the above described parameters. In addition, apoptosis levels in TLR4 KO mice had minor expression of Bax while on the contrary with Bcl-2.

Conclusions/Significance

Our results clearly demonstrated that absence of TLR4 reduces the development of neuroinflammation, tissues injury events associated with brain trauma and may play a neuroprotective role in TBI in mice.  相似文献   

3.
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect.  相似文献   

4.
Traumatic brain injury (TBI) is one of the main concerns worldwide as there is still no comprehensive therapeutic intervention. Astrocytic water channel aquaporin-4 (AQP-4) system is closely related to the brain edema, water transport at blood-brain barrier (BBB) and astrocyte function in the central nervous system (CNS). Minocycline, a broad-spectrum semisynthetic tetracycline antibiotic, has shown anti-inflammation, anti-apoptotic, vascular protection and neuroprotective effects on TBI models. Here, we tried to further explore the underlying mechanism of minocycline treatment for TBI, especially the relationship of minocycline and AQP4 during TBI treatment. In present study, we observed that minocycline efficaciously reduces the elevation of AQP4 in TBI mice. Furthermore, minocycline significantly reduced neuronal apoptosis, ameliorated brain edema and BBB disruption after TBI. In addition, the expressions of tight junction protein and astrocyte morphology alteration were optimized by minocycline administration. Similar results were found after treating with TGN-020 (an inhibitor of AQP4) in TBI mice. Moreover, these effects were reversed by cyanamide (CYA) treatment, which notably upregulated AQP4 expression level in vivo. In primary cultured astrocytes, small-interfering RNA (siRNA) AQP4 treatment prevented glutamate-induced astrocyte swelling. To sum up, our study suggests that minocycline improves the functional recovery of TBI through reducing AQP4 level to optimize BBB integrity and astrocyte function, and highlights that the AQP4 may be an important therapeutic target during minocycline treating for TBI.  相似文献   

5.
Hydrogen sulfide (H2S), a novel gaseous mediator, has been recognized as an important neuromodulator and neuroprotective agent in the central nervous system. The present study was undertaken to study the effects of exogenous H2S on traumatic brain injury (TBI) and the underlying mechanisms. The effects of exogenous H2S on TBI were examined by using measurement of brain edema, behavior assessment, propidium iodide (PI) staining, and Western blotting, respectively. Compared to TBI groups, H2S pretreatment had reduced brain edema, improved motor performance and ameliorated performance in Morris water maze test after TBI. Immunoblotting results showed that H2S pretreatment reversed TBI-induced cleavage of caspase-3 and decline of Bcl-2, suppressed LC3-II, Beclin-1 and Vps34 activation and maintained p62 level in injured cortex and hippocampus post TBI. The results suggest a protective effect and therapeutic potential of H2S in the treatment of brain injury and the protective effect against TBI may be associated with regulating apoptosis and autophagy.  相似文献   

6.
Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in injury-induced synapse remodeling. Our studies suggest a new role of ephrin-B1, which is known to regulate synapse development in neurons, in astrocyte-mediated synapse remodeling following TBI. Indeed, we observed a transient upregulation of ephrin-B1 immunoreactivity in hippocampal astrocytes following moderate controlled cortical impact model of TBI. The upregulation of ephrin-B1 levels in hippocampal astrocytes coincided with a decline in the number of vGlut1-positive glutamatergic input to CA1 neurons at 3 days post injury even in the absence of hippocampal neuron loss. In contrast, tamoxifen-induced ablation of ephrin-B1 from adult astrocytes in ephrin-B1loxP/yERT2-CreGFAP mice accelerated the recovery of vGlut1-positive glutamatergic input to CA1 neurons after TBI. Finally, our studies suggest that astrocytic ephrin-B1 may play an active role in injury-induced synapse remodeling through the activation of STAT3-mediated signaling in astrocytes. TBI-induced upregulation of STAT3 phosphorylation within the hippocampus was suppressed by astrocyte-specific ablation of ephrin-B1 in vivo, whereas the activation of ephrin-B1 in astrocytes triggered an increase in STAT3 phosphorylation in vitro. Thus, regulation of ephrin-B1 signaling in astrocytes may provide new therapeutic opportunities to aid functional recovery after TBI.  相似文献   

