首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
We have previously shown that mice expressing Hprt a allele(s) have erythrocyte hypoxanthine phosphoribosyltransferase (HPRT) levels that are approximately 25-fold (Mus musculus castaneus) and 70-fold (Mus spretus) higher than in mice that express the Hprt b allele (Mus musculus domesticus; C57BI/6J; C3H/HeHa), and that these differences in erythrocyte HPRT levels are due to differences in the turnover rates of the HPRT A and B proteins as reticulocytes mature to erythrocytes. We show here that: the taxonomic subgroups of the genus Mus are essentially monomorphic for the occurrence of either the Hprt a or the Hprt b allele, with Hprt a being common in the aboriginal species (M. spretus, Mus hortulanus and Mus abbotti) and in several commensal species (Mus musculus musculus, M. m. castaneus, Mus musculus molossinus), while Hprt b is common in feral M. m. domesticus populations as well as in all inbred strains of mice tested; in all these diverse Mus subgroups there is a strict association of Hprt a with high and Hprt b with low levels of erythrocyte HPRT; and, the association between the occurrence of the Hprt a allele and elevated erythrocyte HPRT levels is retained following repeated backcrosses of wild-derived Hprt a allele(s) into the genetic background of inbred strains of mice with the Hprt b allele. Collectively, these observations indicate that the elevated and low levels of erythrocyte HPRT are specified by differences in the Hprt a and b structural genes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
An electrophoretic survey of concentrations of lysozymes M and P was carried out with seven species in the house mouse group (spretus, hortulanus, abbotti, musculus, castaneus, domesticus and molossinus). In most species M is the predominant lysozyme in all tissues tested, except the small intestine, where P predominates if present. In inbred strains of molossinus mice P is more abundant than M in all tissues tested. The phenotypes of high expression of P lysozyme and low expression of M lysozyme in peritoneal and alveolar macrophages were examined genetically. Results of interspecific crosses and backcrosses to domesticus mice support the model that the phenotypes are caused by mutation(s) tightly linked to the lysozyme locus. Alleles at the regulatory loci show additive inheritance.  相似文献   

3.
We report the isolation and characterization of two recombinant clones containing DNA derived from the Y chromosome of the C57BL/10 inbred mouse strain. Both clones were isolated from a lambda phage library derived from a partial EcoRI digest of C57BL/10 male DNA using the murine retrovirus M720. Characterization of these clones showed they were derived from a repeated segment present on the C57BL/10J Y chromosome that contains sequences found elsewhere in the genome. In addition, one clone contained a sequence, designated YB10, that is unique to the Y chromosome and present in approximately 500 copies on the C57BL/10J Y chromosome. Analysis of Southern blots containing DNAs prepared from females and males of representative species from four subgenera of Mus probed with pYB10 and the 3'LTR from one of the Y-associated retroviruses (MuRVY) revealed that, with the exception of a single fragment observed in both female and male DNA of Mus saxicola, hybridization to pYB10 was observed only to male DNA of the species Mus spretus, Mus hortulanus, Mus musculus, Mus domesticus and Mus abbotti. In addition, the pattern and intensity of hybridization to YB10 and the MuRVY-LTR indicated that sequence of divergence was followed by amplification of Y chromosome sequences containing YB10 and MuRVY. The divergence and amplification occurred separately in each of the ancestral lineages leading to M. spretus, M. hortulanus, M. abbotti, M. musculus and M. domesticus. We suggest that acquisition and amplification of DNA sequences by the mammalian Y chromosome has contributed to its evolution and may imply that the mammalian Y chromosome is evolving at a faster rate than the rest of the genome.  相似文献   

4.
Y Chromosome Evolution in the Subgenus Mus (Genus Mus)   总被引:6,自引:5,他引:1       下载免费PDF全文
P. K. Tucker  B. K. Lee    E. M. Eicher 《Genetics》1989,122(1):169-179
A 305 base pair DNA sequence isolated from the Y chromosome of the inbred mouse strain C57BL/10 was used to investigate the pattern and tempo of evolution of Y chromosome DNA sequences for five species in the subgenus Mus, including Mus spretus, Mus hortulanus, Mus abbotti, Mus musculus and Mus domesticus. Variation in hybridization patterns between species was characterized by differences in fragment lengths of both intensely and faintly hybridizing fragments, whereas variation in hybridization patterns within species was characterized primarily by differences in fragment lengths of faintly hybridizing fragments. Phylogenetic analyses were conducted based on fragment size variation within and among species. Phylogenetic relationships inferred from these analyses partly agree with the phylogenetic relationships obtained from biochemical and mitochondrial DNA data. We conclude that a set of DNA sequences common to the Y chromosomes of a closely related group of species in the subgenus Mus has evolved rapidly as reflected by sequence divergence and sequence amplification.  相似文献   

