首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agroecology offers a scientific and operational framework for redesigning animal production systems (APS) so that they better cope with the coming challenges. Grounded in the stimulation and valorization of natural processes to reduce inputs and pollutions in agroecosystems, it opens a challenging research agenda for the animal science community. In this paper, we identify key research issues that define this agenda. We first stress the need to assess animal robustness by measurable traits, to analyze trade-offs between production and adaptation traits at within-breed and between-breed level, and to better understand how group selection, epigenetics and animal learning shape performance. Second, we propose research on the nutritive value of alternative feed resources, including the environmental impacts of producing these resources and their associated non-provisioning services. Third, we look at how the design of APS based on agroecological principles valorizes interactions between system components and promotes biological diversity at multiple scales to increase system resilience. Addressing such challenges requires a collection of theories and models (concept–knowledge theory, viability theory, companion modeling, etc.). Acknowledging the ecology of contexts and analyzing the rationales behind traditional small-scale systems will increase our understanding of mechanisms contributing to the success or failure of agroecological practices and systems. Fourth, the large-scale development of agroecological products will require analysis of resistance to change among farmers and other actors in the food chain. Certifications and market-based incentives could be an important lever for the expansion of agroecological alternatives in APS. Finally, we question the suitability of current agriculture extension services and public funding mechanisms for scaling-up agroecological practices and systems.  相似文献   

2.
农业生态系统中的AM真菌多样性   总被引:1,自引:0,他引:1  
王淼焱  刁志凯  梁美霞  刘润进 《生态学报》2005,25(10):2744-2749
农业生态系统复杂庞大,是由如麦田生态系统、水稻田生态系统、果园生态系统、草地生态系统、保护地生态系统等组成的一个复合生态系统。重点介绍农业生态系统中丛枝菌根(AM)和AM真菌多样性,探讨农业生态系统中调控AM真菌多样性的途径以及今后研究的动向。  相似文献   

3.
Wastes have been rightly referred to as resources out of place. Since household wastewater often intermixes with effluents from industries and agricultural runoff, multidimensional approaches have been made towards maximizing protein production through rational exploitation of available resources. Sewage-fed aquaculture is a unique system and has manifold advantages in developing tropical countries acting as a major source of nutrients for crop farming and aquaculture, economical for sustainable production and helps to combat environmental pollution. The use of municipal wastewater fed to fertilize ponds began in Calcutta in the 1930s; the city now has perhaps the largest wastewater-fed aquaculture system in the world. A large number of people derive their livelihood from the sewage-fed aquaculture using the principles of systems ecology and applying it through ecological engineering. The subject of sewage-fed aquaculture is reviewed in terms of source, chemical nature, diversity pattern, recycling practices, production potential of aquaculture, environmental issues and safety measures for ecofriendly sustainable environmental management strategies.  相似文献   

4.
Intensification and specialisation of agriculture in developed countries enabled productivity to be improved but had detrimental impacts on the environment and threatened the economic viability of a huge number of farms. The combination of livestock and crops, which was very common in the past, is assumed to be a viable alternative to specialised livestock or cropping systems. Mixed crop-livestock systems can improve nutrient cycling while reducing chemical inputs and generate economies of scope at farm level. Most assumptions underlying these views are based on theoretical and experimental evidence. Very few assessments of their environmental and economic advantages have nevertheless been undertaken in real-world farming conditions. In this paper, we present a comparative assessment of the environmental and economic performances of mixed crop-livestock farms v. specialised farms among the farm population of the French ‘Coteaux de Gascogne’. In this hilly region, half of the farms currently use a mixed crop-livestock system including beef cattle and cash crops, the remaining farms being specialised in either crops or cattle. Data were collected through an exhaustive survey of farms located in our study area. The economic performances of farming systems were assessed on 48 farms on the basis of (i) overall gross margin, (ii) production costs and (iii) analysis of the sensitivity of gross margins to fluctuations in the price of inputs and outputs. The environmental dimension was analysed through (i) characterisation of farmers’ crop management practices, (ii) analysis of farm land use diversity and (iii) nitrogen farm-gate balance. Local mixed crop-livestock farms did not have significantly higher overall gross margins than specialised farms but were less sensitive than dairy and crop farms to fluctuations in the price of inputs and outputs considered. Mixed crop-livestock farms had lower costs than crop farms, while beef farms had the lowest costs as they are grass-based systems. Concerning crop management practices, our results revealed an intensification gradient from low to high input farming systems. Beyond some general trends, a wide range of management practices and levels of intensification were observed among farms with a similar production system. Mixed crop-livestock farms were very heterogeneous with respect to the use of inputs. Nevertheless, our study revealed a lower potential for nitrogen pollution in mixed crop-livestock and beef production systems than in dairy and crop farming systems. Even if a wide variability exists within system, mixed crop-livestock systems appear to be a way for an environmental and economical sustainable agriculture.  相似文献   

