首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine stocks with wild-derived hypoxanthine phosphoribosyltransferase (HPRT) A alleles (Hprt a) have erythrocyte HPRT activity levels that are approximately 25-fold (Mus musculus castaneus) and 70-fold (Mus spretus) higher than those of laboratory strains of mice with the common Hprt b allele (Mus musculus: C3H/HeHa or C57B1/6). Since the purified HPRT A and B enzymes have substantially similar maximal specific activities (64 and 46 units/mg of protein, respectively), we infer that these HPRT activity levels closely approximate the relative levels of HPRT protein in these cells. Red blood cells of HPRT A and B mice have similar levels of adenine phosphoribosyltransferase activity (APRT; EC 2.4.2.7) and reticulocyte percentages, which suggests that the elevated levels of HPRT in erythrocytes of HPRT A mice are not secondary consequences of abnormal erythroid cell development. The HPRT activity levels in reticulocytes of HPRT B mice are approximately 35-fold higher than the levels in their erythrocytes and approach the HPRT activity levels in reticulocytes of HPRT A mice. Thus, the marked differences in the levels of HPRT protein in erythrocytes of HPRT A and B mice result from differences in the extent to which the HPRT A and B proteins are retained as reticulocytes mature to erythrocytes. The substantial and preferential loss of HPRT B activity from reticulocytes is paralleled by an equivalent loss of HPRT immunoreactive protein (i.e., CRM) from that cell, and we infer that the HPRT B protein is degraded or extruded as reticulocytes mature to erythrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Intracisternal-A-particle-related envelope-encoding (IAPE) proviral elements in the mouse genome encode and express an envelope-like protein that may allow transmission of IAPEs as infectious agents. To test IAPE mobility and potential transmission in mice, we have analyzed the distribution of IAPE elements in the genomes of Mus spretus and Mus musculus inbred strains and wild-caught animals. Potential full-length (IAPE-A) proviral elements are present as repetitive copies in DNA from male but not female animals of M. musculus inbred strains and Mus musculus castaneus. Analysis of IAPE-cellular junction fragments indicates that fixation of most IAPEs in the germ line occurred in M. musculus and M. spretus after speciation but before M. musculus inbred strains were derived.  相似文献   

3.
We analyzed wild mouse DNAs for the number and type of proviral genes related to the env sequences of various murine leukemia viruses (MuLVs). Only Mus species closely related to laboratory mice carried these retroviral sequences, and the different subclasses of viral env genes tended to be restricted to specific taxonomic groups. Only Mus musculus molossinus carried proviral genes which cross-reacted with the inbred mouse ecotropic MuLV env gene. The ecotropic viral env sequence associated with the Fv-4 resistance gene was found in the Asian mice M. musculus molossinus and Mus musculus castaneus and in California mice from Lake Casitas (LC). Both M. musculus castaneus and LC mice carried many additional Fv-4 env-related proviruses, two of which are common to both mouse populations, which suggests that these mice share a recent common ancestry. Xenotropic and mink cell focus-forming (MCF) virus env sequences were more widely dispersed in wild mice than the ecotropic viral env genes, which suggests that nonecotropic MuLVs were integrated into the Mus germ line at an earlier date. Xenotropic MuLVs represented the major component of MuLV env-reactive genes in Asian and eastern European mice classified as M. musculus molossinus, M. musculus castaneus, and Mus musculus musculus, whereas Mus musculus domesticus from western Europe, the Mediterranean, and North America contained almost exclusively MCF virus env copies. M. musculus musculus mice from central Europe trapped near the M. musculus domesticus/M. musculus musculus hybrid zone carried multiple copies of both types of env genes. LC mice also carried both xenotropic and MCF viral env genes, which is consistent with the above conclusion that they represent natural hybrids of M. musculus domesticus and M. musculus castaneus.  相似文献   