5.
Using four repetitive sequences, we compared DNAs isolated from Mus caroli, M. cookii, M. hortulanus, M. musculus, M. pahari, M. saxicola, and M. spretus. Except for B1, these probes showed species-specific hybridization patterns. Mouse interspersed fragment (MIF) sequences were present in all species examined, but those defined by the 1.3-kb EcoR1 band were fewer in M. pahari and M. saxicola than in the other species. The Y-chromosomal probe showed male-specific accumulation only in M. hortulanus, M. musculus, and M. spretus, which are known to be closely related. The genetic difference between M. spretus and the other two species (M. hortulanus and M. musculus) was clearly demonstrated by a M. musuclus centromeric sequence that hybridized strongly to M. hortulanus and M. musculus DNA but was underrepresented in the genome of M. spretus. These results may suggest the usefulness of these repetitive sequences in the classification of Mus species that display only subtle morphological differences.  相似文献   

6.
Several species in the rodent genus Mus are used as model research organisms, but comparative studies of these mice have been hampered by the lack of a well-supported phylogeny. We used DNA sequences from six genes representing paternally, maternally, and biparentally inherited regions of the genome to infer phylogenetic relationships among 10 species of Mus commonly used in laboratory research. Our sample included seven species from the subgenus Mus; one species each from the subgenera Pyromys, Coelomys, and Nannomys; and representatives from three additional murine genera, which served as outgroups in the phylogenetic analyses. Although each of the six genes yielded a unique phylogeny, several clades were supported by four or more gene trees. Nodes that conflicted between trees were generally characterized by weak support for one or both of the alternative topologies, thus providing no compelling evidence that any individual gene, or part of the genome, was misleading with respect to the evolutionary history of these mice. Analysis of the combined data resulted in a fully resolved tree that strongly supports monophyly of the genus Mus, monophyly of the subgenus Mus, division of the subgenus Mus into Palearctic (M. musculus, M. macedonicus, M. spicilegus, and M. spretus) and Asian (M. cervicolor, M. cookii, and M. caroli) clades, monophyly of the house mice (M. m. musculus, "M. m. molossinus," M. m. castaneus, and M. m. domesticus), and a sister-group relationship between M. macedonicus and M. spicilegus. Other clades that were strongly supported by one or more gene partitions were not strongly supported by the combined data. This appears to reflect a localized homoplasy in one partition obscuring the phylogenetic signal from another, rather than differences in gene or genome histories.  相似文献   

7.
Y Nishioka  E Lamothe 《Génome》1987,29(2):380-383
Mammalian primary sex is determined by the presence or absence of the Y chromosome. However, little is known about the molecular processes through which the Y chromosome exerts its action. We applied recombinant DNA techniques to isolate mouse Y chromosomal fragments and described previously a clone designated as AC11 (Y. Nishioka and E. Lamothe. 1986. Genetics, 113:417-432). To obtain information on DNA sequences that flank AC11, we screened a mouse genomic library for the presence of AC11-related sequences and isolated over 50 positive clones. In this report we describe clones ACC2 and ACC3, both of which contain highly repetitive elements. Using a male-specific portion of these clones, we compared DNA's isolated from mice (Mus musculus, M. hortulanus, M. spretus, M. cookii, M. pahari, and M. platythrix), rat, hamster, and guinea pig and obtained results that agree with the phylogenetic relationships deduced from morphological and biochemical studies. The male-specific accumulation of the related sequences was found only in M. musculus, M. hortulanus, and M. spretus.  相似文献   

8.
小家鼠的遗传与进化研究进展   总被引:7,自引:0,他引:7  
小家鼠作为重要的模式生物,近20年来对其遗传与进化领域的研究取得很大进展,通过现代遗传学的各种遗传标记(蛋白质电泳,mtDNA,rDNA,Y染色体等),不仅更深入地探讨了共栖小家鼠间的遗传差异和系统关系以及与野生种的关系;进而还对小家鼠的分类系统进行了修正,提出小家鼠种组(species complex)由domesticus,musculus,castaneus 和bactrianus 4个共栖种以及spicilegus,macedonicus和spretus3个野生种组成;并且进一步阐明了小家鼠的起源和进化问题,目前主要有离心模型和顺序模型2种起源假说,然而对中国小家鼠的遗传分化,亚种分类尚缺乏系统的研究。  相似文献   