5.
《Global Change Biology》2017,23(11):4946-4957
Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in‐field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in‐field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.  相似文献   

6.
A growing dilemma is how to conserve Amazonian forest while allowing local people to secure their livelihoods. Small-scale swidden farming in Amazonia is entirely dependent on the continued provision of ecosystem services (ES) that generate the conditions for agriculture. This study identified soil-related ES needed for, and enhanced by, productive swidden systems from the farmer’s perspective. Workshops in six farming communities in northeastern Peru discussed various land uses, swidden systems that continue to be productive, and swidden systems on degraded land. The participating farmers noted changes in their production systems and described the ES (or lack thereof) in terms of soil quality, crop production quantity and quality, burning practices, forest regeneration, and farming skill. The central elements described in farmers’ own strategies for managing soil-related ES were fallow management for biomass production and crop diversity, factors identified as central to future ES management work in established agricultural areas in Amazonia.  相似文献   

7.
Wild and farmed animals are key elements of natural and managed ecosystems that deliver functions such as pollination, pest control and nutrient cycling within the broader roles they play in contributing to biodiversity and to every category of ecosystem services. They are subjected to global changes with a profound impact on the natural range and viability of animal species, the emergence and spatial distribution of pathogens, land use, ecosystem services and farming sustainability. We urgently need to improve our understanding of how animal populations can respond adaptively and therefore sustainably to these new selective pressures. In this context, we explored the common points between animal production science and animal ecology to identify promising avenues of synergy between communities through the transfer of concepts and/or methodologies, focusing on seven concepts that link both disciplines. Animal adaptability, animal diversity (both within and between species), selection, animal management, animal monitoring, agroecology and viability risks were identified as key concepts that should serve the cross-fertilization of both fields to improve ecosystem resilience and farming sustainability. The need for breaking down interdisciplinary barriers is illustrated by two representative examples: i) the circulation and reassortment of pathogens between wild and domestic animals and ii) the role of animals in nutrient cycles, i.e. recycling nitrogen, phosphorus and carbon through, for example, contribution to soil fertility and carbon sequestration. Our synthesis identifies the need for knowledge integration techniques supported by programmes and policy tools that reverse the fragmentation of animal research toward a unification into a single Animal Research Kinship, OneARK, which sets new objectives for future science policy. At the interface of animal ecology and animal production science, our article promotes an effective application of the agroecology concept to animals and the use of functional diversity to increase resilience in both wild and farmed systems. It also promotes the use of novel monitoring technologies to quantify animal welfare and factors affecting fitness. These measures are needed to evaluate viability risk, predict and potentially increase animal adaptability and improve the management of wild and farmed systems, thereby responding to an increasing demand of society for the development of a sustainable management of systems.  相似文献   

8.
Dyer GA  González C  Lopera DC 《PloS one》2011,6(12):e29067
Our ability to manage gene flow within traditional agroecosystems and their repercussions requires understanding the biology of crops, including farming practices' role in crop ecology. That these practices' effects on crop population genetics have not been quantified bespeaks lack of an appropriate analytical framework. We use a model that construes seed-management practices as part of a crop's demography to describe the dynamics of cassava (Manihot esculenta Crantz) in Cauca, Colombia. We quantify several management practices for cassava--the first estimates of their kind for a vegetatively-propagated crop--describe their demographic repercussions, and compare them to those of maize, a sexually-reproduced grain crop. We discuss the implications for gene flow, the conservation of cassava diversity, and the biosafety of vegetatively-propagated crops in centers of diversity. Cassava populations are surprisingly open and dynamic: farmers exchange germplasm across localities, particularly improved varieties, and distribute it among neighbors at extremely high rates vis-à-vis maize. This implies that a large portion of cassava populations consists of non-local germplasm, often grown in mixed stands with local varieties. Gene flow from this germplasm into local seed banks and gene pools via pollen has been documented, but its extent remains uncertain. In sum, cassava's biology and vegetative propagation might facilitate pre-release confinement of genetically-modified varieties, as expected, but simultaneously contribute to their diffusion across traditional agroecosystems if released. Genetically-modified cassava is unlikely to displace landraces or compromise their diversity; but rapid diffusion of improved germplasm and subsequent incorporation into cassava landraces, seed banks or wild populations could obstruct the tracking and eradication of deleterious transgenes. Attempts to regulate traditional farming practices to reduce the risks could compromise cassava populations' adaptive potential and ultimately prove ineffectual.  相似文献   

