首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The structure of (Deibler) myelin basic protein in solution and in a lysolecithin lipid complex has been studied by using the emission properties of the single tryptophan residue of the protein (Trp-115). The studies have been carried out using both static and time-resolved fluorescence techniques. Relative to the free protein, the lipid bound myelin basic protein showed a, twofold increase in fluorescence intensity and a marked blue-shift in the emission maximum wavelength. The multiexponential fluorescence decays and the decay associated spectra indicated that the protein exists in at least three different conformations both in buffer and in lipids. Fluorescence polarization and acrylamide quenching experiments showed that the tryptophan containing region of the protein is embedded in the lipid matrix. The binding of the protein to the lipid appears to be comparable with that predicted for the interaction of amphipathic helices with nonpolar lipids.  相似文献   

2.
Summary The ability of native and chemically modified myelin basic protein to induce fusion of chicken erythrocytes and to interact with lipids in monolayers at the air-water interface and liposomes was studied. Chemical modifications of myelin basic protein were performed by acetylation and succinylation: the positive charges of the native protein were blocked to an extent of about 90–95%.Cellular aggregation and fusion of erythrocytes into multinucleated cells was induced by the native myelin basic protein. This effect was diminished for both acetylated and succinylated myelin basic protein. Native myelin basic protein penetrated appreciably in sulphatide-containing lipid monolayers while lower penetration occurred in monolayers of neutral lipids. Contrary to this, both chemically modified myelin basic proteins did not show any selectivity to penetrate into interfaces of neutral or negatively charged lipids. The intrinsic fluorescence of the native and chemically modified myelin basic proteins upon interacting with liposomes constituted by dipalmitoylphosphatidycholine, glycosphingolipids, egg phosphatidic acid or dipalmitoylphosphatidyl glycerol was studied. The interaction with liposomes of anionic lipids is accompanied by a blue shift of the maximum of the native protein emission fluorescence spectrum from 346 nm to 335 nm; no shift was observed with liposomes containing neutral lipids. The acetylated and succinylated myelin basic proteins did not show changes of their emission spectra upon interacting with any of the lipids studied. The results obtained in monolayers and the fluorescence shifts indicate a lack of correlation between the ability of the modified proteins to penetrate lipid interfaces and the microenvironment sensed by the tryptophan-containing domain.Abbreviations MBP myelin basic protein - DPPC dipalmitoyl phosphatidylcholine - DPPG dipalmitoyl phosphatidylglycerol - PA phosphatidic acid  相似文献   

3.
Basic (encephalitogenic) protein and water-soluble proteolipid apoprotein isolated from bovine brain myelin bind 8-anilino-1-naphthalenesulfonate and 2-p-toluidinylnaphthalene-6-sulfonate with resulting enhancement of dye fluorescence and a blue-shift of the emission spectrum. The dyes had a higher affinity and quantum yield, when bound to the proteolipid (Kans=2.3x10--6,=0.67) than to the basic protein (Kans=3.3x10--5,=0.40). From the efficiency of radiationless energy transfer from trytophan to bound ANS the intramolecular distances were calculated to be 17 and 27 A for the proteolipid and basic protein, respectively. Unlike myelin, incubation with proteolytic enzymes (e.g., Pronase and trypsin) abolished fluorescence enhancement of ANS or TNS by the extracted proteins. In contrast to myelin, the fluorescence of solutions of fluorescent probes plus proteolipid was reduced by Ca-2+,not affected by La-3+, local anesthetics, or polymyxin B, and only slightly increased by low pH or blockade of free carboxyl groups. The reactions of the basic protein were similar under these conditions except for a two- to threefold increase in dye binding in the presence of La-3+, or after blockade of carboxyl groups. N-Bromosuccinimide oxidation of tryptophan groups nearly abolished native protein fluorescence, but did not affect dye binding. However, alkylation of tryptophan groups of both proteins by 2-hydroxy (or methoxy)-5-nitrobenzyl bromide reduced the of bound ANS (excited at 380 nm) to 0.15 normal. The same effect was observed with human serum albumin. The fluorescence emission of ANS bound to myelin was not affected by alkylation of membrane tryptophan groups with the Koshland reagents, except for abolition of energy transfer from tryptophan to bound dye molecules. This suggests that dye binding to protein is negligible in the intact membrane. Proteolipid incorporated into lipid vesicles containing phosphatidylserine did not bind ANS or TNS unless Ca-2+, La-3+, polymyxin B, or local anesthetics were added to reduce the net negative surface potential of the lipid membranes. However, binding to protein in the lipid-protein vesicles remained less than for soluble protein. Basic protein or bovine serum albumin dye binding sites remained accessible after equilibration of these proteins with the same lipid vesicles. It is proposed that in the intact myelin membrane the proteolipid is probably strongly associated with specific anionic membrane lipids (i.e., phosphatidylserine), and most likely deeply embedded within the lipid hydrocarbon matrix of the myelin membrane. Also, in the intact myelin membrane the fluorescent probes are associated primarily, if not solely with the membrane lipids as indicated by the binding data. This is particularly the case for TNS where the total number of myelin binding sites is three to four times the potential protein binding sites.  相似文献   

