首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structured illumination microscopy (SIM) is the commonly used super‐resolution (SR) technique for imaging subcellular dynamics. However, due to its need for multiple illumination patterns, the frame rate is just a fraction of that of conventional microscopy and is thus too slow for fast dynamic studies. A new SR image reconstruction method that maximizes the use of each subframe of the acquisition series is proposed for improving the super‐resolved frame rate by N times for N illumination directions. The method requires no changes in raw data and is appropriate for many versions of SIM setup, including those implementing fast illumination pattern generation mechanism based on spatial light modulator or digital micromirror device. The performance of the proposed method is demonstrated through imaging the highly dynamic endoplasmic reticulum where continuous rapid growths or shape changes of tiny structures are observed.   相似文献   

2.
Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro­tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30–100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging.  相似文献   

3.
Structured illumination microscopy (SIM) with axially optical sectioning capability has found widespread applications in three-dimensional live cell imaging in recent years, since it combines high sensitivity, short image acquisition time, and high spatial resolution. To obtain one sectioned slice, three raw images with a fixed phase-shift, normally 2π/3, are generally required. In this paper, we report a data processing algorithm based on the one-dimensional Hilbert transform, which needs only two raw images with arbitrary phase-shift for each single slice. The proposed algorithm is different from the previous two-dimensional Hilbert spiral transform algorithm in theory. The presented algorithm has the advantages of simpler data processing procedure, faster computation speed and better reconstructed image quality. The validity of the scheme is verified by imaging biological samples in our developed DMD-based LED-illumination SIM system.  相似文献   

4.
Structured illumination microscopy (SIM) is a well‐established method for optical sectioning and super‐resolution. The core of structured illumination is using a periodic pattern to excite image signals. This work reports a method for estimating minor pattern distortions from the raw image data and correcting these distortions during SIM image processing. The method was tested with both simulated and experimental image data from two‐photon Bessel light‐sheet SIM. The results proves the method is effective in challenging situations, where strong scattering background exists, signal‐to‐noise ratio (SNR) is low and the sample structure is sparse. Experimental results demonstrate restoring synaptic structures in deep brain tissue, despite the presence of strong light scattering and tissue‐induced SIM pattern distortion.  相似文献   

5.
Yan L  Rueden CT  White JG  Eliceiri KW 《BioTechniques》2006,41(3):249, 251, 253 passim
Live cell imaging has been greatly advanced by the recent development of new fluorescence microscopy-based methods such as multiphoton laser-scanning microscopy, which can noninvasively image deep into live specimens and generate images of extrinsic and intrinsic signals. Of recent interest has been the development of techniques that can harness properties of fluorescence, other than intensity, such as the emission spectrum and excited state lifetime of a fluorophore. Spectra can be used to discriminate between fluorophores, and lifetime can be used to report on the microenvironment of fluorophores. We describe a novel technique-combined spectral and lifetime imaging-which combines the benefits of multiphoton microscopy, spectral discrimination, and lifetime analysis and allows for the simultaneous collection of all three dimensions of data along with spatial and temporal information.  相似文献   

6.
Fluorescence lifetime imaging of calcium using Quin-2.   总被引:4,自引:0,他引:4  
We describe the use of a new imaging technology, fluorescence lifetime imaging (FLIM), for the imaging of the calcium concentrations based on the fluorescence lifetime of a calcium indicator. The fluorescence lifetime of Quin-2 is shown to be highly sensitive to [Ca2+]. We create two-dimensional lifetime images using the phase shift and modulation of the Quin-2 in response to intensity-modulated light. The two-dimensional phase and modulation values are obtained using a gain-modulated image intensifier and a slow-scan CCD camera. The lifetime values in the 2D image were verified using standard frequency-domain measurements. Importantly, the FLIM method does not require the probe to display shifts in the excitation or emission spectra, which may allow Ca2+ imaging using other Ca2+ probes not in current widespread use due to the lack of spectral shifts. Fluorescence lifetime imaging can be superior to stationary (steady-state) imaging because lifetimes are independent of the local probe concentration and/or intensity, and should thus be widely applicable to chemical imaging using fluorescence microscopy.  相似文献   

