首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Hypersensitivity pneumonitis (HP) is an interstitial lung disease that develops following repeated exposure to environmental antigens. The disease results in alveolitis, granuloma formation and may progress to a fibrotic chronic form, which is associated with significant morbidity and mortality. The severity of the disease correlates with a neutrophil rich influx and an IL-17 response. We used the Saccharopolyspora rectivirgula (SR) model of HP to determine whether Toll-like receptors (TLR) 2 and 9 cooperate in neutrophil recruitment and IL-17-associated cytokine production during the development of HP. Stimulation of bone marrow derived macrophages (BMDMs) from C57BL/6, MyD88-/- and TLR2/9-/- mice with SR demonstrate that SR is a strong inducer of neutrophil chemokines and growth factors. The cytokines induced by SR were MyD88-dependent and, of those, most were partially or completely dependent on TLRs 2 and 9. Following in vivo exposure to SR, CXCL2 production and neutrophil recruitment were reduced in TLR2-/- and TLR2/9-/- mice suggesting that the response was largely dependent on TLR2; however the reduction was greatest in the TLR2/9-/- double knockout mice indicating TLR9 may also contribute to the response. There was a reduction in the levels of pro-inflammatory cytokines TNFα and IL-6 as well as CCL3 and CCL4 in the BALF from TLR2/9-/- mice compared to WT and single knockout (SKO) mice exposed one time to SR. The decrease in neutrophil recruitment and TNFα production in the TLR2/9-/- mice was maintained throughout 3 weeks of SR exposures in comparison to WT and SKO mice. Both TLRs 2 and 9 contributed to the Th17 response; there was a decrease in Th17 cells and IL-17 mRNA in the TLR2/9-/- mice in comparison to the WT and SKO mice. Despite the effects on neutrophil recruitment and the IL-17 response, TLR2/9-/- mice developed granuloma formation similarly to WT and SKO mice suggesting that there are additional mediators and pattern recognition receptors involved in the disease.  相似文献   

2.
Toll-like receptors (TLR) and the downstream adaptor protein MyD88 are considered crucial for protective immunity during bacterial infections. Streptococcus (S.) pneumoniae is a human respiratory pathogen and a large majority of clinical pneumococcal isolates expresses an external polysaccharide capsule. We here sought to determine the role of pneumococcal capsule in MyD88-mediated antibacterial defense during S. pneumonia pneumonia. Wild type (WT) and Myd88-/- mice were inoculated intranasally with serotype 2 S. pneumoniae D39 or with an isogenic capsule locus deletion mutant (D39∆cps), and analysed for bacterial outgrowth and inflammatory responses in the lung. As compared to WT mice, Myd88-/- mice infected with D39 demonstrated a modestly impaired bacterial clearance accompanied by decreased inflammatory responses in the lung. Strikingly, while WT mice rapidly cleared D39∆cps, Myd88-/- mice showed 105-fold higher bacterial burdens in their lungs and dissemination to blood 24 hours after infection. These data suggest that the pneumococcal capsule impairs recognition of TLR ligands expressed by S. pneumoniae and thereby partially impedes MyD88-mediated antibacterial defense.  相似文献   

3.
In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP-/- MEF cells, and quite substantially decreased in TRIF-/- MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP-/- MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation.  相似文献   

4.
Toxoplasma gondii is an orally acquired pathogen that induces strong IFN-γ based immunity conferring protection but that can also be the cause of immunopathology. The response in mice is driven in part by well-characterized MyD88-dependent signaling pathways. Here we focus on induction of less well understood immune responses that do not involve this Toll-like receptor (TLR)/IL-1 family receptor adaptor molecule, in particular as they occur in the intestinal mucosa. Using eYFP-IL-12p40 reporter mice on an MyD88-/- background, we identified dendritic cells, macrophages, and neutrophils as cellular sources of MyD88-independent IL-12 after peroral T. gondii infection. Infection-induced IL-12 was lower in the absence of MyD88, but was still clearly above noninfected levels. Overall, this carried through to the IFN-γ response, which while generally decreased was still remarkably robust in the absence of MyD88. In the latter mice, IL-12 was strictly required to induce type I immunity. Type 1 and type 3 innate lymphoid cells (ILC), CD4+ T cells, and CD8+ T cells each contributed to the IFN-γ pool. We report that ILC3 were expanded in infected MyD88-/- mice relative to their MyD88+/+ counterparts, suggesting a compensatory response triggered by loss of MyD88. Furthermore, bacterial flagellin and Toxoplasma specific CD4+ T cell populations in the lamina propria expanded in response to infection in both WT and KO mice. Finally, we show that My88-independent IL-12 and T cell mediated IFN-γ production require the presence of the intestinal microbiota. Our results identify MyD88-independent intestinal immune pathways induced by T. gondii including myeloid cell derived IL-12 production, downstream type I immunity and IFN-γ production by ILC1, ILC3, and T lymphocytes. Collectively, our data reveal an underlying network of immune responses that do not involve signaling through MyD88.  相似文献   

