首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The role of calcium ions in the L-thyroxine-induced initiation of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and also the course of releasing individual fractions of inositol phosphates and diacylglycerides (DAG) were studied in liver cells during early stages of the hormone effect. L-Thyroxine stimulated a rapid hydrolysis in hepatocytes of PtdInsP2 labeled with [14C]linoleic acid and [3H]inositol mediated by phosphoinositide-specific phospholipase C. This was associated with accumulation of [14C]DAG, total inositol phosphates, [3H]inositol 1,4,5-trisphosphate (Ins1,4,5P3) and [3H]inositol 1,4-bisphosphate (Ins1,4P2). Elimination of calcium ions from the incubation medium of hepatocytes did not abolish the effect of thyroxine on the accumulation of [14C]DAG and total [3H]inositol phosphates. Preincubation of liver cells with TMB-8 increased the stimulatory effect of L-thyroxine on the accumulation of [14C]DAG. During the incubation of hepatocytes in the presence of the hormone the content of 14C-labeled fatty acids did not change. The L-thyroxineinduced accumulation of [3H]Ins1,4,5P3 and [3H]Ins1,4P2 did not depend on the presence of calcium ions in the incubation medium of the cells.  相似文献   

2.
Human erythroleukemia (HEL) cells phosphorylate [3H]inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate; they also contain all the enzymes to sequentially dephosphorylate [3H]inositol 1,4,5-trisphosphate and [3H]inositol 1,3,4,5-tetrakisphosphate to inositol. alpha-Thrombin, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, and sodium fluoride caused the formation of [3H]inositol phosphates in HEL cells that were previously labeled with [3H]inositol. This indicates agonist-induced activation of phospholipase C and hydrolysis of the inositol phospholipids. Pretreatment of the HEL cells with iloprost, a prostacyclin analog that increases cellular cyclic AMP levels, dramatically reduced the formation of inositol phosphates and the increase of [3H]phosphatidylinositol 4,5-bisphosphate. The inhibitory effects of iloprost were associated with the phosphorylation of a 24-kDa protein, which was detected with an antiserum obtained against the rap 1 protein. The catalytic subunit of protein kinase A inhibited formation of polyphosphoinositides during phosphorylation of the rap 1 protein in membranes. This rap 1 protein might have functional relevance in the inhibition of agonist-induced inositide metabolism.  相似文献   

3.
The effects of extracellular ATP on inositol phospholipid breakdown and synthesis of eicosanoids were studied in mouse peritoneal macrophages. Addition of ATP to intact cells labelled with [3H]inositol stimulated a rapid (within 10 s) formation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. In parallel there was also a substantial accumulation of inositol 1,3,4-trisphosphate and the monophosphate and bisphosphate derivatives of inositol. Within 10 s after the addition of 30 microM ATP there was a twofold increase in inositol trisphosphate (InsP3), which declined over 2 min. The ED50 for ATP-stimulated generation of InsP3 was approximately 12 microM. ADP and GTP showed only weak effects on InsP3 formation, while AMP and adenosine were completely ineffective at 30 microM. Furthermore, the rank order of potency of ATP analogues was ATP greater than ATP[S] greater than AdoPP[NH]P = AdoPP[CH2]P greater than AdoP[CH2]PP thus, indicating the presence of a P2y-purinergic receptor. Cells labelled with [3H]arachidonic acid showed a 50% increase of label in 1,2-diacylglycerol after 15 s upon stimulation with ATP. In parallel to the stimulation of inositol phospholipid hydrolysis, ATP also caused a marked synthesis of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) in mouse peritoneal macrophages. The rank order of potency of ATP analogues was identical with that of InsP3 generation. The effect on eicosanoid synthesis could be mimicked by the calcium ionophore A23187 and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate. These results suggest that ATP-induced activation of P2y-purinergic receptors in mouse peritoneal macrophages triggers inositol phospholipid breakdown and eicosanoid synthesis.  相似文献   