4.
Previous work has shown that the gene for the alpha subunit of androgen-binding protein, Abpa, may be involved in premating isolation between different subspecies of the house mouse, Mus musculus. We investigated patterns of DNA sequence variation at Abpa within and between species of mice to test several predictions of a model of neutral molecular evolution. Intraspecific variation among 10 Mus musculus domesticus alleles was compared with divergence between M. m. domesticus and M. caroli for Abpa and two X-linked genes, Glra2 and Amg. No variation was observed at Abpa within M. m. domesticus. The ratio of polymorphism to divergence was significantly lower at Abpa than at Glra2 and Amg, despite the fact that all three genes experience similar rates of recombination. Interspecific comparisons among M. m. domesticus, Mus musculus musculus, Mus musculus castaneus, Mus spretus, Mus spicilegus, and Mus caroli revealed that the ratio of nonsynonymous substitutions to synonymous substitutions on a per-site basis (Ka/Ks) was generally greater than one. The combined observations of no variation at Abpa within M. m: domesticus and uniformly high Ka/Ks values between species suggest that positive directional selection has acted recently at this locus.  相似文献   

5.
To develop a better understanding of the interaction between retroviruses and their hosts, we have investigated the polymorphism in endogenous murine leukemia proviruses (MLVs). We used genomic libraries of wild mouse DNAs and PCR to analyze genetic variation in the proviruses found in wild mouse species, including Mus musculus (M. m. castaneus, M. m. musculus, M. m. molossinus, and M. m. domesticus), Mus spretus, and Mus spicelegus, as well as some inbred laboratory strains. In this analysis, we detected several unique forms of sequence organization in the U3 regions of the long terminal repeats of these proviruses. The distribution of the proviruses with unique U3 structures demonstrated that xenotropic MLV-related proviruses were present only in M. musculus subspecies, while polytropic MLV-related proviruses were found in both M. musculus and M. spretus. Furthermore, one unique provirus from M. spicelegus was found to be equidistant from ecotropic provirus and nonecotropic provirus by phylogenetic analysis. This provirus, termed HEMV, was thus likely to be related to the common ancestor of these MLVs. Moreover, an ancestral type of polytropic MLV-related provirus was detected in M. spretus species. Despite their "ancestral" phylogenetic position, proviruses of these types are not widespread in mice, implying more-recent spread by infection rather than inheritance. These results imply that recent evolution of these proviruses involved alternating periods of replication as virus and residence in the germ line.  相似文献   

6.
E. M. Prager  H. Tichy    R. D. Sage 《Genetics》1996,143(1):427-446
The control region and flanking tRNAs were sequenced from 139 Mus musculus mitochondrial DNAs (mtDNAs) from mice collected at 44 localities extending from Germany to Japan. Among the 36 types of M. musculus mtDNA resolved, five have an added 75-bp direct repeat; the two copies within an individual differ by two to four base substitutions. Among 90 M. domesticus mtDNAs sequenced, 12 new types were found; 96 M. domesticus types have now been identified by sequencing this segment. Representative mtDNAs from M. castaneus, M. macedonicus, M. spicilegus and M. spretus were also sequenced. A parsimony tree for the M. musculus mtDNAs is about half as deep as the tree for the M. domesticus mtDNAs, which is consistent with the idea that M. musculus is genetically less diverse and younger than M. domesticus. The patterns of variation as a function of position are similar but not identical in M. musculus and M. domesticus mtDNAs. M. castaneus and M. musculus mtDNAs are allied, at a tree depth about three times as great as the start of intra-M. musculus divergence. The coalescence of the M. musculus and M. castaneus mtDNAs is about half as deep as their coalescence with the M. domesticus mtDNA lineages. The mtDNAs of the aboriginal M. macedonicus and M. spicilegus are each other's closest relatives, at a tree depth greater than the deepest intracommensal node. The mtDNA results support the view that the aboriginal M. spretus is the sister group of the other five species.  相似文献   