5.
The toll-like receptor-9 (TLR9) agonist cytosine phosphate guanine (CpG), activates hepatic stellate cells (HSCs) and mediates fibrosis. We investigated the TLR9 effects on lymphocyte/HSCs interactions. Liver fibrosis was induced in wild-type (WT) mice by intra-peritoneal carbon-tetrachloride (CCl4) induction for 6 weeks. Fibrotic groups were intravenously treated by a vehicle versus CpG along last 2 weeks. Compared to vehicle-treated fibrotic WT, the in-vivo CpG-treatment significantly attenuated hepatic fibrosis and inflammation, associated with decreased CD8 and increased NK liver cells. In-vitro, co-cultures with vehicle-treated fibrotic NK cells increased HSCs proliferation (P<0.001) while their CpG-treated counterparts achieved a significant decrease. To investigate the role of lymphocytes, TLR9-/- mice induced-hepatic fibrosis were used. Although TLR9-/- mice manifested lower fibrotic profile as compared to their wild-type (WT) counterparts, senescence (SA-β-Gal activity) in the liver and ALT serum levels were significantly greater. In an adoptive transfer model; irradiated WT and TLR9-/- recipients were reconstituted with naïve WT or TLR9-/- lymphocytes. The adoptive transfer of TLR9-/- versus WT lymphocytes led to increased fibrosis of WT recipients. TLR9-/- fibrotic recipients reconstituted with TLR9-/- or WT lymphocytes showed no changes in hepatic fibrosis severity or ALT serum levels. TLR9 activation had inconsistent effects on lymphocytes and HSCs. The net balance of TLR9 activation in WT, displayed significant anti-fibrotic activity, accompanied by CD8 suppression and increased NK-cells, activity and adherence to HSCs. The pro-fibrotic and pro-inflammatory properties of TLR9-/- lymphocytes fail to activate HSCs with an early senescence in TLR9-/- mice.   相似文献   

6.
To assess the role of Toll-like receptor (TLR) signaling in host resistance to Mycobacterium avium infection, mice deficient in the TLR adaptor molecule myeloid differentiation factor 88 (MyD88), as well as TLR2(-/-) and TLR4(-/-) animals, were infected with a virulent strain of M. avium, and bacterial burdens and immune responses were compared with those in wild-type (WT) animals. MyD88(-/-) mice failed to control acute and chronic M. avium growth and succumbed 9-14 wk postinfection. Infected TLR2(-/-) mice also showed increased susceptibility, but displayed longer survival and lower bacterial burdens than MyD88(-/-) animals, while TLR4(-/-) mice were indistinguishable from their WT counterparts. Histopathological examination of MyD88(-/-) mice revealed massive destruction of lung tissue not present in WT, TLR2(-/-), or TLR4(-/-) mice. In addition, MyD88(-/-) and TLR2(-/-), but not TLR4(-/-), mice displayed marked reductions in hepatic neutrophil infiltration during the first 2 h of infection. Although both MyD88(-/-) and TLR2(-/-) macrophages showed profound defects in IL-6, TNF, and IL-12p40 responses to M. avium stimulation in vitro, in vivo TNF and IL-12p40 mRNA induction was impaired only in infected MyD88(-/-) mice. Similarly, MyD88(-/-) mice displayed a profound defect in IFN-gamma response that was not evident in TLR2(-/-) or TLR4(-/-) mice or in animals deficient in IL-18. These findings indicate that resistance to mycobacterial infection is regulated by multiple MyD88-dependent signals in addition to those previously attributed to TLR2 or TLR4, and that these undefined elements play a major role in determining bacterial induced proinflammatory as well as IFN-gamma responses.  相似文献   

