首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HCl secretion across the parietal cell apical secretory membrane involves the H+-K+-ATPase, the ClC-2 Cl- channel, and a K+ channel. In the present study, the cellular and subcellular distribution of ClC-2 mRNA and protein was determined in the rabbit gastric mucosa and in isolated gastric glands. ClC-2 mRNA was localized to parietal cells by in situ hybridization and by direct in situ RT-PCR. By immunoperoxidase microscopy, ClC-2 protein was concentrated in parietal cells. Immunofluorescent confocal microscopy suggested that the ClC-2 was localized to the secretory canalicular membrane of stimulated parietal cells and to intracellular structures of resting parietal cells. Immunogold electron microscopy confirmed that ClC-2 is in the secretory canalicular membrane of stimulated cells and in tubulovesicles of resting parietal cells. These findings, together with previous functional characterization of the native and recombinant channel, strongly indicate that ClC-2 is the Cl- channel, which together with the H+-K+-ATPase and a K+ channel, results in HCl secretion across the parietal cell secretory membrane.  相似文献   

2.
Summary Rabbit gastric secretion has the physiological peculiarity of being continuous and uninfluenced by food intake. In this respect, ultrastructural analysis of rabbit parietal cells has revealed morphofunctional features situated between states of rest and very active acid secretion. Our cytochemical study shows that Mg2+ ATPase and ADPase activities vary from cell to cell and can even be totally absent. These activities concern either microcanaliculi or laterobasal folds or both, but never tubulovesicles. Application of the technique of Mayahara to K+ pNPP, associated or not with inhibitors (ouabain, vanadate, N-ethyl-maleimide, sodium fluoride), enabled us to confirm the coexistence of H+, K+, ATPase and Na+, K+, ATPase activities in the rabbit and to determine that these activities concern basolateral folds, microcanaliculi, hyaloplasm and tubulovesicles. The global activity of K+, pNPPase varied considerably in intensity. The results of using inhibitors suggest that proton transport ceases completely in certain cells. The signs of functional alternation found in this study are in agreement with physiological data relative to this animal.  相似文献   

3.
Rabbit gastric secretion has the physiological peculiarity of being continuous and uninfluenced by food intake. In this respect, ultrastructural analysis of rabbit parietal cells has revealed morphofunctional features situated between states of rest and very active acid secretion. Our cytochemical study shows that Mg2+ ATPase and ADPase activities vary from cell to cell and can even be totally absent. These activities concern either microcanaliculi or laterobasal folds or both, but never tubulovesicles. Application of the technique of Mayahara to K+ pNPP, associated or not with inhibitors (ouabain, vanadate, N-ethyl-maleimide, sodium fluoride), enabled us to confirm the coexistence of H+, K+, ATPase and Na+, K+, ATPase activities in the rabbit and to determine that these activities concern basolateral folds, microcanaliculi, hyaloplasm and tubulovesicles. The global activity of K+, pNPPase varied considerably in intensity. The results of using inhibitors suggest that proton transport ceases completely in certain cells. The signs of functional alternation found in this study are in agreement with physiological data relative to this animal.  相似文献   

4.
It has been controversial whether the ClC-2 chloride channel is involved in hydrochloric acid secretion of gastric parietal cells. Here, we investigated whether ClC-2 is the apical Cl- channel associated with gastric acid secretion. Two anti-ClC-2 antibodies used in this study reacted with cloned ClC-2 protein expressed in HEK293 cells. In isolated rabbit gastric glands, significant expression of ClC-2 mRNA was observed, but the presence of ClC-2 protein was not clear. Furthermore, no expression of ClC-2 protein was observed in isolated rat and human gastric mucosa. Immunohistochemistry on the rat gastric mucosa showed no significant expression of ClC-2 protein in the parietal cells which showed abundant expression of H+,K+-ATPase. These results indicate that ClC-2 may not be a Cl- -transporting protein for gastric acid secretion in parietal cells.  相似文献   