9.
Ruminant production systems have been facing the sustainability challenge, namely, how to maintain or even increase production while reducing their environmental footprint, and improving social acceptability. One currently discussed option is to encourage farmers to follow agroecological principles, that is, to take advantage of ecological processes to reduce inputs and farm wastes, while preserving natural resources, and using this diversity to increase system resilience. However, these principles need to be made more practical. Here, we present the procedure undertaken for the collaborative construction of an agroecological diagnostic grid for dairy systems with a focus on the mountain farming relying on the use of semi-natural grasslands. This diagnosis will necessarily rely on a multicriteria evaluation as agroecology is based on a series of complementary principles. It requires defining a set of criteria, based on practices to be recommended, that should be complied with to ensure agroecological production. We present how such agroecological criteria were identified and organized to form the architecture of an evaluation model. As a basis for this work, we used five agroecological principles already proposed for animal production systems. A group of five experts of mountain production systems and of their multicriteria evaluation was selected, with a second round of consultation with five additional experts. They first split up each principle into three to four generic sub-principles. For each principle, they listed three to eight categories of state variables on which the fulfilment of the principle should have a positive impact (e.g. main health disorders for the integrated health management principle). State variables are specific for a given production, for example, dairy farms. Crossing principles with state variables enabled experts to build five matrices, with 75 cells relevant for dairy systems. In each cell, criteria are specific to the local context, for example, mountain dairy systems in this study. Finally, we discuss the opportunities offered by our methodology, and the steps remaining for the construction of the evaluation model.  相似文献   

10.
Livestock is a major driver in most rural landscapes and economics, but it also polarises debate over its environmental impacts, animal welfare and human health. Conversely, the various services that livestock farming systems provide to society are often overlooked and have rarely been quantified. The aim of analysing bundles of services is to chart the coexistence and interactions between the various services and impacts provided by livestock farming, and to identify sets of ecosystem services (ES) that appear together repeatedly across sites and through time. We review three types of approaches that analyse associations among impacts and services from local to global scales: (i) detecting ES associations at system or landscape scale, (ii) identifying and mapping bundles of ES and impacts and (iii) exploring potential drivers using prospective scenarios. At a local scale, farming practices interact with landscape heterogeneity in a multi-scale process to shape grassland biodiversity and ES. Production and various ES provided by grasslands to farmers, such as soil fertility, biological regulations and erosion control, benefit to some extent from the functional diversity of grassland species, and length of pasture phase in the crop rotation. Mapping ES from the landscape up to the EU-wide scale reveals a frequent trade-off between livestock production on one side and regulating and cultural services on the other. Maps allow the identification of target areas with higher ecological value or greater sensitivity to risks. Using two key factors (livestock density and the proportion of permanent grassland within utilised agricultural area), we identified six types of European livestock production areas characterised by contrasted bundles of services and impacts. Livestock management also appeared to be a key driver of bundles of services in prospective scenarios. These scenarios simulate a breakaway from current production, legislation (e.g. the use of food waste to fatten pigs) and consumption trends (e.g. halving animal protein consumption across Europe). Overall, strategies that combine a reduction of inputs, of the use of crops from arable land to feed livestock, of food waste and of meat consumption deliver a more sustainable food future. Livestock as part of this sustainable future requires further enhancement, quantification and communication of the services provided by livestock farming to society, which calls for the following: (i) a better targeting of public support, (ii) more precise quantification of bundles of services and (iii) better information to consumers and assessment of their willingness to pay for these services.  相似文献   