4.
The myelin basic protein from bovine brain tissue was purified and the two peptides obtained by cleavage of the polypeptide chain at the single tryptophan residue were isolated. The interaction of these peptides and the intact basic protein with complex lipids was investigated by following the solubilization of lipid-protein complexes into chloroform in a biphasic solvent system. The C-terminal peptide fragment (residues 117-170) and the intact basic protein both formed chloroform-soluble complexes with acidic lipids, but not with neutral complex lipids. The N-terminal fragment (residues 1-115) did not form chloroform-soluble complexes with either acidic or neutral complex lipids. The molar ratio of lipid to protein that caused a 50% loss of protein from the upper phase to the lower chloroform phase was the same for the intact basic protein as for the smaller C-terminal peptide fragment. Phosphatidylserine and phosphatidylinositol were approximately twice as efficient as sulphatide at causing protein redistribution to the chloroform phase. The results are interpreted as indicating that the sites for ionic interactions between lipid and charged groups on the basic protein of myelin are located in the C-terminal region of the protein molecule.  相似文献   

5.
The interaction of myelin basic protein with monosialoganglioside GM1 was investigated. It was found that the emission maximum of the tryptophan of the protein is blue-shifted due to the interaction. In mixtures of the monosialoganglioside with phosphatidylcholine, the myelin basic protein induces phase separation of the lipids as inferred from differential scanning calorimetry experiments.  相似文献   

6.
The interaction of myelin basic protein (MBP) with zinc and phosphate ions has been studied by using the emission properties of the single tryptophan residue of the protein (Trp-115). The studies have been carried out by means of both static and time-resolved fluorescence techniques. The addition of either zinc to MBP in the presence of phosphate or phosphate to MBP in the presence of zinc resulted in an increase of fluorescence intensity and a blue shift of the emission maximum wavelength. Furthermore, a concomitant increase in the scattering was also detected. Anisotropy decay experiments demonstrated that these effects are due to the formation of MBP molecules into large aggregates. A possible physiological role for such interaction is discussed.  相似文献   

7.
The intrinsic fluorescence characteristics of tyrosine and tryptophan residues in the proteins of isolated central-nervous-system myelin were investigated to gain information concerning the location of these residues within the intact membrane system. Tryptophan fluorescence from isolated myelin has an emission maximum at 325 nm that appears to arise from at least two different populations of tryptophan residues. Further evidence for heterogeneity of tryptophan location in the membrane is obtained from quenching studies with chloroform and acrylamide. It is speculated that one tryptophan population is hydrophobically situated and may be derived from the proteolipid protein of myelin, whereas the other tryptophan population is located at the membrane surface and may arise from the extrinsic basic protein. A significant tyrosine fluorescence is detected from isolated myelin, indicating that some of these residues are not quenched by structural interactions within the lipid--protein membrane system. Studies with freeze-dried resuspended myelin suggest that the structural arrangement of protein components in the dried rehydrated membrane system differs significantly from that of the freshly isolated myelin membrane.  相似文献   