5.
Gastric cancer is the second leading cause of cancer death worldwide. Predisposing factors include achlorhydria, Helicobacter pylori infection, oxyntic atrophy and TFF2-expressing metaplasia. In parietal cells, apical potassium channels comprising the KCNQ1 α subunit and the KCNE2 β subunit provide a K+ efflux current to facilitate gastric acid secretion by the apical H+K+ATPase. Accordingly, genetic deletion of murine Kcnq1 or Kcne2 impairs gastric acid secretion. Other evidence has suggested a role for KCNE2 in human gastric cancer cell proliferation, independent of its role in gastric acidification. Here, we demonstrate that 1-year-old Kcne2 −/− mice in a pathogen-free environment all exhibit a severe gastric preneoplastic phenotype comprising gastritis cystica profunda, 6-fold increased stomach mass, increased Ki67 and nuclear Cyclin D1 expression, and TFF2- and cytokeratin 7-expressing metaplasia. Some Kcne2 −/−mice also exhibited pyloric polypoid adenomas extending into the duodenum, and neoplastic invasion of thin walled vessels in the sub-mucosa. Finally, analysis of human gastric cancer tissue indicated reduced parietal cell KCNE2 expression. Together with previous findings, the results suggest KCNE2 disruption as a possible risk factor for gastric neoplasia.  相似文献   

6.
In the unstimulated oxyntic (or parietal) cell, the primary pump for gastric HCl secretion, the H+/K+-ATPase, is retained within the cytoplasm in a membranous compartment of tubulovesicles. Neural or hormonal stimulation of acid secretion induces extensive membrane transformations consistent with a fusion and recruitment of tubulovesicles to the apical plasma membrane. The consequent placement of H+/K+-ATPase in parallel with K(+) and Cl(-) channels provides the necessary ionic flow and ATP-driven exchange for net HCl secretion. Current evidence is consistent with a recruitment and recycling of membrane transporters, such as H+/K+-ATPase, through docking/fusion machinery analogous to that in many other systems.  相似文献   

7.
Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL–1 and IL–18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL–1β (405%), IL–18 (365%), COX–2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL–18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis.  相似文献   

8.
Heat-labile enterotoxin (LT) is an important virulence factor secreted by some strains of enterotoxigenic Escherichia coli (ETEC). The prototypic human-origin strain H10407 secretes LT via a type II secretion system (T2SS). We sought to determine the relationship between the capacity to secrete LT and virulence in porcine-origin wild type (WT) ETEC strains. Sixteen WT ETEC strains isolated from cases of severe diarrheal disease were analyzed by GM1ganglioside enzyme-linked immunosorbent assay to measure LT concentrations in culture supernatants. All strains had detectable LT in supernatants by 2 h of culture and 1 strain, which was particularly virulent in gnotobiotic piglets (3030-2), had the highest LT secretion level all porcine-origin WT strains tested (P<0.05). The level of LT secretion (concentration in supernatants at 6-h culture) explained 92% of the variation in time-to-a-moribund-condition (R2 = 0.92, P<0.0001) in gnotobiotic piglets inoculated with either strain 3030-2, or an ETEC strain of lesser virulence (2534-86), or a non-enterotoxigenic WT strain (G58-1). All 16 porcine ETEC strains were positive by PCR analysis for the T2SS genes, gspD and gspK, and bioinformatic analysis of 4 porcine-origin strains for which complete genomic sequences were available revealed a T2SS with a high degree of homology to that of H10407. Maximum Likelihood phylogenetic trees constructed using T2SS genes gspC, gspD, gspE and homologs showed that strains 2534-86 and 3030-2 clustered together in the same clade with other porcine-origin ETEC strains in the database, UMNK88 and UMN18. Protein modeling of the ATPase gene (gspE) further revealed a direct relationship between the predicted ATP-binding capacities and LT secretion levels as follows: H10407, -8.8 kcal/mol and 199 ng/ml; 3030-2, -8.6 kcal/mol and 133 ng/ml; and 2534-86, -8.5 kcal/mol and 80 ng/ml. This study demonstrated a direct relationship between predicted ATP-binding capacity of GspE and LT secretion, and between the latter and virulence.  相似文献   

9.
Priming of insulin secretory granules for release requires intragranular acidification and depends on vesicular Cl-fluxes, but the identity of the chloride transporter/ion channel involved is unknown. We tested the hypothesis that the chloride transport protein ClC-3 fulfills these actions in pancreatic β cells. In ClC-3−/− mice, insulin secretion evoked by membrane depolarization (high extracellular K+, sulfonylureas), or glucose was >60% reduced compared to WT animals. This effect was mirrored by a 80% reduction in depolarization-evoked β cell exocytosis (monitored as increases in cell capacitance) in single ClC-3−/− β cells, as well as a 44% reduction in proton transport across the granule membrane. ClC-3 expression in the insulin granule was demonstrated by immunoblotting, immunostaining, and negative immuno-EM in a high-purification fraction of large dense-core vesicles (LDCVs) obtained by phogrin-EGFP labeling. The data establish the importance of granular Cl fluxes in granule priming and provide direct evidence for the involvement of ClC-3 in the process.  相似文献   