11.
Designing resilient cropping systems is essential to sustain agricultural production in the face of changing environmental and social pressures. However, the extent to which changes in farm management systems could alter resistance and resilience is largely unknown, especially in response to climate change. Plant and soil microbial community interactions are a vital component of functioning and resilient agroecosystems. The aim of our study was to use winter wheat (Triticum aestivum L.) and pea (Pisum sativum L.) plant–soil feedbacks (i.e. plant species-specific effects on soil biota and their impacts on subsequent plant growth) as a metric of system resilience and resistance to climate variability in three different farming management systems: 1) a chemical no-till system, 2) an USDA-certified organic system reliant on tillage and 3) an USDA-certified organic system that included sheep grazing with the overall goal of minimizing tillage intensity. Climate conditions soil experienced were ambient, warmer, and warmer and drier and were manipulated in the field using open-top chamber and rain-out shelters. Plant–soil feedbacks were negative for wheat and positive for pea but varied among farming management systems but were less sensitive to climate conditions. Plant–soil feedbacks were lower in magnitude in the tilled organic system indicating more resistance to the accumulation of pathogenic soil microbiota resulting from repeated cropping of wheat. However, recovery was lower when the crop was pea in the tilled organic indicating slower recovery and less resilience. Results indicate that while increases in crop diversity may promote more resilient agroecosystems, farming management will affect agroecosystem resilience.  相似文献   

12.
Traditional farming communities frequently maintain high levels of agrobiodiversity, so understanding their agricultural practices is a priority for biodiversity conservation. The cultural origin of agave spirits (mezcals) from west-central Mexico is in the southern part of the state of Jalisco where traditional farmers cultivate more than 20 landraces of Agave angustifolia Haw. in agroecosystems that include in situ management of wild populations. These systems, rooted in a 9000-year-old tradition of using agaves as food in Mesoamerica, are endangered by the expansion of commercial monoculture plantations of the blue agave variety (A. tequilana Weber var. Azul), the only agave certified for sale as tequila, the best-known mezcal. Using intersimple sequence repeats and Bayesian estimators of diversity and structure, we found that A. angustifolia traditional landraces had a genetic diversity (H(BT) = 0.442) similar to its wild populations (H(BT) = 0.428) and a higher genetic structure ((B) = 0.405; (B) =0. 212). In contrast, the genetic diversity in the blue agave commercial system (H(B) = 0.118) was 73% lower. Changes to agave spirits certification laws to allow the conservation of current genetic, ecological and cultural diversity can play a key role in the preservation of the traditional agroecosystems.  相似文献   

13.
Abstract

Increased pressure for food production has, in recent years, led to the development of intensive agricultural systems that use significant quantities of inorganic fertilizers and pesticides. However, there is now substantial evidence for the environmental costs of this high-input strategy and this has led to demands for agricultural systems to be modified in order to make them more sustainable. Arbuscular mycorrhizal fungi (AMF) play a key role in natural and agricultural ecosystems through major functions in the enhancement of plant phosphorus and nitrogen nutrition, nutrient and soil conservation, and the biological control of plant pathogens. They are essential to the sustainability of systems and their importance in agricultural ecosystems is likely to increase as inputs are reduced and/or rationalized. In order to maximize their benefits it is essential to ensure that management practices include minimum tillage, reduced use of inappropriate fertilizer, appropriate crop rotations with minimal fallow, and rationalized pesticide use. Furthermore, crop breeders should take full account of the symbiosis in selection. Future research should be targeted to understanding the functional ecology of AMF in agroecosystems.  相似文献   

14.
Mediterranean ecosystems are rich in wildlife species and habitats. In the last decades human pressure is increasing in lowland and coastal areas, while mountainous and island areas are being abandoned. These changes have substantial impacts on biodiversity protected by EU Directives. Recently agri-environmental schemes and wildlife habitat improvement measures have been taken to prevent biodiversity loss, although only a small proportion of their total budget is targeted directly at biodiversity conservation. Measures for wildlife are generally limited to restricted areas for a short-term period and in most cases have not been evaluated or properly applied. This review examines the influence of farming systems, agri-environmental and wildlife management measures on birds and mammals in Mediterranean agroecosystems. The conclusions are that in Mediterranean agroecosystems the most cost efficient and beneficial conservation measures for bird and mammal species are rotation, intercropping, and the selection of appropriate crops and farming practices. The increased biodiversity in the Mediterranean basin requires special management practices at local levels.  相似文献   