7.
The 3D higher order organization of chromatin within the nucleus of eukaryotic cells has so far remained elusive. A wealth of relevant information, however, is increasingly becoming available from chromosome conformation capture (3C) and related experimental techniques, which measure the probabilities of contact between large numbers of genomic sites in fixed cells. Such contact probabilities (CPs) can in principle be used to deduce the 3D spatial organization of chromatin. Here, we propose a computational method to recover an ensemble of chromatin conformations consistent with a set of given CPs. Compared with existing alternatives, this method does not require conversion of CPs to mean spatial distances. Instead, we estimate CPs by simulating a physically realistic, bead-chain polymer model of the 30-nm chromatin fiber. We then use an approach from adaptive filter theory to iteratively adjust the parameters of this polymer model until the estimated CPs match the given CPs. We have validated this method against reference data sets obtained from simulations of test systems with up to 45 beads and 4 loops. With additional testing against experiments and with further algorithmic refinements, our approach could become a valuable tool for researchers examining the higher order organization of chromatin.  相似文献   

8.
The chloroplast is the chlorophyll‐containing organelle that produces energy through photosynthesis. Within the chloroplast is an intricate network of thylakoid membranes containing photosynthetic membrane proteins that mediate electron transport and generate chemical energy. Historically, electron microscopy (EM) has been a powerful tool for visualizing the macromolecular structure and organization of thylakoid membranes. However, an understanding of thylakoid membrane dynamics remains elusive because EM requires fixation and sectioning. To improve our knowledge of thylakoid membrane dynamics we need to consider at least two issues: (i) the live‐cell imaging conditions needed to visualize active processes in vivo; and (ii) the spatial resolution required to differentiate the characteristics of thylakoid membranes. Here, we utilize three‐dimensional structured illumination microscopy (3D‐SIM) to explore the optimal imaging conditions for investigating the dynamics of thylakoid membranes in living plant and algal cells. We show that 3D‐SIM is capable of examining broad characteristics of thylakoid structures in chloroplasts of the vascular plant Arabidopsis thaliana and distinguishing the structural differences between wild‐type and mutant strains. Using 3D‐SIM, we also visualize thylakoid organization in whole cells of the green alga Chlamydomonas reinhardtii. These data reveal that high light intensity changes thylakoid membrane structure in C. reinhardtii. Moreover, we observed the green alga Chromochloris zofingiensis and the moss Physcomitrella patens to show the applicability of 3D‐SIM. This study demonstrates that 3D‐SIM is a promising approach for studying the dynamics of thylakoid membranes in photoautotrophic organisms during photoacclimation processes.  相似文献   

9.
Wide-field fluorescence microscopy (WFFM) is widely adopted in biomedical studies, due to its high imaging speed over large field-of-views. However, WFFM is susceptible to out-of-focus background. To overcome this problem, structured illumination microscopy (SIM) was proposed as a wide-field, optical-sectioning technique, which needs multiple raw images for image reconstruction and thus has a lower imaging speed. Here we propose SIM with interleaved reconstruction, to make SIM of lossless speed. We apply this method in volumetric imaging of neural network dynamics in brains of zebrafish larva in vivo.  相似文献   

10.
Recent advances in fluorescence microscopy have extended the spatial resolution to the nanometer scale. Here, we report an engineered photoconvertible fluorescent protein (pcFP) variant, designated as mMaple, that is suited for use in multiple conventional and super-resolution imaging modalities, specifically, widefield and confocal microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy. We demonstrate the versatility of mMaple by obtaining super-resolution images of protein organization in Escherichia coli and conventional fluorescence images of mammalian cells. Beneficial features of mMaple include high photostability of the green state when expressed in mammalian cells and high steady state intracellular protein concentration of functional protein when expressed in E. coli. mMaple thus enables both fast live-cell ensemble imaging and high precision single molecule localization for a single pcFP-containing construct.  相似文献   