8.
The interaction of the signal peptide of the Escherichia coli outer membrane protein PhoE with different phospholipid vesicles was investigated by fluorescence techniques, using a synthetic mutant signal peptide in which valine at position -8 in the hydrophobic sequence was replaced by tryptophan. First it was established that this mutation in the signal sequence of prePhoE does not affect in vivo and in vitro translocation efficiency and that the biophysical properties of the synthetic mutant signal peptide are similar to those of the wild-type signal peptide. Next, fluorescence experiments were performed which showed an increase in quantum yield and a blue shift of the emission wavelength maximum upon interaction of the signal peptide with lipid vesicles, indicating that the tryptophan moiety enters a more hydrophobic environment. These changes in intrinsic fluorescence were found to be more pronounced in the presence of phosphatidylglycerol (PG) or cardiolipin (CL) than with phosphatidylcholine (PC). In addition, quenching experiments demonstrated a shielding of the tryptophan fluorescence from quenching by the aqueous quenchers iodide and acrylamide upon interaction of the signal peptide with lipid vesicles, a shielding in the case of acrylamide that was more pronounced in the presence of negatively charged lipids. Finally it was found that acyl chain brominated lipids incorporated into phospholipid bilayers were able to quench the tryptophan fluorescence of the signal peptide, with the quenching efficiency in CL vesicles being much higher than in PC vesicles. The results clearly demonstrate that the PhoE signal peptide interacts strongly with different lipid vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Dystrophin is assumed to act via the central rod domain as a flexible linker between the amino-terminal actin binding domain and carboxyl-terminal proteins associated with the membrane. The rod domain is made up of 24 spectrin-like repeats and has been shown to modify the physical properties of lipid membranes. The nature of this association still remains unclear. Tryptophan residues tend to cluster at or near to the water-lipid interface of the membrane. To assess dystrophin rod domain-membrane interactions, tryptophan residues properties of two recombinant proteins of the rod domain were examined by (1)H NMR and fluorescence techniques in the presence of membrane lipids. F114 (residues 439-553) is a partly folded protein as inferred from (1)H NMR, tryptophan fluorescence emission intensity, and the excited state lifetime. By contrast, F125 (residues 439-564) is a folded compact protein. Tryptophan fluorescence quenching shows that both proteins are characterized by structural fluctuations with their tryptophan residues only slightly buried from the surface. In the presence of negatively charged small vesicles, the fluorescence characteristics of F125 change dramatically, indicating that tryptophan residues are in a more hydrophobic environment. Interestingly, these modifications are not observed with F114. Fluorescence quenching experiments confirm that tryptophan residues are shielded from the solvent in the complex F125 lipids by a close contact with lipids. The use of membrane-bound quenchers allowed us to conclude that dystrophin rod domain lies along the membrane surface and may be involved in a structural array comprising membrane and cytoskeletal proteins as well as membrane lipids.  相似文献   

10.
The fluorescence characteristics of lipophilin, a proteolipid apoprotein from human myelin, were determined in aqueous and lipid environments. In all cases the tryptophan residues were located in buried hydrophobic sites of uniform, but limited, accessibility to the permeant quenching agent acrylamide; only in the helicogenic solvent 2-chloroethanol were the protein fluorophores exposed to the medium. Quantum yields were dependent on the state of aggregation of the protein in aqueous solution and increased considerably on treatment with lysolecithin micelles, or when the protein was combined with phosphatidylcholine by codialysis from 2-chloroethanol into water. Fluorescence titrations indicated that lipophilin bound to lysolecithin with an association constant greater than 10(6) L/mol. Radiationless singlet excitation energy transfer from tyrosine to tryptophan residues was found to decrease markedly when the protein was combined with lipids. When the protein was introduced into dimyristoylphosphatidylcholine vesicles, the tryptophan fluorescence did not detect any solid-liquid phase change. These results were consistent with strong hydrophobic interactions between lipophilin and phospholipids, which lead to conformational adjustments in the protein, and to establishment of an immobilized layer of boundary lipid in bilayer systems.  相似文献   

11.
The intrinsic fluorescence of the anti-phosphorylcholine monoclonal antibody TEPC 15 has been used to study its interaction with the hapten phosphorylcholine and some phosphorylcholine-carrying lipids. Spectral conditions were selected so as to obtain fluorescence emission attributable mainly to tryptophan residues. Upon addition of the hapten, the fluorescence intensity increases, and the emission maximum is shifted towards lower wavelengths, in a hyperbolic and saturable process. These effects seem to be specific for phosphorylcholine, since they are not produced by the analogue phosphorylethanolamine. The quenching results suggest that a conformational change occurs in the protein upon interaction with the hapten. Upon addition of a variety of phosphorylcholine-carrying lipids, it is shown that the antibody interacts with the hapten when the lipid exists in the form of micelles, but not when it is present in the lamellar phase.  相似文献   