7.
目的:研究高压氧(HBO)对大鼠创伤性脑损伤(TBI)治疗效用并观察脑组织星形胶质细胞活化及胶质细胞源性神经营养因子(GDNF)和神经生长因子(NGF)表达的变化以探讨作用机制。方法:SD雄性大鼠54只,随机分为3组(n=18):假手术组、TBI组和HBO治疗组。采用Feeney法建立大鼠TBI模型,假手术组只开放骨窗,不予打击。HBO治疗组大鼠于脑损伤后6 h采用动物高压舱,以3ATA压力纯氧治疗60 min。TBI后48 h测量神经功能,然后分离脑组织,其中18只用干湿法测定脑含水量;18只脑组织用于切片,部分进行尼氏染色后作形态学观察,部分进行免疫组织化学染色,检测星形胶质细胞标记物胶质纤维酸性蛋白(GFAP)、波形蛋白(vimentin)与S100蛋白的表达;另18只大鼠取伤侧脑半球,进行Western blot分析,观察GDNF和NGF的表达。结果:HBO治疗能减轻神经功能障碍,降低脑含水量,减少海马部位神经细胞丢失,进一步激活损伤侧皮质与海马部位GFAP、vimentin与S-100阳性表达星形胶质细胞,促进损伤侧脑组织GDNF与NGF的表达。结论:HBO对创伤性脑损伤有较好治疗效果,其机制与上调GDNF和NGF的表达有关。  相似文献   

8.
Experimental studies have demonstrated significant secondary damage (including cell apoptosis, blood–brain barrier disruption, inflammatory responses, excitotoxic damage, and free radical production) after traumatic brain injury (TBI). Quercetin is a natural flavonoid found in high quantities in fruits and vegetables, and may be a potential antioxidant and free radical scavenger. The purpose of this study was to determine the effects of quercetin on TBI-induced upregulation of oxidative stress, inflammation, and apoptosis in adult Sprague–Dawley rats. Animals were subjected to Feeney’s weight-drop injury, thus inducing the parietal contusion brain injury model. Quercetin was administered (30 mg/kg intraperitoneal injection) 0, 24, 48, and 72 h after TBI. Quercetin reduced cognitive deficits, the number of TUNEL- and ED-1-positive cells, the protein expressions of Bax and cleaved-caspase-3 proteins, and the levels of TBARS and proinflammatory cytokines, and increased the activity of antioxidant enzymes (GSH-Px, SOD, and CAT) at 1 week after TBI. Our results suggest that in TBI rats, quercetin improves cognitive function owing to its neuroprotective action via the inhibition of oxidative stress, leading to a reduced inflammatory response, thereby reducing neuronal death.  相似文献   

9.
10.
Chen CC  Hung TH  Wang YH  Lin CW  Wang PY  Lee CY  Chen SF 《PloS one》2012,7(1):e30294

Background

Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. This study was undertaken to investigate the effects of wogonin, a flavonoid with potent anti-inflammatory properties, on functional and histological outcomes, brain edema, and toll-like receptor 4 (TLR4)- and nuclear factor kappa B (NF-κB)-related signaling pathways in mice following TBI.

Methodology/Principal Findings

Mice subjected to controlled cortical impact injury were injected with wogonin (20, 40, or 50 mg·kg−1) or vehicle 10 min after injury. Behavioral studies, histology analysis, and measurement of blood-brain barrier (BBB) permeability and brain water content were carried out to assess the effects of wogonin. Levels of TLR4/NF-κB-related inflammatory mediators were also examined. Treatment with 40 mg·kg−1 wogonin significantly improved functional recovery and reduced contusion volumes up to post-injury day 28. Wogonin also significantly reduced neuronal death, BBB permeability, and brain edema beginning at day 1. These changes were associated with a marked reduction in leukocyte infiltration, microglial activation, TLR4 expression, NF-κB translocation to nucleus and its DNA binding activity, matrix metalloproteinase-9 activity, and expression of inflammatory mediators, including interleukin-1β, interleukin-6, macrophage inflammatory protein-2, and cyclooxygenase-2.