7.
The means by which Francisella tularensis, the causative agent of tularemia, are recognized by mammalian immune systems are poorly understood. Here we wished to explore the contribution of the MyD88/Toll-like receptor signaling pathway in initiating murine responses to F. tularensis Live Vaccine Strain (LVS). MyD88 knockout (KO) mice, but not TLR2-, TLR4- or TLR9-deficient mice, rapidly succumbed following in vivo bacterial infection via the intradermal route even with a very low dose of LVS (5 x 10(1)) that was 100,000-fold less than the LD(50) of normal wild-type (WT) mice. By day 5 after LVS infection, bacterial organ burdens were 5-6 logs higher in MyD88 knockout mice; further, unlike infected WT mice, levels of interferon-gamma in the sera of LVS-infected MyD88 KO were undetectable. An in vitro culture system was used to assess the ability of bone marrow macrophages derived from either KO or WT mice to support bacterial growth, or to control intracellular bacterial replication when co-cultured with immune lymphocytes. In this assay, bacterial replication was similar in macrophages derived from either WT or any of the TLR KO mice. Bacterial growth was controlled in co-cultures containing macrophages from MyD88 KO mice or TLR KO mice as well as in co-cultures containing immune WT splenic lymphocytes and WT macrophages. Further, MyD88-deficient LVS-immune splenocytes controlled intracellular growth comparably to those from normal mice. Thus MyD88 is essential for innate host resistance to LVS infection, but is not required for macrophage control of intracellular bacterial growth.  相似文献   

8.
We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) small, but significant, increase in serum urea after 24 h, (ii) 100% increase in serum creatinine at 24 h. A serum peak of inflammatory cytokines occurred after 5 days of reperfusion. Heart weight/body weight and heart weight/tibia length ratios increased after 12 and 15 days of reperfusion, respectively. Cardiac hypertrophy markers, B-type natriuretic peptide (BNP) and α-actin, left ventricle mass, cardiac wall thickness and myocyte width increased after 15 days of reperfusion, together with longer QTc and action potential duration. Cardiac TLRs, MyD88, HSP60 and HSP70 mRNA levels also increased. After 15 days of reperfusion, absence of TLRs prevented cardiac hypertrophy, as reflected by similar values of left ventricular cardiac mass and heart weight/body weight ratio compared to the transgenic Sham. Renal tissular injury also ameliorated in both knockout mice, as revealed by the comparison of their vimentin mRNA levels with those found in the WT on the same day after I/R. The I/R TLR2-/- group had TNF-α, IFN-γ and IL-1β levels similar to the non-I/R group, whereas the TLR4-/- group conserved the p-NF-κB/NF- κB ratio contrasting with that found in TLR2-/-. We conclude: (i) TLRs are involved in renal I/R-induced cardiac hypertrophy; (ii) absence of TLRs prevents I/R-induced cardiac hypertrophy, despite renal lesions seeming to evolve towards those of chronic disease; (iii) TLR2 and TLR4 selectively regulate the systemic inflammatory profile and NF- κB activation.  相似文献   

9.
ObjectivesThe study aimed to determine whether dental pulp stem cell‐derived exosomes (DPSC‐Exos) exert protective effects against cerebral ischaemia‐reperfusion (I/R) injury and explore its underlying mechanism.Materials and MethodsExosomes were isolated from the culture medium of human DPSC. Adult male C57BL/6 mice were subjected to 2 hours transient middle cerebral artery occlusion (tMCAO) injury followed by 2 hours reperfusion, after which singular injection of DPSC‐Exos via tail vein was administrated. Brain oedema, cerebral infarction and neurological impairment were measured on day 7 after exosomes injection. Then, oxygen‐glucose deprivation–reperfusion (OGD/R) induced BV2 cells were studied to analyse the therapeutic effects of DPSC‐Exos on I/R injury in vitro. Protein levels of TLR4, MyD88, NF‐κB p65, HMGB1, IL‐6, IL‐1β and TNF‐α were determined by western blot or enzyme‐linked immunosorbent assay. The cytoplasmic translocation of HMGB1 was detected by immunofluorescence staining.ResultsDPSC‐Exos alleviated brain oedema, cerebral infarction and neurological impairment in I/R mice. DPSC‐Exos inhibited the I/R‐mediated expression of TLR4, MyD88 and NF‐κB significantly. DPSC‐Exos also reduced the protein expression of IL‐6, IL‐1β and TNF‐α compared with those of the control both in vitro and in vivo. Meanwhile, DPSC‐Exos markedly decreased the HMGB1 cytoplasmic translocation induced by I/R damage.ConclusionsDPSC‐Exos can ameliorate I/R‐induced cerebral injury in mice. Its anti‐inflammatory mechanism might be related with the inhibition of the HMGB1/TLR4/MyD88/NF‐κB pathway.  相似文献   