12.
A multilayered complex forms when a solution of myelin basic protein is added to single-bilayer vesicles formed by sonicating myelin lipids. Vesicles and multilayers have been studied by electron microscopy, biochemical analysis, and X-ray diffraction. Freeze-fracture electron microscopy shows well-separated vesicles before myelin basic protein is added, but afterward there are aggregated, possibly multilayered, vesicles and extensive planar multilayers. The vesicles aggregate and fuse within seconds after the protein is added, and the multilayers form within minutes. No intra-bilayer particles are seen, with or without the protein. Some myelin basic protein, but no lipid, remains in the supernatant after the protein is added and the complex sedimented for X-ray diffraction. A rather variable proportion of the protein is bound. X-ray diffraction patterns show that the vesicles are stable in the absence of myelin basic protein, even under high g-forces. After the protein is added, however, lipid/myelin basic protein multilayers predominate over single-bilayer vesicles. The protein is in every space between lipid bilayers. Thus the vesicles are torn open by strong interaction with myelin basic protein. The inter-bilayer spaces in the multilayers are comparable to the cytoplasmic spaces in central nervous system myelins . The diffraction indicates the same lipid bilayer thickness in vesicles and multilayers, to within 1 A. By comparing electron-density profiles of vesicles and multilayers, most of the myelin basic protein is located in the inter-bilayer space while up to one-third may be inserted between lipid headgroups. When cytochrome c is added in place of myelin basic protein, multilayers also form. In this case the protein is located entirely outside the unchanged bilayer. Comparison of the various profiles emphasizes the close and extensive apposition of myelin basic protein to the lipid bilayer. Numerous bonds may form between myelin basic protein and lipids. Cholesterol may enhance binding by opening gaps between diacyl-lipid headgroups.  相似文献   

13.
—The encephalitogenic basic protein has been isolated from the myelin sheath of ox brain white matter and the purity and amino acid composition have been verified. The intrinsic fluorescence characteristics of the purified basic protein have been determined and the results interpreted in terms of current ideas on the structure of the protein. Fluorescence data obtained from the basic protein in aqueous solution indicate that the tyrosine and tryptophan residues are largely exposed to the solvent and that resonance energy transfer from tyrosine to tryptophan is very inefficient. Denaturing conditions in 8 m -urea have little effect on the fluorescence properties of the protein. The ionic detergent, sodium dodecyl sulphate, interacts with the basic protein and alters the fluorescence properties in a manner which indicates that the tryptophan residue is in the hydrocarbon chain region of the detergent while the local positive charge around the tyrosine residues is neutralized by the negatively charged sulphate head-groups. The fluorescence results suggest that the basic protein can be used as a natural, non-perturbing probe which will report on its environment after it has reacted with other membrane components.  相似文献   

14.
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.  相似文献   

15.
The hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine([125I]TID) was used to label myelin basic protein or polylysine in aqueous solution and bound to lipid vesicles of different composition. Although myelin basic protein is a water soluble protein which binds electrostatically only to acidic lipids, unlike polylysine it has several short hydrophobic regions. Myelin basic protein was labeled to a significant extent by TID when in aqueous solution indicating that it has a hydrophobic site which can bind the reagent. However, myelin basic protein was labeled 2-4-times more when bound to the acidic lipids phosphatidylglycerol, phosphatidylserine, phosphatidic acid, and cerebroside sulfate than when bound to phosphatidylethanolamine, or when in solution in the presence of phosphatidylcholine vesicles. It was labeled 5-7-times more than polylysine bound to acidic lipids. These results suggest that when myelin basic protein is bound to acidic lipids, it is labeled from the lipid bilayer rather than from the aqueous phase. However, this conclusion is not unequivocal because of the possibility of changes in the protein conformation or degree of aggregation upon binding to lipid. Within this limitation the results are consistent with, but do not prove, the concept that some of its hydrophobic residues penetrate partway into the lipid bilayer. However, it is likely that most of the protein is on the surface of the bilayer with its basic residues bound electrostatically to the lipid head groups.  相似文献   

16.
The interaction of the isolated EF-hand domain of phospholipase C delta1 with arachidonic acid (AA) was characterized using circular dichroism (CD) and fluorescence spectroscopy. The far-UV CD spectral changes indicate that AA binds to the EF domain. The near-UV CD spectra suggest that the orientations of aromatic residues in the peptide are affected when AA binds to the protein. The fluorescence of the single intrinsic tryptophan located in EF1 was enhanced by the addition of dodecylmaltoside (DDM) and AA suggesting that this region of the protein is involved in hydrophobic interactions. In the presence of a low concentration of DDM it was found that AA induced a change in fluorescence resonance energy transfer, which is indicative of a conformational change. The lipid induced conformational change may play a role in calcium binding because the isolated EF-hand domain did not bind Ca2+ in the absence of lipids, but Ca2+-dependent changes in the intrinsic tryptophan emission were observed when free fatty acids were present. These studies identify specific EF-hand domains as allosteric regulatory domains that require hydrophobic ligands such as lipids.  相似文献   