Conclusions/Significance

Our results show that post-injury wogonin treatment improved long-term functional and histological outcomes, reduced brain edema, and attenuated the TLR4/NF-κB-mediated inflammatory response in mouse TBI. The neuroprotective effects of wogonin may be related to modulation of the TLR4/NF-κB signaling pathway.  相似文献   

11.
DIX domain containing 1 (Dixdc1), a positive regulator of Wnt signaling pathway, is recently reported to play a role in the neurogenesis. However, the distribution and function of Dixdc1 in the central nervous system (CNS) after brain injury are still unclear. We used an acute traumatic brain injury (TBI) model in adult rats to investigate whether Dixdc1 is involved in CNS injury and repair. Western blot analysis and immunohistochemistry showed a time-dependent up-regulation of Dixdc1 expression in ipsilateral cortex after TBI. Double immunofluorescent staining indicated a colocalization of Dixdc1 with astrocytes and neurons. Moreover, we detected a colocalization of Ki-67, a cell proliferation marker with GFAP and Dixdc1 after TBI. In primary cultured astrocytes stimulated with lipopolysaccharide, we found enhanced expression of Dixdc1 in parallel with up-regulation of Ki-67 and cyclin A, another cell proliferation marker. In addition, knockdown of Dixdc1 expression in primary astrocytes with Dixdc1-specific siRNA transfection induced G0/G1 arrest of cell cycle and significantly decreased cell proliferation. In conclusion, all these data suggest that up-regulation of Dixdc1 protein expression is potentially involved in astrocyte proliferation after traumatic brain injury in the rat.  相似文献   

12.
It has been suggested that oxidative stress plays an important role in the pathophysiology of traumatic brain injury (TBI). N-acetylcysteine (NAC) and selenium (Se) display neuroprotective activities mediated at least in part by their antioxidant and anti-inflammatory properties although there is no report on oxidative stress, antioxidant vitamin, interleukin-1 beta (IL)-1β and IL-4 levels in brain and blood of TBI-induced rats. We investigated effects of NAC and Se administration on physical injury-induced brain toxicity in rats. Thirty-six male Sprague–Dawley rats were equally divided into four groups. First and second groups were used as control and TBI groups, respectively. NAC and Se were administrated to rats constituting third and forth groups at 1, 24, 48 and 72 h after TBI induction, respectively. At the end of 72 h, plasma, erythrocytes and brain cortex samples were taken. TBI resulted in significant increase in brain cortex, erythrocytes and plasma lipid peroxidation, total oxidant status (TOS) in brain cortex, and plasma IL-1β values although brain cortex vitamin A, β-carotene, vitamin C, vitamin E, reduced glutathione (GSH) and total antioxidant status (TAS) values, and plasma vitamin E concentrations, plasma IL-4 level and brain cortex and erythrocyte glutathione peroxidase (GSH-Px) activities decreased by TBI. The lipid peroxidation and IL-1β values were decreased by NAC and Se treatments. Plasma IL-4, brain cortex GSH, TAS, vitamin C and vitamin E values were increased by NAC and Se treatments although the brain cortex vitamin A and erythrocyte GSH-Px values were increased through NAC only. In conclusion, NAC and Se caused protective effects on the TBI-induced oxidative brain injury and interleukin production by inhibiting free radical production, regulation of cytokine-dependent processes and supporting antioxidant redox system.  相似文献   

13.
Traumatic brain injury (TBI) is a widespread cause of death and a major source of adult disability. Subsequent pathological events occurring in the brain after TBI, referred to as secondary injury, continue to damage surrounding tissue resulting in substantial neuronal loss. One of the hallmarks of the secondary injury process is microglial activation resulting in increased cytokine production. Notwithstanding that recent studies demonstrated that caloric restriction (CR) lasting several months prior to an acute TBI exhibits neuroprotective properties, understanding how exactly CR influences secondary injury is still unclear. The goal of the present study was to examine whether CR (50% of daily food intake for 3 months) alleviates the effects of secondary injury on neuronal loss following cortical stab injury (CSI). To this end, we examined the effects of CR on the microglial activation, tumor necrosis factor-α (TNF-α) and caspase-3 expression in the ipsilateral (injured) cortex of the adult rats during the recovery period (from 2 to 28 days) after injury. Our results demonstrate that CR prior to CSI suppresses microglial activation, induction of TNF-α and caspase-3, as well as neurodegeneration following injury. These results indicate that CR strongly attenuates the effects of secondary injury, thus suggesting that CR may increase the successful outcome following TBI.  相似文献   