9.
When the Y chromosome of the laboratory inbred mouse strain C57BL/6 (B6) is replaced by the Y of certain strains of Mus musculus domesticus, testis determination fails and all XY fetuses develop either as hermaphrodites or XY females (XY sex reversal). This suggests the presence of at least two alleles of Sry, the male-determining gene on the Y:M. m. domesticus and B6. The B6 Y chromosome is derived from the Japanese house mouse, M. m. molossinus and therefore carries a molossinus Sry allele. As a first step to determine how the molossinus Sry allele evolved, its distribution pattern was determined in wild mice. The cumulative data of 96 M. musculus samples obtained from 58 geographical locations in Europe, North Africa, and Asia show the molossinus Sry allele is restricted to Japan and the neighboring Asian mainland and confirm that Japanese M. m. molossinus mice were derived in part from a race of M. m. musculus from Korea or Manchuria. Sry polymorphisms, as illustrated by the molossinus Sry allele, can serve as molecular markers for studies on the evolution of wild M. musculus populations and can help determine the role sex determination plays in speciation.   相似文献   

10.
To develop a better understanding of the interaction between retroviruses and their hosts, we have investigated the polymorphism in endogenous murine leukemia proviruses (MLVs). We used genomic libraries of wild mouse DNAs and PCR to analyze genetic variation in the proviruses found in wild mouse species, including Mus musculus (M. m. castaneus, M. m. musculus, M. m. molossinus, and M. m. domesticus), Mus spretus, and Mus spicelegus, as well as some inbred laboratory strains. In this analysis, we detected several unique forms of sequence organization in the U3 regions of the long terminal repeats of these proviruses. The distribution of the proviruses with unique U3 structures demonstrated that xenotropic MLV-related proviruses were present only in M. musculus subspecies, while polytropic MLV-related proviruses were found in both M. musculus and M. spretus. Furthermore, one unique provirus from M. spicelegus was found to be equidistant from ecotropic provirus and nonecotropic provirus by phylogenetic analysis. This provirus, termed HEMV, was thus likely to be related to the common ancestor of these MLVs. Moreover, an ancestral type of polytropic MLV-related provirus was detected in M. spretus species. Despite their "ancestral" phylogenetic position, proviruses of these types are not widespread in mice, implying more-recent spread by infection rather than inheritance. These results imply that recent evolution of these proviruses involved alternating periods of replication as virus and residence in the germ line.  相似文献   

11.
Polymorphism of C lambda genes and units of duplication in the genus Mus   总被引:4,自引:0,他引:4  
The number of Ig C lambda genes in nine geographically widespread species from the four subgenera in the genus Mus was estimated from the number of Bam HI and Eco RI restriction fragments that hybridize under high stringency conditions to cDNA probes of BALB/c inbred mouse origin (Mus musculus domesticus). Three closely related species in the subgenus Mus, M. musculus, M. spretus, and M. spicelegus, show considerable variation in the number of C lambda genes. Estimates of gene numbers in these animals range from two C lambda genes in M. spretus from Puerto Real, Spain to 12 C lambda genes in M. musculus musculus from Studenec, Czechoslovakia. Strains of mice carrying either six or 10 C lambda genes were derived from a single population of M. musculus domesticus from Centreville, MD. The hybridization patterns of mice exhibiting C lambda gene amplification indicate that duplications are of relatively recent origin and probably occurred by reiteration of a DNA segment closely related to the 6.5 kb [C lambda 3 - C lambda 1] unit found in BALB/c inbred mice. Three more distantly related species in the subgenus Mus, and a species representing the Nannomys subgenus all appear to carry only four C lambda genes. DNA of species representing the Coelomys and Pyromys subgenera hybridized weakly to the C lambda cDNA probes, but these animals also have no more than four C lambda genes. Thus, there may be a base number of four C lambda genes in most species in the genus Mus. All inbred strains of mice so far examined also have only four C lambda genes, but no feral M. musculus examined have fewer than six C lambda genes. One explanation of the discrepancy in the number of genes between inbred and feral M. musculus is that C lambda genes were deleted during the process of inbreeding.  相似文献   