7.
Polymorphism of C lambda genes and units of duplication in the genus Mus   总被引:4,自引:0,他引:4  
The number of Ig C lambda genes in nine geographically widespread species from the four subgenera in the genus Mus was estimated from the number of Bam HI and Eco RI restriction fragments that hybridize under high stringency conditions to cDNA probes of BALB/c inbred mouse origin (Mus musculus domesticus). Three closely related species in the subgenus Mus, M. musculus, M. spretus, and M. spicelegus, show considerable variation in the number of C lambda genes. Estimates of gene numbers in these animals range from two C lambda genes in M. spretus from Puerto Real, Spain to 12 C lambda genes in M. musculus musculus from Studenec, Czechoslovakia. Strains of mice carrying either six or 10 C lambda genes were derived from a single population of M. musculus domesticus from Centreville, MD. The hybridization patterns of mice exhibiting C lambda gene amplification indicate that duplications are of relatively recent origin and probably occurred by reiteration of a DNA segment closely related to the 6.5 kb [C lambda 3 - C lambda 1] unit found in BALB/c inbred mice. Three more distantly related species in the subgenus Mus, and a species representing the Nannomys subgenus all appear to carry only four C lambda genes. DNA of species representing the Coelomys and Pyromys subgenera hybridized weakly to the C lambda cDNA probes, but these animals also have no more than four C lambda genes. Thus, there may be a base number of four C lambda genes in most species in the genus Mus. All inbred strains of mice so far examined also have only four C lambda genes, but no feral M. musculus examined have fewer than six C lambda genes. One explanation of the discrepancy in the number of genes between inbred and feral M. musculus is that C lambda genes were deleted during the process of inbreeding.  相似文献   

8.
We compared four inbred mouse strains in their physical performance, measured as a maximal treadmill running time, characteristics of soleus muscle, anatomic character, and growth. The strains used were Mus musculus domesticus [C57BL/6 (B6) and BALB/c], Mus musculus molossinus (MSM/Ms), and Mus spretus. Maximal running time was significantly different among these four mouse strains. Running time until exhaustion was highest in MSM/Ms and lowest in M. spretus. Maximal times for the laboratory mouse strains were nearly identical. Soleus muscle fiber type and cross-sectional area also differed significantly among the species. In particular, M. spretus was significantly different from the other inbred mouse strains. Growth in the wild-derived inbred mice appeared to be complete earlier than in the laboratory mice, and the body size of the wild strains was about half that of the laboratory strains. From these results, we propose that wild-derived inbred mouse strains are useful models for enhancing phenotypic variation in physical performance and adaptability.  相似文献   

9.
Estimates of the proportion of amino acid substitutions that have been fixed by selection (α) vary widely among taxa, ranging from zero in humans to over 50% in Drosophila. This wide range may reflect differences in the efficacy of selection due to differences in the effective population size (N(e)). However, most comparisons have been made among distantly related organisms that differ not only in N(e) but also in many other aspects of their biology. Here, we estimate α in three closely related lineages of house mice that have a similar ecology but differ widely in N(e): Mus musculus musculus (N(e) ~ 25,000-120,000), M. m. domesticus (N(e) ~ 58,000-200,000), and M. m. castaneus (N(e) ~ 200,000-733,000). Mice were genotyped using a high-density single nucleotide polymorphism array, and the proportions of replacement and silent mutations within subspecies were compared with those fixed between each subspecies and an outgroup, Mus spretus. There was significant evidence of positive selection in M. m. castaneus, the lineage with the largest N(e), with α estimated to be approximately 40%. In contrast, estimates of α for M. m. domesticus (α = 13%) and for M. m. musculus (α = 12 %) were much smaller. Interestingly, the higher estimate of α for M. m. castaneus appears to reflect not only more adaptive fixations but also more effective purifying selection. These results support the hypothesis that differences in N(e) contribute to differences among species in the efficacy of selection.  相似文献   

10.
The diverse origins of New Zealand house mice   总被引:1,自引:0,他引:1  
Molecular markers and morphological characters can help infer the colonization history of organisms. A combination of mitochondrial (mt) D-loop DNA sequences, nuclear DNA data, external measurements and skull characteristics shows that house mice (Mus musculus) in New Zealand and its outlying islands are descended from very diverse sources. The predominant genome is Mus musculus domesticus (from western Europe), but Mus musculus musculus (from central Europe) and Mus musculus castaneus (from southern Asia) are also represented genetically. These subspecies have hybridized to produce combinations of musculus and domesticus nuclear DNA coupled with domesticus mtDNA, and castaneus or musculus mtDNA with domesticus nuclear DNA. The majority of the mice with domesticus mtDNA that we sampled had D-loop sequences identical to two haplotypes common in Britain. This is consistent with long-term British-New Zealand cultural linkages. The origins of the castaneus mtDNA sequences widespread in New Zealand are less easy to identify.  相似文献   