10.
Salmonella enterica serovar Typhimurium is a clinically important gram-negative, enteric bacterial pathogen that activates several Toll-like receptors (TLRs). While TLR signaling through the adaptor protein MyD88 has been shown to promote inflammation and host defense against the systemic spread of S. Typhimurium, curiously, its role in the host response against S. Typhimurium within the mammalian gastrointestinal (GI) tract is less clear. We therefore used the recently described Salmonella-induced enterocolitis and fibrosis model: wild-type (WT) and MyD88-deficient (MyD88(-/-)) mice pretreated with streptomycin and then orally infected with the ΔaroA vaccine strain of S. Typhimurium. Tissues were analyzed for bacterial colonization, inflammation, and epithelial damage, while fibrosis was assessed by collagen quantification and Masson's trichrome staining. WT and MyD88(-/-) mice carried similar intestinal pathogen burdens to postinfection day 21. Infection of WT mice led to acute mucosal and submucosal inflammation and edema, as well as significant intestinal epithelial damage and proliferation, leading to widespread goblet cell depletion. Impressive collagen deposition in the WT intestine was also evident in the submucosa at postinfection days 7 and 21, with fibrotic regions rich in fibroblasts and collagen. While infected MyD88(-/-) mice showed levels of submucosal inflammation and edema similar to WT mice, they were impaired in the development of mucosal inflammation, along with infection-induced epithelial damage, proliferation, and goblet cell depletion. MyD88(-/-) mouse tissues also had fewer submucosal fibroblasts and 60% less collagen. We noted that cyclooxygenase (Cox)-2 expression was MyD88-dependent, with numerous Cox-2-positive cells identified in fibrotic regions of WT mice at postinfection day 7, but not in MyD88(-/-) mice. Treatment of WT mice with the Cox-2 inhibitor rofecoxib (20 mg/kg) significantly reduced fibroblast numbers and collagen levels without altering colitis severity. In conclusion, MyD88 and Cox-2 signaling play roles in intestinal fibrosis during Salmonella-induced enterocolitis.  相似文献   

11.
This study investigated the influence of TLR (toll-like receptor)4, TLR2, and MyD88 in Toxoplasma gondii-infected wild-type (WT) mice and TLR4-, TLR2-, and MyD88-deficient mice. Ninety-five percent of MyD88-deficient mice died 10-16 days after intraperitoneal infection with 100 cysts of T. gondii Fukaya strain, whereas 95-100% of TLR4- and TLR2-deficient mice and WT C57BL/6 (B6) mice survived for more than 7 wk after T. gondii infection. The distribution of T. gondii in various organs of TLR4-, TLR2-, and MyD88-deficient mice and WT B6 mice was assessed 2 wk after T. gondii intraperitoneal infection using quantitative competitive polymerase chain reaction. In MyD88-deficient mice, high levels of T. gondii load were observed in the brain, tongue, heart, lungs, spleen, liver, mesenteric lymph node, and kidneys after infection. The T. gondii load was significantly increased in the lungs in both TLR4- and TLR2-deficient mice compared with WT B6 mice. High levels of anti-mouse heat shock protein (mHSP)70 autoantibody and anti-T. gondii HSP70 antibody production were detected in the sera from MyD88-deficient mice.  相似文献   