11.
The linear sequence of DNA encodes access to the complete set of proteins that carry out cellular functions. Yet, much of the functionality appropriate for each cell is nested within layers of dynamic regulation and organization, including a hierarchy of chromatin structural states and spatial arrangement within the nucleus. There remain limitations in our understanding of gene expression within the context of nuclear organization from an inability to characterize hierarchical chromatin organization in situ. Here we demonstrate the use of fluorescence lifetime imaging microscopy (FLIM) to quantify and spatially resolve chromatin condensation state using cell-permeable, DNA-binding dyes (Hoechst 33342 and PicoGreen). Through in vitro and in situ experiments we demonstrate the sensitivity of fluorescence lifetime to condensation state through the mechanical effects that accompany the structural changes and are reflected through altered viscosity. The establishment of FLIM for resolving and quantifying chromatin condensation state opens the door for single-measurement mechanical studies of the nucleus and for characterizing the role of genome structure and organization in nuclear processes that accompany physiological and pathological changes.  相似文献   

12.
Structured illumination microscopy is a method that can increase the spatial resolution of wide-field fluorescence microscopy beyond its classical limit by using spatially structured illumination light. Here we describe how this method can be applied in three dimensions to double the axial as well as the lateral resolution, with true optical sectioning. A grating is used to generate three mutually coherent light beams, which interfere in the specimen to form an illumination pattern that varies both laterally and axially. The spatially structured excitation intensity causes normally unreachable high-resolution information to become encoded into the observed images through spatial frequency mixing. This new information is computationally extracted and used to generate a three-dimensional reconstruction with twice as high resolution, in all three dimensions, as is possible in a conventional wide-field microscope. The method has been demonstrated on both test objects and biological specimens, and has produced the first light microscopy images of the synaptonemal complex in which the lateral elements are clearly resolved.  相似文献   

13.
Determining averaged effective diffusion constants from experimental measurements of fluorescent proteins in an inhomogeneous medium in the presence of ligand-receptor interactions poses problems of analytical tractability. Here, we introduced a nonfitting method to evaluate the averaged effective diffusion coefficient of a region of interest (which may include a whole nucleus) by mathematical processing of the entire cellular two-dimensional spatial pattern of recovered fluorescence. Spatially and temporally resolved measurements of protein transport inside cells were obtained using the fluorescence recovery after photobleaching technique. Two-dimensional images of fluorescence patterns were collected by laser-scanning confocal microscopy. The method was demonstrated by applying it to an estimation of the mobility of green fluorescent protein-tagged heterochromatin protein 1 in the nuclei of living mouse embryonic fibroblasts. This approach does not require the mathematical solution of a corresponding system of diffusion-reaction equations that is typical of conventional fluorescence recovery after photobleaching data processing, and is most useful for investigating highly inhomogeneous areas, such as cell nuclei, which contain many protein foci and chromatin domains.  相似文献   