10.
Because VEGFA has been implicated in follicle development, the objective of this study was to determine the effects of granulosa- and germ cell-specific VEGFA loss on ovarian morphogenesis, function, and female fertility. pDmrt1-Cre mice were mated to floxed VEGFA mice to develop granulosa-/germ cell-specific knockouts (pDmrt1-Cre;Vegfa-/-). The time from mating to first parturition was increased when pDmrt1-Cre;Vegfa-/- females were mated to control males (P = 0.0008) and tended to be longer for heterozygous females (P < 0.07). Litter size was reduced for pDmrt1-Cre;Vegfa-/- females (P < 0.007). The time between the first and second parturitions was also increased for heterozygous females (P < 0.04) and tended to be increased for pDmrt1-Cre;Vegfa-/- females (P < 0.07). pDmrt1-Cre;Vegfa-/- females had smaller ovaries (P < 0.04), reduced plasma estradiol (P < 0.007), fewer developing follicles (P < 0.008) and tended to have fewer corpora lutea (P < 0.08). Expression of Igf1r was reduced (P < 0.05); expression of Foxo3a tended to be increased (P < 0.06); and both Fshr (P < 0.1) and Sirt6 tended to be reduced (P < 0.06) in pDmrt1-Cre;Vegfa-/- ovaries. To compare VEGFA knockouts, we generated Amhr2-Cre;Vegfa-/- mice that required more time from mating to first parturition (P < 0.003) with variable ovarian size. Both lines had more apoptotic granulosa cells, and vascular staining did not appear different. Taken together these data indicate that the loss of all VEGFA isoforms in granulosa/germ cells (proangiogenic and antiangiogenic) causes subfertility by arresting follicular development, resulting in reduced ovulation rate and fewer pups per litter.  相似文献   

11.
Kir4.1 channels were found to colocalize with the H(+)/K(+)-ATPase throughout the parietal cell (PC) acid secretory cycle. This study was undertaken to explore their functional role. Acid secretory rates, electrophysiological parameters, PC ultrastructure, and gene and protein expression were determined in gastric mucosae of 7-8-day-old Kir4.1-deficient mice and WT littermates. Kir4.1(-/-) mucosa secreted significantly more acid and initiated secretion significantly faster than WT mucosa. No change in PC number but a relative up-regulation of H(+)/K(+)-ATPase gene and protein expression (but not of other PC ion transporters) was observed. Electron microscopy revealed fully fused canalicular membranes and a lack of tubulovesicles in resting state Kir4.1(-/-) PCs, suggesting that Kir4.1 ablation may also interfere with tubulovesicle endocytosis. The role of this inward rectifier in the PC apical membrane may therefore be to balance between K(+) loss via KCNQ1/KCNE2 and K(+) reabsorption by the slow turnover of the H(+)/K(+)-ATPase, with consequences for K(+) reabsorption, inhibition of acid secretion, and membrane recycling. Our results demonstrate that Kir4.1 channels are involved in the control of acid secretion and suggest that they may also affect secretory membrane recycling.  相似文献   

12.
1. The tubulovesicles of hog and rabbit gastric parietal cells were immunopurified from microsomes using monoclonal antibodies against the (H+, K+)-ATPase. 2. The best yields of immunoprecipitation were obtained with an ATPase/mAb molar ratio of 0.3: the immunoprecipitate contained 79 and 90% of the hog and rabbit microsomal PNPPase activity respectively and K(+)-stimulated ATPase specific activity was 221 +/- 29 mumoles Pi per hr and per mg of membrane protein. 3. The immunoprecipitate contained vesicles that were 85% cytoplasmic-side out, like tubulovesicles in vivo, demonstrating that the epitopes were cytoplasmic. 4. The alpha-beta protomer of (H+, K+)-ATPase accounted for 80 +/- 12% of the immunopurified proteins. 5. The major other proteins ran at 80, 75, 69, 57, 47, 44, 39, 34 and 32 kDa on the SDS-PAGE. 6. Comparative analysis between sucrose-gradient purified fractions and immunopurified tubulovesicles demonstrated that carbonic anhydrase and actin were contaminants and that the 53 kDa and presumably the 50 kDa bands of the gradient fraction were alpha and beta subunits of F1 ATPase.  相似文献   