15.
The aim of this review is to focus the attention on the nutrition ecology of the heavy metals and on the major criticisms related to the heavy metals content in animal feeds, manure, soil and animal-origin products. Heavy metals are metallic elements that have a high density that have progressively accumulated in the food chain with negative effects for human health. Some metals are essential (Fe, I, Co, Zn, Cu, Mn, Mo, Se) to maintain various physiological functions and are usually added as nutritional additives in animal feed. Other metals (As, Cd, F, Pb, Hg) have no established biological functions and are considered as contaminants/undesirable substances. The European Union adopted several measures in order to control their presence in the environment, as a result of human activities such as: farming, industry or food processing and storage contamination. The control of the animal input could be an effective strategy to reduce human health risks related to the consumption of animal-origin products and the environmental pollution by manure. Different management of raw materials and feed, animal species as well as different legal limits can influence the spread of heavy metals. To set up effective strategies against heavy metals the complex interrelationships in rural processes, the widely variability of farming practices, the soil and climatic conditions must be considered. Innovative and sustainable approaches have discussed for the heavy metal nutrition ecology to control the environmental pollution from livestock-related activities.  相似文献   

16.
The increased demand of food produced through sustainable agriculture has resulted in localised amelioration of intensive management imposed by agroecosystems. However, these newly available niches are often isolated and plant species may not be able to recolonise fragmented agroecosystems from where they have been extirpated. Plant reintroduction can overcome dispersal limitation in agroecosystems but may also generate conflicts that jeopardise conservation efforts. Conflicts arise when reintroductions are perceived to place constraints on the management and productivity of agroecosystems: the translocated plants may require space sharing with crops, may have negative effects on crop yields, and come with the expectation that farmers must modify their farming practices and accommodate legal obligations deriving from protected species status. Benefits include economic incentives that pay farmers through CAP, the conservation of nature, ecosystem services, an effective marketing strategy and increased aesthetic value that might generate ecotourism.We discuss the practical implications of the abovementioned issues by reference to two cases of European species in which different approaches to reintroduction resulted in opposite outcomes (i.e., consensus vs. opposition). Coexistence of threatened plants and crops is possible if farmers and local stakeholders are involved in a conservation project from an early stage and if farmers conservation efforts turn into benefits for their income. Based on these considerations, we propose a strategic framework to promote reintroduction of threatened plants in agroecosystems (land sharing) and policy advancement aimed at recognising the role of farmers in maintaining biodiversity on their lands.  相似文献   

17.
Energy flow in orchards can be used to determine first the best management practices and second the possibility of using those which have best environmental advantages. Conventional and organic peach and kiwi orchards were selected in order to (a) determine energy flow of the farming systems, and (b) reveal the importance of energy inputs in crop and farming system replacement. Fifteen farms (four conventional and three organic kiwi orchards; four conventional and four organic peach orchards) were selected with proportional stratified random sampling during the years 2010–2013. The Hierarchical Cluster Analysis (HCA) method was applied using nine production coefficients' variables (fertilizers, fungicides, insecticides, weed control, diesel, labor, irrigation, branches shoring, and machinery) and revealed three groups of the studied orchards. The highest contributors in cluster formation were weed control, branches shoring, labor, and machinery. The effect of the production coefficients on the grouping of the studied orchards reveals their importance for these crops and farming systems. Most of the production coefficients showed their lowest values in organic kiwi orchards (Group 3), so it could be said that they can play a key role in the replacement of the peaches, and conventional kiwi orchards. It seems that production coefficients can be used as a “tool” for decision makers who are seeking for crops and farming systems with low energy inputs and best environmental advantages in order to use them in crop replacement in agro-ecosystems.  相似文献   