11.
Polymorphisms in the vitamin K 2,3-epoxide reductase subcomponent 1 (vkorc1) of house mice (Mus musculus domesticus) can cause resistance to anticoagulant rodenticides such as warfarin [1-3]. Here we show that resistant house mice can also originate from selection on vkorc1 polymorphisms acquired from the Algerian mouse (M. spretus) through introgressive hybridization. We report on a polymorphic introgressed genomic region in European M. m. domesticus that stems from M. spretus, spans >10 Mb on chromosome 7, and includes the molecular target of anticoagulants vkorc1 [1-4]. We show that in the laboratory, the homozygous complete vkorc1 allele of M. spretus confers resistance when introgressed into M. m. domesticus. Consistent with selection on the introgressed allele after the introduction of rodenticides in the 1950s, we found signatures of selection in patterns of variation in M. m. domesticus. Furthermore, we detected adaptive protein evolution of vkorc1 in M. spretus (Ka/Ks = 1.54-1.93) resulting in radical amino acid substitutions that apparently cause anticoagulant tolerance in M. spretus as a pleiotropic effect. Thus, positive selection produced an adaptive, divergent, and pleiotropic vkorc1 allele in the donor species, M. spretus, which crossed a species barrier and produced an adaptive polymorphic trait in the recipient species, M. m. domesticus.  相似文献   

12.
We have searched for genetic variation in the expression of salivary androgen-binding protein (ABP) in a wide variety of mice and other rodents. ABP was present in the salivas of mice of all species and subspecies studied. Genetic studies have identified three common variants of the ABP Alpha subunit (Abpaa, Abpab, and Abpac) in Mus musculus populations with distributions that correspond roughly to those of the subspecies studied (domesticus, musculus, and castaneus, respectively). It appears that the ABP a and b polymorphisms conform to the hybrid zone between the domesticus and musculus subspecies characterized by others. Our studies suggest that the presence of Abpab in inbred strains may be due to a M. m. musculus contribution, perhaps via oriental fancy mice bred to European mice in the early lines leading to the common inbred strains. The relatively common occurrence of the ABP a type in other Mus species leads us to conclude that it is the ancestral type in mice. Further, the observation of what amounts to unique alleles in the three different subspecies indicates that microevolution of the protein has occurred. In a broader survey, ABP was also found in the salivas of Murid and Cricetid rodents generally. These findings suggest that ABP has an important functional role in rodent salivas.  相似文献   

13.
Munclinger  Pavel  Boursot  Pierre  Dod  Barbara 《Mammalian genome》2003,14(6):359-366
Few simple, easy-to-score PCR markers are available for studying genetic variation in wild mice populations belonging to Mus musculus at the population and subspecific levels. In this study, we show the abundant B1 family of short interspersed DNA elements (SINEs) is a very promising source of such markers. Thirteen B1 sequences from different regions of the genome were retrieved on the basis of their high degree of homology to a mouse consensus sequence, and the presence of these elements was screened for in wild derived mice representing M. spretus, macedonicus and spicilegus and the different subspecies of M. musculus. At five of these loci, varying degrees of insertion polymorphism were found in M. m. domesticus mice. These insertions were almost totally absent in the mice representing the other subspecies and species. Six other B1 elements were fixed in all the Mus species tested. At these loci, polymorphism associated with three restriction sites in the B1 consensus sequence was found in M. musculus. Most of these polymorphisms appear to be ancestral as they are shared by at least one of the other Mus species tested. Both insertion and restriction polymorphism revealed differences between five inbred laboratory strains considered to be of mainly domesticus origin, and at the six restriction loci a surprising number of these strains carried restriction variants that were either not found or very infrequent in domesticus. This suggests that in this particular group of loci, alleles of far Eastern origin are more frequent than expected.  相似文献   