14.
摘要 目的:创伤性脑损伤(traumatic brain injury, TBI)缺乏安全有效的治疗手段,亟须寻找新的干预靶点。天冬酰胺内肽酶 (asparaginyl endopeptidase, AEP)在免疫和神经系统疾病中起重要作用,本研究观察了小鼠TBI模型中AEP的激活和变化,探讨AEP对脑损伤和修复的意义。方法:控制性皮层撞击法在小鼠右脑半球制作TBI损伤,在造模后的不同时间点,测定受损脑组织内的乳酸含量和AEP的活性变化,免疫荧光化学染色观察TBI之后3天的胶质细胞活化,以及AEP在其中的表达。结果:TBI造成乳酸在受损脑组织内逐渐堆积,导致小胶质细胞和星形胶质细胞的反应性活化和增生,AEP的上调和激活出现在TBI的继发性脑损伤阶段,AEP在小胶质细胞和星形胶质细胞内均出现上调。结论:AEP有可能参与调控TBI引发的胶质细胞活化,在神经损伤和修复中发挥重要作用。  相似文献   

15.
创伤性脑损伤(traumatic brain injury,TBI)是极为常见的外伤性疾病,致死率和致残率很高。存活者伴随的空间认知功能障碍,给患者家庭和社会造成了极大的负担。目前,对TBI造成的空间记忆障碍缺乏系统研究。脑损伤后海马组织与记忆有关的分子以及组成神经元骨架的分子如何变化研究甚少。本研究采用Wistar大鼠为研究对象,并随机将其分为假手术(sham)组和创伤性脑损伤(TBI)组。TBI组再按致伤后时间长短分为6 h、12 h、24 h、72 h、15 d五个亚组。TBI组应用PinPointTM颅脑撞击器撞击而致伤,sham组不撞击。采用Morris水迷宫评价实验动物空间记忆能力;干湿重法测定脑含水量,评估脑水肿与海马水通道蛋白4(aquaporin-4,AQP-4)的相关性;海马神经元特异性核蛋白(neuron specific nuclear protein,NeuN)标记和免疫荧光检测评估TBI致大鼠神经元丢失情况;通过Western印迹检测TBI致海马骨架相关蛋白质和记忆相关蛋白质含量变化。本研究证实,与sham组相比,TBI组大鼠潜伏期明显增加[(61.98±12.82) s vs.(28.32±8.52) s,n=5,P<0.01,day 15],探索时间明显缩短[(36.98±0.37) s vs. (73.68±5.09) s,n=5,P<0.01,day15],表明脑创伤损害了动物的空间参考记忆能力和空间工作记忆能力。与sham组相比,TBI组大鼠海马AQP-4在蛋白质水平上的表达和脑含水量持续升高,15 d恢复正常;在12 h[(3.78±0.74),(83.78±0.35)%]和72 h[(3.49±0.85),(82.28±0.63)%]均形成两个波峰,n=5,P均<0.01,表明继发性脑损伤与持续脑水肿和海马AQP-4在蛋白质上的高表达有关。与sham组相比,NeuN标记和免疫荧光检测发现,TBI后24 h 致大鼠海马神经元丢失严重[(198.2±8.002) vs.(297.2±6.866) cells/mm2, n=5,P<0.01],表明TBI动物的海马功能受损。与sham相比,TBI组海马神经元树突标志物微管结合蛋白2(microtubule associated proein 2,MAP2)和突触前终末特异性标记物突触素(synaptophysin,SYN)在蛋白质水平均伤后逐步降低(n=5,P均<0.01),72 h[(0.55±0.05) vs.(1.27±0.08), (0.52±0.14) vs.(1.06±0.16), n=5,P均<0.01]降低最明显;TBI组形成神经元纤维缠结主要成分的过度磷酸化tau(ser404),伤后逐步升高,72 h[(1.25±0.11)vs. (0.33±0.07), n=5,P<0.01]升高最明显。 MAP2、SYN和过度磷酸化的tau(ser404)检测指标的改变,表明脑损伤致神经元受损,神经元生长和损伤修复能力减弱,最终导致神经元骨架破环,TBI损害了动物的海马空间记忆能力。与sham组相比,TBI组大鼠海马环磷酸腺苷反应元件结合蛋白(cAMP response element binding protein,CREB)和磷酸化CREB ser133(phosphorylated CREB Ser133, pCREB Ser133)含量降低明显(n=5,P均<0.05),表明脑损伤动物海马的存储记忆能力减弱;TBI组大鼠海马一般调控阻遏蛋白激酶2(general control nonderepressible 2 kinase,GCN2)蛋白质升高明显(n=5,P均<0.05),表明脑损伤动物海马将新信息转化成长期记忆能力下降。本研究提示,创伤性脑损伤可使大鼠海马神经元骨架破坏,进而导致在学习记忆过程中起重要作用的分子蛋白质下调,抑制记忆储存的蛋白质(GCN2)上调,促使学习记忆功能障碍。  相似文献   