17.
C S Randall  R Zand 《Biochemistry》1985,24(8):1998-2004
Myelin basic protein conformation and hydrophobicity, along with the protein's behavior in the presence of the fluorescent probe 6-(p-toluidino)-2-naphthalenesulfonate, have been studied by using Fourier transform infrared (FT-IR) and Raman spectroscopy. The FT-IR and Raman spectra provided compelling evidence for the presence of a small amount of beta structure, ca. 25%, in the aqueous solution and solid-state forms of myelin basic protein. The enhanced fluorescence and shift in the emission maximum of 6-(p-toluidino)-2-naphthalenesulfonate when bound to myelin basic protein are consistent with the presence of at least one hydrophobic region in the molecule. Loss of the fluorescence enhancement in the presence of denaturing agents indicates that native myelin basic protein has a folded structure in solution. All of the results provide support for conformational predictions derived from the application of Edmundson wheels to the primary structure.  相似文献   

18.
Studies of lipid-protein interactions in double-reconstituted systems involving both integral and peripheral or lipid-anchored proteins are reviewed. Membranes of dimyristoyl phosphatidylglycerol containing either myelin proteolipid protein or cytochrome c oxidase were studied. The partner peripheral proteins bound to these membranes were myelin basic protein or cytochrome c, respectively. In addition, the interactions between the myelin proteolipid protein and avidin that was membrane-anchored by binding to N-biotinyl phosphatidylethanolamine were studied in dimyristoyl phosphatidylcholine membranes. Steric exclusion plays a significant role when sizes of the peripheral protein and transmembrane domain of the integral protein are comparable. Even so, the effects on avidin-linked lipids are different from those induced by myelin basic protein on freely diffusible lipids, both interacting with the myelin proteolipid protein. Both the former and the cytochrome c/cytochrome oxidase couple evidence a propagation of lipid perturbation out from the intramembrane protein interface that could be a basis for formation of microdomains.  相似文献   

19.
In aqueous solution bovine myelin basic protein exhibits no significant alpha-helical or beta-pleated sheet structure. However, in vivo this protein is associated largely with the myelin membrane: experiments have therefore been performed to determine the structure of the protein when bound to lipid bilayers. Circular dichroism spectra show that this protein undergoes a major conformational change on binding to lipid bilayer vesicles formed from diacylphosphatidylserine or diacylphosphatidic acid, and on binding to micelles of several detergents. Association with diacylphosphatidylcholine failed to induce a structural change: this observation is interpreted in terms of an earlier report that lysophosphatidylcholine does increase the alpha-helical content of basic protein. These circular dichroism measurements and studies of the binding to the bilayer-forming lipids appear to provide support for significant hydrophobic lipid-protein interactions. Similar studies using two peptides produced by cleavf basic protein indicate that a major structure-forming region in the middle of the protein has been disrupted by this scission.  相似文献   

20.
The chemical and spectroscopic properties of the new fluorescent acids all(E)-8, 10, 12, 14, 16-octadecapentaenoic acid (t-COPA) and its (8Z)-isomer (c-COPA) have been characterized in solvents of different polarity, synthetic lipid bilayers, and lipid/protein systems. These compounds are reasonably photostable in solution, present an intense UV absorption band (epsilon(350 nm) approximately 10(5) M(-1) cm(-1)) strongly overlapped by tryptophan fluorescence and their emission, centered at 470 nm, is strongly polarized (r(O) = 0.385 +/- 0.005) and decays with a major component (85%) of lifetime 23 ns and a faster minor one of lifetime 2 ns (D,L-alpha-dimyristoylphosphatidylcholine (DMPC), 15 degrees C). Both COPA isomers incorporate readily into vesicles and membranes (K(p) approximately 10(6)) and align parallel to the lipids. t-COPA distributes homogeneously between gel and fluid lipid domains and the changes in polarization accurately reflect the lipid T(m) values. From the decay of the fluorescence anisotropy in spherical bilayers of DMPC and POPC it is shown that t-COPA also correctly reflects the lipid order parameters, determined by 2H NMR techniques. Resonance energy transfer from tryptophan to the bound pentaenoic acid in serum albumin in solution, and from the tryptophan residues of gramicidin in lipid bilayers also containing the pentaenoic acid, show that this probe is a useful acceptor of protein tryptophan excitation, with R(O) values of 30-34 A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号