12.
Ischemia-reperfusion lung injury is a common cause of acute morbidity and mortality in lung transplant recipients and has been associated with subsequent development of bronchiolitis obliterans syndrome. Recognition of endogenous ligands released during cellular injury (damage-associated molecular patterns; DAMPs) by Toll-like receptors (TLRs), especially TLR4, has increasingly been recognized as a mechanism for inflammation resulting from tissue damage. TLR4 is implicated in the pathogenesis of ischemia-reperfusion injury of multiple organs including heart, liver, kidney and lung. Additionally, activation of TLRs other than TLR4 by DAMPs has been identified in tissues other than the lung. Because all known TLRs, with the exception of TLR3, signal via the MyD88 adapter protein, we hypothesized that lung ischemia-reperfusion injury was mediated by MyD88-dependent signaling. To test this hypothesis, we subjected C57BL/6 wildtype, Myd88 -/-, and Tlr4 -/- mice to 1 hr of left lung warm ischemia followed by 4 hr of reperfusion. We found that Myd88 -/- mice had significantly less MCP-1/CCL2 in the left lung following ischemia-reperfusion as compared with wildtype mice. This difference was associated with dramatically reduced lung permeability. Interestingly, Tlr4 -/- mice had only partial protection from ischemia-reperfusion as compared to Myd88 -/- mice, implicating other MyD88-dependent pathways in lung injury following ischemia-reperfusion. We also found that left lung ischemia-reperfusion caused remote inflammation in the right lung. Finally, using chimeric mice with MyD88 expression restricted to either myeloid or non-myeloid cells, we found that MyD88-dependent signaling in myeloid cells was necessary for ischemia-reperfusion induced lung permeability. We conclude that MyD88-dependent signaling through multiple receptors is important in the pathogenesis of acute lung inflammation and injury following ischemia and reperfusion.  相似文献   

13.
The aim of this study was to investigate the role of TLR2, TLR4 and MyD88 in sepsis-induced AKI. C57BL/6 TLR2(-/-), TLR4(-/-) and MyD88(-/-) male mice were subjected to sepsis by cecal ligation and puncture (CLP). Twenty four hours later, kidney tissue and blood samples were collected for analysis. The TLR2(-/-), TLR4(-/-) and MyD88(-/-) mice that were subjected to CLP had preserved renal morphology, and fewer areas of hypoxia and apoptosis compared with the wild-type C57BL/6 mice (WT). MyD88(-/-) mice were completely protected compared with the WT mice. We also observed reduced expression of proinflammatory cytokines in the kidneys of the knockout mice compared with those of the WT mice and subsequent inhibition of increased vascular permeability in the kidneys of the knockout mice. The WT mice had increased GR1(+low) cells migration compared with the knockout mice and decreased in GR1(+high) cells migration into the peritoneal cavity. The TLR2(-/-), TLR4(-/-), and MyD88(-/-) mice had lower neutrophil infiltration in the kidneys. Depletion of neutrophils in the WT mice led to protection of renal function and less inflammation in the kidneys of these mice. Innate immunity participates in polymicrobial sepsis-induced AKI, mainly through the MyD88 pathway, by leading to an increased migration of neutrophils to the kidney, increased production of proinflammatory cytokines, vascular permeability, hypoxia and apoptosis of tubular cells.  相似文献   

14.
The murine model of T. cruzi infection has provided compelling evidence that development of host resistance against intracellular protozoans critically depends on the activation of members of the Toll-like receptor (TLR) family via the MyD88 adaptor molecule. However, the possibility that TLR/MyD88 signaling pathways also control the induction of immunoprotective CD8+ T cell-mediated effector functions has not been investigated to date. We addressed this question by measuring the frequencies of IFN-γ secreting CD8+ T cells specific for H-2Kb-restricted immunodominant peptides as well as the in vivo Ag-specific cytotoxic response in infected animals that are deficient either in TLR2, TLR4, TLR9 or MyD88 signaling pathways. Strikingly, we found that T. cruzi-infected Tlr2−/−, Tlr4−/−, Tlr9−/ or Myd88−/− mice generated both specific cytotoxic responses and IFN-γ secreting CD8+ T cells at levels comparable to WT mice, although the frequency of IFN-γ+CD4+ cells was diminished in infected Myd88−/− mice. We also analyzed the efficiency of TLR4-driven immune responses against T. cruzi using TLR4-deficient mice on the C57BL genetic background (B6 and B10). Our studies demonstrated that TLR4 signaling is required for optimal production of IFN-γ, TNF-α and nitric oxide (NO) in the spleen of infected animals and, as a consequence, Tlr4−/− mice display higher parasitemia levels. Collectively, our results indicate that TLR4, as well as previously shown for TLR2, TLR9 and MyD88, contributes to the innate immune response and, consequently, resistance in the acute phase of infection, although each of these pathways is not individually essential for the generation of class I-restricted responses against T. cruzi.  相似文献   