13.
The apical membrane of intestinal epithelia expresses intermediate conductance K+ channel (KCNN4), which provides the driving force for Cl secretion. However, its role in diarrhea and regulation by Epac1 is unknown. Previously we have established that Epac1 upon binding of cAMP activates a PKA-independent mechanism of Cl secretion via stimulation of Rap2-phospholipase Cϵ-[Ca2+]i signaling. Here we report that Epac1 regulates surface expression of KCNN4c channel through its downstream Rap1A-RhoA-Rho-associated kinase (ROCK) signaling pathway for sustained Cl secretion. Depletion of Epac1 protein and apical addition of TRAM-34, a specific KCNN4 inhibitor, significantly abolished cAMP-stimulated Cl secretion and apical K+ conductance (IK(ap)) in T84WT cells. The current-voltage relationship of basolaterally permeabilized monolayers treated with Epac1 agonist 8-(4-chlorophenylthio)-2′-O- methyladenosine 3′,5′-cyclic monophosphate showed the presence of an inwardly rectifying and TRAM-34-sensitive K+ channel in T84WT cells that was absent in Epac1KDT84 cells. Reconstructed confocal images in Epac1KDT84 cells revealed redistribution of KCNN4c proteins into subapical intracellular compartment, and a biotinylation assay showed ∼83% lower surface expression of KCNN4c proteins compared with T84WT cells. Further investigation revealed that an Epac1 agonist activates Rap1 to facilitate IK(ap). Both RhoA inhibitor (GGTI298) and ROCK inhibitor (H1152) significantly reduced cAMP agonist-stimulated IK(ap), whereas the latter additionally reduced colocalization of KCNN4c with the apical membrane marker wheat germ agglutinin in T84WT cells. In vivo mouse ileal loop experiments showed reduced fluid accumulation by TRAM-34, GGTI298, or H1152 when injected together with cholera toxin into the loop. We conclude that Rap1A-dependent signaling of Epac1 involving RhoA-ROCK is an important regulator of intestinal fluid transport via modulation of apical KCNN4c channels, a finding with potential therapeutic value in diarrheal diseases.  相似文献   

14.
Our objective was to identify and localize a K+ channel involved in gastric HCl secretion at the parietal cell secretory membrane and to characterize and compare the functional properties of native and recombinant gastric K+ channels. RT-PCR showed that mRNA for Kir2.1 was abundant in rabbit gastric mucosa with lesser amounts of Kir4.1 and Kir7.1, relative to -actin. Kir2.1 mRNA was localized to parietal cells of rabbit gastric glands by in situ RT-PCR. Resting and stimulated gastric vesicles contained Kir2.1 by Western blot analysis at 50 kDa as observed with in vitro translation. Immunoconfocal microscopy showed that Kir2.1 was present in parietal cells, where it colocalized with H+-K+-ATPase and ClC-2 Cl- channels. Function of native K+ channels in rabbit resting and stimulated gastric mucosal vesicles was studied by reconstitution into planar lipid bilayers. Native gastric K+ channels exhibited a linear current-voltage relationship and a single-channel slope conductance of 11 pS in 400 mM K2SO4. Channel open probability (Po) in stimulated vesicles was high, and that of resting vesicles was low. Reduction of extracellular pH plus PKA treatment increased resting channel Po to 0.5 as measured in stimulated vesicles. Full-length rabbit Kir2.1 was cloned. When stably expressed in Chinese hamster ovary (CHO) cells, it was activated by reduced extracellular pH and forskolin/IBMX with no effects observed in nontransfected CHO cells. Cation selectivity was K+ = Rb+ >> Na+ = Cs+ = Li+ = NMDG+. These findings strongly suggest that the Kir2.1 K+ channel may be involved in regulated gastric acid secretion at the parietal cell secretory membrane. H+-K+-ATPase; hydrogen chloride secretion; parietal cell K+ channel  相似文献   