16.
创伤性脑损伤(traumatic brain injury,TBI)是极为常见的外伤性疾病,致死率和致残率很高。存活者伴随的空间认知功能障碍,给患者家庭和社会造成了极大的负担。目前,对TBI造成的空间记忆障碍缺乏系统研究。脑损伤后海马组织与记忆有关的分子以及组成神经元骨架的分子如何变化研究甚少。本研究采用Wistar大鼠为研究对象,并随机将其分为假手术(sham)组和创伤性脑损伤(TBI)组。TBI组再按致伤后时间长短分为6 h、12 h、24 h、72 h、15 d五个亚组。TBI组应用PinPointTM颅脑撞击器撞击而致伤,sham组不撞击。采用Morris水迷宫评价实验动物空间记忆能力;干湿重法测定脑含水量,评估脑水肿与海马水通道蛋白4(aquaporin-4,AQP-4)的相关性;海马神经元特异性核蛋白(neuron specific nuclear protein,NeuN)标记和免疫荧光检测评估TBI致大鼠神经元丢失情况;通过Western印迹检测TBI致海马骨架相关蛋白质和记忆相关蛋白质含量变化。本研究证实,与sham组相比,TBI组大鼠潜伏期明显增加[(61.98±12.82) s vs.(28.32±8.52) s,n=5,P<0.01,day 15],探索时间明显缩短[(36.98±0.37) s vs. (73.68±5.09) s,n=5,P<0.01,day15],表明脑创伤损害了动物的空间参考记忆能力和空间工作记忆能力。与sham组相比,TBI组大鼠海马AQP-4在蛋白质水平上的表达和脑含水量持续升高,15 d恢复正常;在12 h[(3.78±0.74),(83.78±0.35)%]和72 h[(3.49±0.85),(82.28±0.63)%]均形成两个波峰,n=5,P均<0.01,表明继发性脑损伤与持续脑水肿和海马AQP-4在蛋白质上的高表达有关。与sham组相比,NeuN标记和免疫荧光检测发现,TBI后24 h 致大鼠海马神经元丢失严重[(198.2±8.002) vs.(297.2±6.866) cells/mm2, n=5,P<0.01],表明TBI动物的海马功能受损。与sham相比,TBI组海马神经元树突标志物微管结合蛋白2(microtubule associated proein 2,MAP2)和突触前终末特异性标记物突触素(synaptophysin,SYN)在蛋白质水平均伤后逐步降低(n=5,P均<0.01),72 h[(0.55±0.05) vs.(1.27±0.08), (0.52±0.14) vs.(1.06±0.16), n=5,P均<0.01]降低最明显;TBI组形成神经元纤维缠结主要成分的过度磷酸化tau(ser404),伤后逐步升高,72 h[(1.25±0.11)vs. (0.33±0.07), n=5,P<0.01]升高最明显。 MAP2、SYN和过度磷酸化的tau(ser404)检测指标的改变,表明脑损伤致神经元受损,神经元生长和损伤修复能力减弱,最终导致神经元骨架破环,TBI损害了动物的海马空间记忆能力。与sham组相比,TBI组大鼠海马环磷酸腺苷反应元件结合蛋白(cAMP response element binding protein,CREB)和磷酸化CREB ser133(phosphorylated CREB Ser133, pCREB Ser133)含量降低明显(n=5,P均<0.05),表明脑损伤动物海马的存储记忆能力减弱;TBI组大鼠海马一般调控阻遏蛋白激酶2(general control nonderepressible 2 kinase,GCN2)蛋白质升高明显(n=5,P均<0.05),表明脑损伤动物海马将新信息转化成长期记忆能力下降。本研究提示,创伤性脑损伤可使大鼠海马神经元骨架破坏,进而导致在学习记忆过程中起重要作用的分子蛋白质下调,抑制记忆储存的蛋白质(GCN2)上调,促使学习记忆功能障碍。  相似文献   