15.
We have explored the pathological role of the MyD88 signaling pathway via Toll-like receptors (TLRs) that mediate the recognition of pathogen-associated molecular patterns (PAMPs) in a murine model of autoimmune hepatitis induced by administering Concanavalin A (ConA). We first found that various TLRs and MyD88 molecules were expressed in liver of Con A-treated and untreated wild-type (WT) mice including liver macrophages. Flowcytometric analysis revealed that liver CD11b+CD11c and CD11b+CD11c+ antigen-presenting cells express TLR2, although NK and NKT cells did not. When WT and MyD88−/− mice were intravenously administered with Con A, the severity of hepatitis was significantly lower in Con A-injected MyD88−/− mice than in WT mice in terms of the histopathology, the levels of serum transaminase and pro-inflammatory cytokines (TNF-α, IFN-γ, and IL-6), and upregulation of CD80/CD86 and TNF-α on/in liver macrophages. The results provide evidence of a possible contribution of the TLRs-MyD88 signaling pathway in activating TLR-expressing liver macrophages in the autoimmune hepatitis model, and thus indicate that the strategy of blockade of pathological pathogens via the intestinal lumen may be feasible for the treatment of the disease.  相似文献   

16.
Exposure to air pollutants such as ozone (O(3)) induces airway hyperresponsiveness (AHR) and airway inflammation. Toll-like receptors (TLR) are first-line effector molecules in innate immunity to infections and signal via adapter proteins, including myeloid differentiation factor-88 (MyD88). We investigated the sensing of ozone by TLR2, TLR4, and MyD88. Ozone induced AHR in wild-type (WT) C57BL/6 mice, but AHR was absent in TLR2(-/-), TLR4(-/-), and MyD88(-/-) mice. Bronchoalveolar lavage neutrophilia induced by ozone was inhibited at 3 h but not at 24 h in TLR2(-/-) and TLR4(-/-) mice, while in MyD88(-/-) mice, this was inhibited at 24 h. We investigated the expression of inflammatory cytokines and TLR2, TLR4, and MyD88 in these mice. Ozone induced time-dependent increases in inflammatory gene expression of keratinocyte chemoattractant (KC) and IL-6 and of TLR2, TLR4, and MyD88 in WT mice. IL-6 and KC expression induced by ozone was inhibited in TLR2(-/-), TLR4(-/-), and MyD88(-/-) mice. Expression of MyD88 was increased in TLR2(-/-) and TLR4(-/-) mice, while induction of TLR2 or TLR4 was reduced in TLR2(-/-) and TLR4(-/-) mice, respectively. TLR2 and TLR4 mediate AHR induced by oxidative stress such as ozone, while the adapter protein MyD88, but not TLR2 or TLR4, is important in mediating ozone-induced neutrophilia. TLR2 and TLR4 may also be important in regulating the speed of neutrophilic response. Therefore, ozone may induce murine AHR and neutrophilic inflammation through the activation of the Toll-like receptor pathway that may sense noninfectious stimuli such as oxidative stress.  相似文献   

17.
Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ-/-) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ-/- mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ-/- mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7+ γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion.  相似文献   

18.
Effective resolution of malaria infection by avoiding pathogenesis requires regulated pro- to anti-inflammatory responses and the development of protective immunity. TLRs are known to be critical for initiating innate immune responses, but their roles in the regulation of immune responses and development of protective immunity to malaria remain poorly understood. In this study, using wild-type, TLR2(-/-), TLR4(-/-), TLR9(-/-), and MyD88(-/-) mice infected with Plasmodium yoelii, we show that TLR9 and MyD88 regulate pro/anti-inflammatory cytokines, Th1/Th2 development, and cellular and humoral responses. Dendritic cells from TLR9(-/-) and MyD88(-/-) mice produced significantly lower levels of proinflammatory cytokines and higher levels of anti-inflammatory cytokines than dendritic cells from wild-type mice. NK and CD8(+) T cells from TLR9(-/-) and MyD88(-/-) mice showed markedly impaired cytotoxic activity. Furthermore, mice deficient in TLR9 and MyD88 showed higher Th2-type and lower Th1-type IgGs. Consequently, TLR9(-/-) and MyD88(-/-) mice exhibited compromised ability to control parasitemia and were susceptible to death. Our data also show that TLR9 and MyD88 distinctively regulate immune responses to malaria infection. TLR9(-/-) but not MyD88(-/-) mice produced significant levels of both pro- and anti-inflammatory cytokines, including IL-1β and IL-18, by other TLRs/inflammasome- and/or IL-1R/IL-18R-mediated signaling. Thus, whereas MyD88(-/-) mice completely lacked cell-mediated immunity, TLR9(-/-) mice showed low levels of cell-mediated immunity and were slightly more resistant to malaria infection than MyD88(-/-) mice. Overall, our findings demonstrate that TLR9 and MyD88 play central roles in the immune regulation and development of protective immunity to malaria, and have implications in understanding immune responses to other pathogens.  相似文献   