15.
We studied whether K+-Cl(-) cotransporters (KCCs) are involved in gastric HCl secretion. We found that KCC4 is expressed in the gastric parietal cells more abundantly at the luminal region of the gland than at the basal region. KCC4 was found in the stimulation-associated vesicles (SAV) derived from the apical canalicular membrane but not in the intracellular tubulovesicles, whereas H+,K+-ATPase was expressed in both of them. In contrast, KCC1, KCC2, and KCC3 were not found in either SAV or tubulovesicles. KCC4 coimmunoprecipitated with H+,K+-ATPase in the lysate of SAV. Interestingly the MgATP-dependent uptake of (36)Cl(-) into the SAV was suppressed by either the H+,K+-ATPase inhibitor (SCH28080) or the KCC inhibitor ((R)-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]acetic acid). The KCC inhibitor suppressed the H+ uptake into SAV and the H+,K+-ATPase activity of SAV, but the inhibitor had no effects on these activities in the freeze-dried leaky SAV. These results indicate that the K+-Cl(-) cotransport by KCC4 is tightly coupled with H+/K+ antiport by H+,K+-ATPase, resulting in HCl accumulation in SAV. In the tetracycline-regulated expression system of KCC4 in the HEK293 cells stably expressing gastric H+,K+-ATPase, KCC4 was coimmunoprecipitated with H+,K+-ATPase. The rate of recovery of intracellular pH in the KCC4-expressing cells after acid loading through an ammonium pulse was significantly faster than that in the KCC4-non-expressing cells. Our results suggest that KCC4 and H+,K+-ATPase are the main machineries for basal HCl secretion in the apical canalicular membrane of the resting parietal cell. They also may contribute in part to massive acid secretion in the stimulated state.  相似文献   

16.
Chemokine (C-C motif) receptor 8 (CCR8), the chemokine receptor for chemokine (C-C motif) ligand 1 (CCL1), is expressed in T-helper type-2 lymphocytes and peritoneal macrophages (PMφ) and is involved in various pathological conditions, including peritoneal adhesions. However, the role of CCR8 in inflammatory responses is not fully elucidated. To investigate the function of CCR8 in macrophages, we compared cytokine secretion from mouse PMφ or bone marrow-derived macrophages (BMMφ) stimulated with various Toll-like receptor (TLR) ligands in CCR8 deficient (CCR8- /-) and wild-type (WT) mice. We found that CCR8-/- PMφ demonstrated attenuated secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 when stimulated with lipopolysaccharide (LPS). In particular, LPS-induced IL-10 production absolutely required CCR8. CCR8-dependent cytokine secretion was characteristic of PMφ but not BMMφ. To further investigate this result, we selected the small molecule compound R243 from a library of compounds with CCR8-antagonistic effects on CCL1-induced Ca2+ flux and CCL1-driven PMφ aggregation. Similar to CCR8-/- PMφ, R243 attenuated secretion of TNF-α, IL-6, and most strikingly IL-10 from WT PMφ, but not BMMφ. CCR8-/- PMφ and R243-treated WT PMφ both showed suppressed c-jun N-terminal kinase activity and nuclear factor-κB signaling after LPS treatment when compared with WT PMφ. A c-Jun signaling pathway inhibitor also produced an inhibitory effect on LPS-induced cytokine secretion that was similar to that of CCR8 deficiency or R243 treatment. As seen in CCR8-/- mice, administration of R243 attenuated peritoneal adhesions in vivo. R243 also prevented hapten-induced colitis. These results are indicative of cross talk between signaling pathways downstream of CCR8 and TLR-4 that induces cytokine production by PMφ. Through use of CCR8-/- mice and the new CCR8 inhibitor, R243, we identified a novel macrophage innate immune response pathway that involves a chemokine receptor.  相似文献   

17.

Introduction

The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial.

Methods

Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice.

Results

Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-.