12.
We compared four inbred mouse strains in their physical performance, measured as a maximal treadmill running time, characteristics of soleus muscle, anatomic character, and growth. The strains used were Mus musculus domesticus [C57BL/6 (B6) and BALB/c], Mus musculus molossinus (MSM/Ms), and Mus spretus. Maximal running time was significantly different among these four mouse strains. Running time until exhaustion was highest in MSM/Ms and lowest in M. spretus. Maximal times for the laboratory mouse strains were nearly identical. Soleus muscle fiber type and cross-sectional area also differed significantly among the species. In particular, M. spretus was significantly different from the other inbred mouse strains. Growth in the wild-derived inbred mice appeared to be complete earlier than in the laboratory mice, and the body size of the wild strains was about half that of the laboratory strains. From these results, we propose that wild-derived inbred mouse strains are useful models for enhancing phenotypic variation in physical performance and adaptability.  相似文献   

13.
Interspecific hybridization in the genus Mus results in male sterility and X-linked placental dysplasia. We have generated several congenic laboratory mouse lines (Mus musculus) in which different parts of the maternal X chromosome were derived from M. spretus. A strict positive correlation between placental weight and length of the M. spretus-derived part of the X chromosome was shown. Detailed analysis was carried out with one congenic strain that retained a M. spretus interval between 12.0 and 30.74 cM. This strain consistently produced hyperplastic placentas that exhibited an average weight increase of 180% over the weight of control placentas. In derived subcongenic strains, however, increased placental weight could no longer be observed. Morphometric analysis of these placentas revealed persistence of abnormal morphology. Fully developed placental hyperplasia could be reconstituted by recombination of proximal and central M. spretus intervals with an intervening M. musculus region. These results may suggest that placental dysplasia of interspecific mouse hybrids is caused by multiple loci clustered on the X chromosome that act synergistically. Alternatively, it is possible that changes in chromatin structure in interspecific hybrids that influence gene expression are dependent on the length of the alien chromosome.  相似文献   

14.
A parsimony analysis was performed on restriction sites at the Hba-ps4 pseudogene locus within one of four inversions associated with mouse t haplotypes. The results suggest that all t haplotypes form a monophyletic group and that the in (17)4 inversion originated before the radiation of the Mus musculus species complex but after the divergence of the lineages leading to M. spretus, M. abbotti, and M. hortulanus. A time frame based on the evolutionary rate of mouse pseudogenes places the origin of this t haplotype inversion at 1.5 Mya, or approximately 1.5 Myr after the origin of the more proximal t complex inversion, in (17)2. The accumulated evidence indicates that complete t haplotypes have been assembled in a stepwise manner, with each of these inversions occurring on separate chromosomal lineages and at different evolutionary times. In addition, the evolutionary relationships of pseudogene sequences resulting from genetic exchange between wild-type and t haplotype alleles were examined. Analysis of sequences from the 5' and 3' sides of a putative site of recombination resulted in cladograms with different topologies. The implications for hypotheses concerning the evolutionary forces acting on t haplotypes and their rapid propagation throughout worldwide populations of mice are discussed.   相似文献   

15.
Protein electrophoresis at 24 loci was used to characterize house mice from 56 localities in the U.S.S.R., concentrating on samples from Moldavia to Primorye (extreme south-east of the U.S.S.R.). Mus -2A is the most widespread form, extending over the European part of the U.S.S.R., Middle Asia and Siberia as far east as the Pacific Ocean. In Moldavia the group is sympatric with Mus-iB . It is found with Mus -4A in Transcaucasus, where it may hybridize with Mus -1. In Primorye Mus -2A and M. raddei have a wide zone of hybridization with Mus -2C.  相似文献   

16.
F G Biddle 《Génome》1987,29(2):389-392
An interspecific cross was made between females of the C3H/HeHa.Pgk-1 a inbred laboratory strain of Mus musculus and males of the separate species Mus spretus. The F1 males are sterile but the F1 females are fertile and they were backcrossed to both C3H and spretus males. Evidence is presented from the segregation of X-linked marker genes that the interspecific F1 female has a genetically deleterious effect on the C3H X chromosome that is expressed as a male-lethal effect with the spretus Y chromosome but not with the musculus Y chromosome of C3H.  相似文献   