14.
An electrophoretic survey of concentrations of lysozymes M and P was carried out with seven species in the house mouse group (spretus, hortulanus, abbotti, musculus, castaneus, domesticus and molossinus). In most species M is the predominant lysozyme in all tissues tested, except the small intestine, where P predominates if present. In inbred strains of molossinus mice P is more abundant than M in all tissues tested. The phenotypes of high expression of P lysozyme and low expression of M lysozyme in peritoneal and alveolar macrophages were examined genetically. Results of interspecific crosses and backcrosses to domesticus mice support the model that the phenotypes are caused by mutation(s) tightly linked to the lysozyme locus. Alleles at the regulatory loci show additive inheritance.  相似文献   

15.
Wild-derived mice originally obtained from Asia, Africa, North America, and Europe were typed for in vitro sensitivity to ecotropic murine leukemia viruses and for susceptibility to Friend virus-induced disease. Cell cultures established from some wild mouse populations were generally less sensitive to exogenous virus than were cell cultures from laboratory mice. Wild mice also differed from inbred strains in their in vitro sensitivity to the host range subgroups defined by restriction at the Fv-1 locus. None of the wild mice showed the Fv-1n or Fv-1b restriction patterns characteristic of most inbred strains, several mice resembled the few inbred strains carrying Fv-1nr, and most differed from laboratory mice in that they did not restrict either N- or B-tropic murine leukemia viruses. Analysis of genetic crosses of Mus spretus and Mus musculus praetextus demonstrated that the nonrestrictive phenotype is controlled by a novel allele at the Fv-1 locus, designated Fv-10. The wild mice were also tested for sensitivity to Friend virus complex-induced erythroblastosis to type for Fv-2. Only M. spretus was resistant to virus-induced splenomegaly and did not restrict replication of Friend virus helper murine leukemia virus. Genetic studies confirmed that this mouse carries the resistance allele at Fv-2.  相似文献   

16.
Comparative genetic mapping provides insights into the evolution of the reproductive barriers that separate closely related species. This approach has been used to document the accumulation of reproductive incompatibilities over time, but has only been applied to a few taxa. House mice offer a powerful system to reconstruct the evolution of reproductive isolation between multiple subspecies pairs. However, studies of the primary reproductive barrier in house mice-hybrid male sterility-have been restricted to a single subspecies pair: Mus musculus musculus and Mus musculus domesticus. To provide a more complete characterization of reproductive isolation in house mice, we conducted an F(2) intercross between wild-derived inbred strains from Mus musculus castaneus and M. m. domesticus. We identified autosomal and X-linked QTL associated with a range of hybrid male sterility phenotypes, including testis weight, sperm density, and sperm morphology. The pseudoautosomal region (PAR) was strongly associated with hybrid sterility phenotypes when heterozygous. We compared QTL found in this cross with QTL identified in a previous F(2) intercross between M. m. musculus and M. m. domesticus and found three shared autosomal QTL. Most QTL were not shared, demonstrating that the genetic basis of hybrid male sterility largely differs between these closely related subspecies pairs. These results lay the groundwork for identifying genes responsible for the early stages of speciation in house mice.  相似文献   

17.
The pseudoautosomal region (PAR) is essential for the accurate pairing and segregation of the X and Y chromosomes during meiosis. Despite its functional significance, the PAR shows substantial evolutionary divergence in structure and sequence between mammalian species. An instructive example of PAR evolution is the house mouse Mus musculus domesticus (represented by the C57BL/6J strain), which has the smallest PAR among those that have been mapped. In C57BL/6J, the PAR boundary is located just ~700 kb from the distal end of the X chromosome, whereas the boundary is found at a more proximal position in Mus spretus, a species that diverged from house mice 2-4 million years ago. In this study we used a combination of genetic and physical mapping to document a pronounced shift in the PAR boundary in a second house mouse subspecies, Mus musculus castaneus (represented by the CAST/EiJ strain), ~430 kb proximal of the M. m. domesticus boundary. We demonstrate molecular evolutionary consequences of this shift, including a marked lineage-specific increase in sequence divergence within Mid1, a gene that resides entirely within the M. m. castaneus PAR but straddles the boundary in other subspecies. Our results extend observations of structural divergence in the PAR to closely related subspecies, pointing to major evolutionary changes in this functionally important genomic region over a short time period.  相似文献   