Conclusion

Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.  相似文献   

18.
In Epstein-Barr virus (EBV)-infected gastric carcinoma, EBV-encoded BARF1 has been hypothesized to function as an oncogene. To evaluate cellular changes induced by BARF1, we isolated the full-length BARF1 gene from gastric carcinoma cells that were naturally infected with EBV and transfected BARF1 into EBV-negative gastric carcinoma cells. BARF1 protein was primarily secreted into culture supernatant and only marginally detectable within cells. Compared with gastric carcinoma cells containing empty vector, BARF1-expressing gastric carcinoma cells exhibited increased cell proliferation (P < 0.05). There were no significant differences in apoptosis, invasion, or migration between BARF1-expressing gastric carcinoma cells and empty vector-transfected cells. BARF1-expressing gastric carcinoma cells demonstrated increased nuclear expression of nuclear factor kappa B (NF-κB) RelA protein and increased NF-κB-dependent cyclin D1. The expression of p21WAF1 was diminished by BARF1 transfection and increased by NF-κB inhibition. Proliferation of naturally EBV-infected gastric carcinoma cells was suppressed by BARF1 small interfering RNA (siRNA) (P < 0.05). Immunohistochemical analysis of 120 human gastric carcinoma tissues demonstrated increased expression of cyclin D1 and reduced expression of p21WAF1 in EBV-positive samples versus EBV-negative gastric carcinomas (P < 0.05). In conclusion, the secreted BARF1 may stimulate proliferation of EBV-infected gastric carcinoma cells via upregulation of NF-κB/cyclin D1 and reduction of the cell cycle inhibitor p21WAF1, thereby facilitating EBV-induced cancer progression.  相似文献   

19.
Potassium ions are required for gastric acid secretion. Several potassium channels have been implicated in providing K(+) at the apical membrane of parietal cells. In examining the mRNA expression levels between gastric mucosa and liver tissue, KCNJ15 stood out as the most highly specific K(+) channel in the gastric mucosa. Western blot analysis confirmed that KCNJ15 is abundant in the stomach. Immunofluorescence staining of isolated gastric glands indicated that KCNJ15 was expressed in parietal cells and chief cells, but not in mucous neck cells. In resting parietal cells, KCNJ15 was mainly found in puncta throughout the cytoplasm but was distinct from H(+)-K(+)-ATPase. Upon stimulation, KCNJ15 and H(+)-K(+)-ATPase become colocalized on the apical membranes, as suggested by immunofluorescence staining. Western blot analysis of the resting and the stimulated membrane fractions confirmed this observation. From nonsecreting preparations, KCNJ15-containing vesicles sedimented after a 4-h centrifugation at 100,000 g, but not after a 30-min spin, which did sediment most of the H(+)-K(+)-ATPase-containing tubulovesicles. Most of the KCNJ15 containing small vesicle population was depleted upon stimulation of parietal cells, as indicated by the fact that the KCNJ15 signal was shifted to a large membrane fraction that sedimented at 4,000 g. Our results demonstrate that, in nonsecreting parietal cells, KCNJ15 is stored in vesicles distinct from the H(+)-K(+)-ATPase-enriched tubulovesicles. Furthermore, upon stimulation, KCNJ15 and H(+)-K(+)-ATPase both translocate to the apical membrane for active acid secretion. Thus KCNJ15 can be added to the family of apical K(+) channels in gastric parietal cells.  相似文献   

20.
We previously demonstrated that overexpression of RanBP9 led to enhanced Aβ generation in a variety of cell lines and primary neuronal cultures, and subsequently, we confirmed increased amyloid plaque burden in a mouse model of Alzheimer''s disease (AD). In the present study, we found striking reduction of spinophilin protein levels when RanBP9 is overexpressed. At 12 months of age, we found spinophilin levels reduced by 70% (P<0.001) in the cortex of APΔE9/RanBP9 mice compared with that in wild-type (WT) controls. In the hippocampus, the spinophilin levels were reduced by 45% (P<0.01) in the APΔE9/RanBP9 mice. Spinophilin immunoreactivity was also reduced by 22% (P<0.01) and 12% (P<0.05) in the cortex of APΔE9/RanBP9 and APΔE9 mice, respectively. In the hippocampus, the reductions were 27% (P<0.001) and 14% (P<0.001) in the APΔE9/RanBP9 and APΔE9 mice, respectively. However, in the cerebellum, spinophilin levels were not altered in either APΔE9 or APΔE9/RanBP9 mice. Additionally, synaptosomal functional integrity was reduced under basal conditions by 39% (P<0.001) in the APΔE9/RanBP9 mice and ∼23% (P<0.001) in the APΔE9 mice compared with that in WT controls. Under ATP- and KCl-stimulated conditions, we observed higher mitochondrial activity in the WT and APΔE9 mice, but lower in the APΔE9/RanBP9 mice. Significantly, we confirmed the inverse relationship between RanBP9-N60 and spinophilin in the synaptosomes of Alzheimer''s brains. More importantly, both APΔE9 and APΔE9/RanBP9 mice showed impaired learning and memory skills compared to WT controls. These data suggest that RanBP9 might play a crucial role in the loss of spines and synapses in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号