17.
We analyzed wild mouse DNAs for the number and type of proviral genes related to the env sequences of various murine leukemia viruses (MuLVs). Only Mus species closely related to laboratory mice carried these retroviral sequences, and the different subclasses of viral env genes tended to be restricted to specific taxonomic groups. Only Mus musculus molossinus carried proviral genes which cross-reacted with the inbred mouse ecotropic MuLV env gene. The ecotropic viral env sequence associated with the Fv-4 resistance gene was found in the Asian mice M. musculus molossinus and Mus musculus castaneus and in California mice from Lake Casitas (LC). Both M. musculus castaneus and LC mice carried many additional Fv-4 env-related proviruses, two of which are common to both mouse populations, which suggests that these mice share a recent common ancestry. Xenotropic and mink cell focus-forming (MCF) virus env sequences were more widely dispersed in wild mice than the ecotropic viral env genes, which suggests that nonecotropic MuLVs were integrated into the Mus germ line at an earlier date. Xenotropic MuLVs represented the major component of MuLV env-reactive genes in Asian and eastern European mice classified as M. musculus molossinus, M. musculus castaneus, and Mus musculus musculus, whereas Mus musculus domesticus from western Europe, the Mediterranean, and North America contained almost exclusively MCF virus env copies. M. musculus musculus mice from central Europe trapped near the M. musculus domesticus/M. musculus musculus hybrid zone carried multiple copies of both types of env genes. LC mice also carried both xenotropic and MCF viral env genes, which is consistent with the above conclusion that they represent natural hybrids of M. musculus domesticus and M. musculus castaneus.  相似文献   

18.
Intracisternal-A-particle-related envelope-encoding (IAPE) proviral elements in the mouse genome encode and express an envelope-like protein that may allow transmission of IAPEs as infectious agents. To test IAPE mobility and potential transmission in mice, we have analyzed the distribution of IAPE elements in the genomes of Mus spretus and Mus musculus inbred strains and wild-caught animals. Potential full-length (IAPE-A) proviral elements are present as repetitive copies in DNA from male but not female animals of M. musculus inbred strains and Mus musculus castaneus. Analysis of IAPE-cellular junction fragments indicates that fixation of most IAPEs in the germ line occurred in M. musculus and M. spretus after speciation but before M. musculus inbred strains were derived.  相似文献   

19.
By using seven different restriction endonucleases, the cleavage patterns of the unintegrated provioral DNA from an ecotropic murine leukemia virus isolated from Mus musculus molossinus were found to be identical to those of AKR virus. An AKR [3H]DNA probe can be completely saturated with M. musculus molossinus and M. musculus castaneus DNAs, although the arrangement of viral sequences in M. musculus molossinus DNA differed from that of AKR virus. These studies indicate that an AKR-type ecotropic virus is present in some wild Asiatic mice.  相似文献   

20.
The Y chromosome plays a dominant role in mammalian sex determination, and characterization of this chromosome is essential to understand the mechanism responsible for testicular differentiation. Male mouse genomic DNA fragments, cloned into pBR322, were screened for the presence of Bkm (a female snake satellite DNA)-related sequences, and we obtained a clone (AC11) having a DNA fragment from the mouse Y chromosome. In addition to a Bkm-related sequence, this fragment contained a Y chromosomal repetitive sequence. DNA isolated from the XX sex-reversed male genome produced a hybridization pattern indistinguishable to that obtained with normal female DNA, suggesting that the AC11 sequence is not contained within the Y chromosomal DNA present in the sex-reversed male genome. Based on the hybridization patterns against mouse Y chromosomal DNA, AC11 classified 16 inbred laboratory strains into two categories; those with the Mus musculus musculus type Y chromosome and those with the M.m. domesticus type Y chromosome. Three European subspecies of Mus musculus (M.m. brevirostris, M.m. poschiavinus and M.m. praetextus) possessed the M.m. domesticus type Y chromosome, whereas the Japanese mouse, M.m. molossinus, had the M.m. musculus type Y chromosome. The survey was also extended to six other species that belong to the genus Mus, of which M. spretus and M. hortulamus showed significant amounts of AC11-related sequences in their Y chromosomes. The male-specific accumulation of AC11-related sequences was not found in M. caroli, M. cookii, M. pahari or M. platythrix. This marked difference among Mus species indicates that the amplification of AC11-related sequences in the mouse Y chromosome was a recent evolutionary event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号