14.
15.
Dendritic spines are protrusions emerging from the dendrite of a neuron and represent the primary postsynaptic targets of excitatory inputs in the brain. Technological advances have identified these structures as key elements in neuron connectivity and synaptic plasticity. The quantitative analysis of spine morphology using light microscopy remains an essential problem due to technical limitations associated with light''s intrinsic refraction limit. Dendritic spines can be readily identified by confocal laser-scanning fluorescence microscopy. However, measuring subtle changes in the shape and size of spines is difficult because spine dimensions other than length are usually smaller than conventional optical resolution fixed by light microscopy''s theoretical resolution limit of 200 nm.Several recently developed super resolution techniques have been used to image cellular structures smaller than the 200 nm, including dendritic spines. These techniques are based on classical far-field operations and therefore allow the use of existing sample preparation methods and to image beyond the surface of a specimen. Described here is a working protocol to apply super resolution structured illumination microscopy (SIM) to the imaging of dendritic spines in primary hippocampal neuron cultures. Possible applications of SIM overlap with those of confocal microscopy. However, the two techniques present different applicability. SIM offers higher effective lateral resolution, while confocal microscopy, due to the usage of a physical pinhole, achieves resolution improvement at the expense of removal of out of focus light. In this protocol, primary neurons are cultured on glass coverslips using a standard protocol, transfected with DNA plasmids encoding fluorescent proteins and imaged using SIM. The whole protocol described herein takes approximately 2 weeks, because dendritic spines are imaged after 16-17 days in vitro, when dendritic development is optimal. After completion of the protocol, dendritic spines can be reconstructed in 3D from series of SIM image stacks using specialized software.  相似文献   

16.
The increasing prevalence of automated image acquisition systems is enabling new types of microscopy experiments that generate large image datasets. However, there is a perceived lack of robust image analysis systems required to process these diverse datasets. Most automated image analysis systems are tailored for specific types of microscopy, contrast methods, probes, and even cell types. This imposes significant constraints on experimental design, limiting their application to the narrow set of imaging methods for which they were designed. One of the approaches to address these limitations is pattern recognition, which was originally developed for remote sensing, and is increasingly being applied to the biology domain. This approach relies on training a computer to recognize patterns in images rather than developing algorithms or tuning parameters for specific image processing tasks. The generality of this approach promises to enable data mining in extensive image repositories, and provide objective and quantitative imaging assays for routine use. Here, we provide a brief overview of the technologies behind pattern recognition and its use in computer vision for biological and biomedical imaging. We list available software tools that can be used by biologists and suggest practical experimental considerations to make the best use of pattern recognition techniques for imaging assays.  相似文献   

17.
18.
We demonstrate three-dimensional (3D) super-resolution in live multicellular organisms using structured illumination microscopy (SIM). Sparse multifocal illumination patterns generated by a digital micromirror device (DMD) allowed us to physically reject out-of-focus light, enabling 3D subdiffractive imaging in samples eightfold thicker than had been previously imaged with SIM. We imaged samples at one 2D image per second, at resolutions as low as 145 nm laterally and 400 nm axially. In addition to dual-labeled, whole fixed cells, we imaged GFP-labeled microtubules in live transgenic zebrafish embryos at depths >45 μm. We captured dynamic changes in the zebrafish lateral line primordium and observed interactions between myosin IIA and F-actin in cells encapsulated in collagen gels, obtaining two-color 4D super-resolution data sets spanning tens of time points and minutes without apparent phototoxicity. Our method uses commercially available parts and open-source software and is simpler than existing SIM implementations, allowing easy integration with wide-field microscopes.  相似文献   

19.
20.
NADH is a naturally fluorescent metabolite associated with cellular respiration. Exploiting the different fluorescence lifetime of free and bound NADH has the potential to quantify the relative amount of bound and free NADH, enhancing understanding of cellular processes including apoptosis, cancer pathology, and enzyme kinetics. We use the phasor-fluorescence lifetime image microscopy approach to spatially map NADH in both the free and bound forms of live undifferentiated and differentiated myoblast cells. The phasor approach graphically depicts the change in lifetime at a pixel level without the requirement for fitting the decay. Comparison of the spatial distribution of NADH in the nucleus of cells induced to differentiate through serum starvation and undifferentiated cells show differing distributions of bound and free NADH. Undifferentiated cells displayed a short lifetime indicative of free NADH in the nucleus and a longer lifetime attributed to the presence of bound NADH outside of the nucleus. Differentiating cells displayed redistribution of free NADH with decreased relative concentration of free NADH within the nucleus whereas the majority of NADH was found in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号