18.
In the early stages of reproductive isolation, genomic regions of reduced recombination are expected to show greater levels of differentiation, either because gene flow between species is reduced in these regions or because the effects of selection at linked sites within species are enhanced in these regions. Here, we study the patterns of DNA sequence variation at 27 autosomal loci among populations of Mus musculus musculus, M. m. domesticus, and M. m. castaneus, three subspecies of house mice with collinear genomes. We found that some loci exhibit considerable shared variation among subspecies, while others exhibit fixed differences. We used an isolation-with-gene-flow model to estimate divergence times and effective population sizes (N(e) ) and to disentangle ancestral variation from gene flow. Estimates of divergence time indicate that all three subspecies diverged from one another within a very short period of time approximately 350,000 years ago. Overall, N(e) for each subspecies was associated with the degree of genetic differentiation: M. m. musculus had the smallest N(e) and the greatest proportion of monophyletic gene genealogies, while M. m. castaneus had the largest N(e) and the smallest proportion of monophyletic gene genealogies. M. m. domesticus and M. m. musculus were more differentiated from each other than either were from M. m. castaneus, consistent with greater reproductive isolation between M. m. domesticus and M. m. musculus. F(ST) was significantly greater at loci experiencing low recombination rates compared to loci experiencing high recombination rates in comparisons between M. m. castaneus and M. m. musculus or M. m. domesticus. These results provide evidence that genomic regions with less recombination show greater differentiation, even in the absence of chromosomal rearrangements.  相似文献   

19.
Regulatory and Structural Genes for Lysozymes of Mice   总被引:7,自引:1,他引:6       下载免费PDF全文
The molecular and genetic basis of large differences in the concentration of P lysozyme in the small intestine has been investigated by crossing inbred strains of two species of house mouse (genus Mus). The concentration of P in domesticus is about 130-fold higher than in castaneus. An autosomal genetic element determining the concentration of P has been identified and named the P lysozyme regulator, Lzp-r. The level of P in interspecific hybrids (domesticus X castaneus) as well as in certain classes of backcross progeny is intermediate relative to parental levels, which shows that the two alleles of Lzp-r are inherited additively. There are two forms of P lysozyme in the intestine of the interspecific hybrid--one having the heat stability of domesticus P, the other being more stable and presumably the product of the castaneus P locus. These two forms occur in equal amounts, and it appears that Lzp-r acts in trans. The linkage of Lzp-r to three structural genes (Lzp-s, Lzm-sl, and Lzm-s2), one specifying P lysozyme and two specifying M lysozymes, was shown by electrophoretic analysis of backcrosses involving domesticus and castaneus and also domesticus and spretus. The role of regulatory mutations in evolution is discussed in light of these results.  相似文献   

20.
We have detected three unique apolipoprotein A-IV (apoA-IV) charge isoforms in strains of commensal mice. The cDNA sequences for one representative of each isoform (Mus domestesticus strains C57BL/6J and 129/J and Mus castaneus) revealed a polymorphism within a series of four imperfect repeats encoding the sequence Glu-Gln-Ala/Val-Gln. Insertions or deletions of 12 nucleotides within this repetitive region have given rise to three genotypes characterized by three (129), four (C57BL/6), or five (M. castaneus) copies of the repeat unit. To ascertain the extent of this variation among other species of the Mus genus, we sequenced this region of apoA-IV cDNAs from eight additional M. domesticus inbred strains and from five wild-derived Mus species. All eight additional M. domesticus strains examined had four repeat units, as found in C57BL/6. Among wild-derived mice, however, one species (Mus spretus) had three repeats, two species (Mus cookii and Mus cervicolor) had four repeats, and two species (Mus hortulanus and Mus minutoides) had five repeats. A lack of correlation between the number of repeat units and the phylogeny of Mus species indicates that independent mutations may have occurred throughout the evolution of specific mouse lineages. We suggest that the repetitive nature of the polymorphic sequence may predispose this region to slippage errors during DNA replication, resulting in frequent deletion/insertion mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号