19.

Background

Francisella tularensis is the causative agent of tularemia and is classified as a Category A select agent. Recent studies have implicated TLR2 as a critical element in the host protective response to F. tularensis infection, but questions remain about whether TLR2 signaling dominates the response in all circumstances and with all species of Francisella and whether F. tularensis PAMPs are predominantly recognized by TLR2/TLR1 or TLR2/TLR6. To address these questions, we have explored the role of Toll-like receptors (TLRs) in the host response to infections with F. tularensis Live Vaccine Strain (LVS) and F. tularensis subspecies (subsp.) novicida in vivo.

Methodology/Principal Findings

C57BL/6 (B6) control mice and TLR– or MyD88-deficient mice were infected intranasally (i.n.) or intradermally (i.d.) with F. tularensis LVS or with F. tularensis subsp. novicida. B6 mice survived >21 days following infection with LVS by both routes and survival of TLR1−/−, TLR4−/−, and TLR6−/− mice infected i.n. with LVS was equivalent to controls. Survival of TLR2−/− and MyD88−/− mice, however, was significantly reduced compared to B6 mice, regardless of the route of infection or the subspecies of F. tularensis. TLR2−/− and MyD88−/− mice also showed increased bacterial burdens in lungs, liver, and spleen compared to controls following i.n. infection. Primary macrophages from MyD88−/− and TLR2−/− mice were significantly impaired in the ability to secrete TNF and other pro-inflammatory cytokines upon ex vivo infection with LVS. TNF expression was also impaired in vivo as demonstrated by analysis of bronchoalveolar lavage fluid and by in situ immunofluorescent staining.

Conclusions/Significance

We conclude from these studies that TLR2 and MyD88, but not TLR4, play critical roles in the innate immune response to F. tularensis infection regardless of the route of infection or the subspecies. Moreover, signaling through TLR2 does not depend exclusively on TLR1 or TLR6 during F. tularensis LVS infection.  相似文献   

20.
Abnormal T cell responses to commensal bacteria are involved in the pathogenesis of inflammatory bowel disease. MyD88 is an essential signal transducer for TLRs in response to the microflora. We hypothesized that TLR signaling via MyD88 was important for effector T cell responses in the intestine. TLR expression on murine T cells was examined by flow cytometry. CD4(+)CD45Rb(high) T cells and/or CD4(+)CD45Rb(low)CD25(+) regulatory T cells were isolated and adoptively transferred to RAG1(-/-) mice. Colitis was assessed by changes in body weight and histology score. Cytokine production was assessed by ELISA. In vitro proliferation of T cells was assessed by [(3)H]thymidine assay. In vivo proliferation of T cells was assessed by BrdU and CFSE labeling. CD4(+)CD45Rb(high) T cells expressed TLR2, TLR4, TLR9, and TLR3, and TLR ligands could act as costimulatory molecules. MyD88(-/-) CD4(+) T cells showed decreased proliferation compared with WT CD4(+) T cells both in vivo and in vitro. CD4(+)CD45Rb(high) T cells from MyD88(-/-) mice did not induce wasting disease when transferred into RAG1(-/-) recipients. Lamina propria CD4(+) T cell expression of IL-2 and IL-17 and colonic expression of IL-6 and IL-23 were significantly lower in mice receiving MyD88(-/-) cells than mice receiving WT cells. In vitro, MyD88(-/-) T cells were blunted in their ability to secrete IL-17 but not IFN-gamma. Absence of MyD88 in CD4(+)CD45Rb(high) cells results in defective T cell function, especially Th17 differentiation. These results suggest a role for TLR signaling by T cells in the development of inflammatory bowel disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号