17.
Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal) overexpression of IGF-1 using the controlled cortical impact (CCI) injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d) hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI.  相似文献   

18.
Traumatic brain injury (TBI) is frequently characterized by neuronal, axonal and myelin loss, reactive gliosis and neuroinflammation, often associated with functional deficits. Endogenous repair mechanisms include production of new neurons from precursor cells, but usually the new neurons fail to integrate and survive more than a few weeks. This is in part mediated by the toxic and inflammatory environment present in the injured brain which activates precursor cells to proliferate and differentiate but limits survival of the newborn progeny. Therefore, an understanding of mechanisms that regulate production and survival of newborn neurons and the neuroinflammatory response after brain injury may lead to therapeutic options to improve outcomes. Suppressor of Cytokine Signaling 2 (SOCS2) promotes hippocampal neurogenesis and survival of newborn neurons in the adult brain and regulates anti-inflammatory responses in the periphery, suggesting it may be a useful candidate to improve outcomes of TBI. In this study the functional and cellular responses of SOCS2 over-expressing transgenic (SOCS2Tg) mice were compared to wildtype littermates following mild or moderately severe TBI. Unlike wildtype controls, SOCS2Tg mice showed functional improvement on a ladder test, with a smaller lesion volume at 7d post injury and increased numbers of proliferative CD11b+ microglia/macrophages at 35d post-injury in the mild injury paradigm. At 7d post-moderately severe injury there was an increase in the area covered by cells expressing an anti-inflammatory M2 phenotype marker (CD206+) but no difference in cells with a pro-inflammatory M1 phenotype marker (CD16/32+). No effect of SOCS2 overexpression was observed in production or survival of newborn neurons, even in the presence of the neuroprotective agent erythropoietin (EPO). Therefore, SOCS2 may improve outcome of TBI in mice by regulating aspects of the neuroinflammatory response, promoting a more anti-inflammatory environment, although this was not sufficient to enhance survival of newborn cortical neurons.  相似文献   

19.
Chen  Mingming  Guo  Linlu  Hao  Jie  Ni  Jie  Lv  Qunyu  Xin  Xiaoyan  Liao  Hong 《Cellular and molecular neurobiology》2022,42(4):1153-1166

Astrogliosis after brain trauma can have a significant impact on functional recovery. However, little is known about the mechanisms underlying astrocyte proliferation and subsequent astrogliosis. In this study, we established a cortical stab wound injury mouse model and observed dramatic astrocyte activation and nerve growth factor receptor (p75NTR) upregulation near the lesion. We also found profound alterations in the cell cycle of astrocytes near the lesion, with a switch from a mitotically quiescent (G0) phase to the G2/M and S phases. However, no changes in the level of astrocyte apoptosis were observed. Cell cycle progression to the G2/M and S phases and CDK2 protein levels in response to cortical stab wound was inhibited after p75NTR knockdown in mouse astrocytes. Conversely, p75NTR overexpression in mouse astrocytes was sufficient in promoting cell cycle progression. In conclusion, our results suggested that p75NTR upregulation in astrocytes after brain injury induces cell cycle entry by promoting CDK2 expression and promoting astrocyte proliferation. Our findings provided a better understanding of astrocytic responses after cortical stab wound injury in mice.

  相似文献   

20.
Traumatic brain injury (TBI) is ubiquitous and effective treatments for it remain supportive largely due to uncertainty over how endogenous repair occurs. Recently, we demonstrated that hippocampal injury-induced neurogenesis is one mechanism underlying endogenous repair following TBI. Donepezil is associated with increased hippocampal neurogenesis and has long been known to improve certain aspects of cognition following many types of brain injury through unknown mechanisms. By coupling donepezil therapy with temporally regulated ablation of injury-induced neurogenesis using nestin-HSV transgenic mice, we investigated whether the pro-cognitive effects of donepezil following injury might occur through increasing neurogenesis. We demonstrate that donepezil itself enhances neurogenesis and improves cognitive function following TBI, even when injury-induced neurogenesis was inhibited. This suggests that the therapeutic effects of donepezil in TBI occur separately from its effects on neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号