18.
Precision livestock farming (PLF) technologies are becoming increasingly common in modern agriculture. They are frequently integrated with other new technologies in order to improve human–livestock interactions, productivity and economical sustainability of modern farms. New systems are constantly being developed for concentrated farming operations as well as for extensive and pasture-based farming systems. The development of technologies for grazing animals is of particular interest for the Mediterranean extensive sheep farming sector. Dairy sheep farming is a typical production system of the area linked to its historical and cultural traditions. The area provides roughly 40% of the world sheep milk, having 27% of the milk-producing ewes. Developed countries of the area (France, Italy, Greece and Spain – FIGS) have highly specialized production systems improved through animal selection, feeding techniques and intensification of production. However, extensive systems are still practiced alongside intensive ones due to their lower input costs and better resilience to market fluctuations. In the current article, we evaluate possible PLF systems and their suitability to be incorporated in extensive dairy sheep farming as practiced in the FIGS countries. Available products include: electronic identification systems (now mandatory in the EU) such as ear tags, ruminal boluses and sub-cutaneous radio-frequency identification; on-animal sensors such as accelerometers, global positioning systems and social activity loggers; and stationary management systems such as walk-over-weights, automatic drafter (AD), virtual fencing and milking parlour-related technologies. The systems were considered according to their suitability for the management and business model common in dairy sheep farming. However, adoption of new technologies does not take place immediately in small and medium scale extensive farming. As sheep farmers usually belong to more conservative technology consumers, characterized by an average age of 60 and a very transparent community, the dynamics do not favour financial risk taking involved with new technologies. Financial barriers linked to production volumes and resource management of extensive farming are also a barrier for innovation. However, future prospectives could increase the importance of technology and promote its wider adoption. Trends such as global sheep milk economics, global warming, awareness to animal welfare, antibiotics resistance and European agricultural policies could influence the farming practices and stimulate wider adoption of PLF systems in the near future.  相似文献   

19.
There is compelling evidence for positive effects of plant diversity on the functioning of forests and agroecosystems. This information is increasingly used to optimize production systems that provide a wide range of ecosystem services. While agroforestry is actively promoted for the sustainable intensification of agriculture and restoration of degraded landscapes, there is a paucity of knowledge on Biodiversity Ecosystem Functioning (BEF) relationships in agroforestry systems. Since BEF-relationships in agroforestry might be shaped by combinations of different life-forms (e.g. trees, shrubs, herbs) and their interactions, experiences from grassland and forest experiments cannot be readily transferred to agroforestry. This highlights the need for a new type of experiments in agroforestry to advance our understanding of the role of biodiversity for the functioning of these systems. Therefore, our aim was to develop a conceptual framework for analysing BEF-relationships in agroforestry systems and to present an exemplary design for this purpose, which we placed in a (sub)tropical context. Based on designs used in tree diversity experiments, we suggest four major design principles: 1) a trait-based approach for selecting tree and crop species, 2) the integration of trees and crops along a gradient of functional diversity, 3) maintaining constant density across different combinations of life-forms in agroforests through the concept of “growing-patch-density”, and 4) disentangling a priori the effects of species diversity on ecosystem functioning from those of structural and functional diversity, defined here as the variation in structural attributes such as plant dimensions and in plant functional traits, respectively. Our conceptual design and the embedded principles offer a promising avenue to identify important drivers of specific BEF-relationships and to quantify management influences on these. This design can support new research projects that aim at improving ecosystem functioning of agroforestry with the view of optimizing the provision of ecosystem services and facilitation of ecosystem restoration.  相似文献   

20.
Entomopathogenic fungi are important natural enemies of insects. However, there is little information on the insect‐suppressive potential of these fungi and possible effects of farming management on this. Meanwhile, changes in natural landscapes due to agricultural intensification have caused considerable biodiversity loss and consequent decay of ecosystem services. However, the adoption of practices such as agroforestry in agroecosystems can foster abiotic and biotic conditions that conserve biodiversity, consequently restoring the provision of ecosystems services. Here, we assessed the effect of management systems (agroforestry or full‐sun) on the pest‐suppressive potential of entomopathogenic fungi in Brazilian coffee plantations. We used the insect bait method coupled with survival analyses to assess the speed of kill by entomopathogenic fungi and their presence in soil samples from both farming systems. We found that insects exposed to agroforestry soils died more quickly than insects exposed to full‐sun soils. Of the fungi isolated from the bait insects, Metarhizium was found most frequently, followed by Beauveria. Meanwhile, Fusarium was frequently isolated as primary or secondary infections. We propose that the differential survival of insects is indicative of a greater suppressive potential by entomopathogenic fungi in agroforestry, and that this could be promoted by the diversified landscape, microclimatic stability, and reduced soil disturbance in agroforestry systems. Furthermore, our results provide a useful demonstration of the potential use of the insect bait method to investigate pest‐suppressive potential through bait insect mortality, and we term this the “bait survival technique.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号