4.
Rabbit peritoneal neutrophils, permeabilized with Triton X-100, contain inositol phosphate 5-phosphomonoesterase activity capable of converting [3H]inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) to [3H]inositol 1,4-bisphosphate. This activity is found predominantly associated with the soluble component of fractionated neutrophils. It is comprised of specific and nonspecific activities toward Ins-1,4,5-P3 which can be separated by cation exchange chromatography. Treatment of neutrophils with phorbol 12-myristate 13-acetate (PMA) prior to permeabilization does not affect the rate of Ins-1,4,5-P3 breakdown by these cells. In addition, activation of endogenous protein kinase C in a soluble fraction prepared from neutrophils does not affect the specific inositol phosphate 5-phosphomonoesterase activity of this fraction. Taken together, these results provide evidence that activation of protein kinase C in the neutrophil does not affect its 5-phosphomonoesterase activity. Unlike platelets, the phosphorylation of a 5-phosphomonoesterase, if it occurs, may not play a role in the inhibitory effects of PMA on neutrophil responsiveness.  相似文献   

5.
Isomers of inositol trisphosphate in exocrine pancreas.   总被引:1,自引:0,他引:1       下载免费PDF全文
In rat pancreatic acinar cells, the Ca2+-mobilizing receptor-agonist, caerulein, at both maximal and submaximal concentrations, stimulated a rapid, transient, increase in [3H]inositol 1,4,5-trisphosphate [(1,4,5)IP3], followed by a slower, sustained, increase in [3H]inositol 1,3,4-trisphosphate [(1,3,4)IP3]. Neither activation of protein kinase C by phorbol dibutyrate nor prevention of the caerulein-stimulated elevation of cytosolic [Ca2+] significantly affected the pattern of formation of the two isomers of IP3. Although carbachol evoked an increase in cytosolic [Ca2+], it did not significantly stimulate [3H](1,4,5)IP3 accumulation, but did promote [3H](1,3,4)IP3 accumulation. Moreover, both carbachol and caerulein maintained hormone-sensitive intracellular Ca2+ pools in a Ca2+-depleted state after [3H](1,4,5)IP3 had returned to basal concentrations. One interpretation of these findings is that total cellular concentrations of [3H](1,4,5)IP3 may not accurately reflect the concentration of this putative mediator in biologically relevant compartments.  相似文献   

6.
Lysed mouse thymocytes release [3H]inositol 1,4,5 trisphosphate from [3H]inositol-labelled phosphatidyl inositol 4,5-bisphosphate in response to GTP gamma S, and rapidly phosphorylate [3H]inositol 1,4,5-trisphosphate to [3H]inositol 1,3,4,5-tetrakisphosphate. The rate of phosphorylation is increased approximately 7-fold when the free [Ca2+] in the lysate is increased from 0.1 to 1 microM, the range in which the cytosolic free [Ca2+] increases in intact thymocytes in response to the mitogen concanavalin A. Stimulation of the intact cells with concanavalin A also results in a rapid and sustained increase in the amount of inositol 1,3,4,5-tetrakisphosphate, and a much smaller transient increase in 1,4,5-trisphosphate. Lowering [Ca2+] in the medium from 0.4 mM to 0.1 microM before addition of concanavalin A reduces accumulation of inositol 1,3,4,5-tetrakisphosphate by at least 3-fold whereas the increase in inositol 1,4,5-trisphosphate is sustained rather than transient. The data imply that in normal medium the activity of the inositol 1,4,5-trisphosphate kinase increases substantially in response to the rise in cytosolic free [Ca2+] generated by concanavalin A, accounting for both the transient accumulation of inositol 1,4,5-trisphosphate and the sustained high levels of inositol 1,3,4,5-tetrakisphosphate. Inositol 1,3,4,5-tetrakisphosphate is a strong candidate for the second messenger for Ca2+ entry across the plasma membrane. This would imply that the inositol polyphosphates regulate both Ca2+ entry and intracellular Ca2+ release, with feedback control of the inositol polyphosphate levels by Ca2+.  相似文献   

7.
The effect of phorbol esters and forskolin pretreatment on basal and histamine-induced accumulation of inositol phosphates and catecholamine release was examined in cultures of bovine adrenal chromaffin cells. Histamine caused a dose-dependent, Ca2+-dependent accumulation of total inositol phosphates with an EC50 at approximately 1 microM and an eight- to 10-fold increase at 100 microM within 30 min of incubation. Histamine (10 microM) also caused the release of cellular catecholamines amounting to some 2.8% of cellular stores released over a 20-min period. Both the inositol phosphate and catecholamine responses were completely blocked by the H1-antagonist mepyramine and were insensitive to the H2-antagonist cimetidine. Examination of the time course of accumulation of the individual inositol phosphates stimulated by histamine revealed an early and sustained rise in inositol 1,4-bisphosphate content but not inositol 1,4,5-trisphosphate content at 1 min and the overall largest accumulation of inositol monophosphate after 30 min of stimulation. Pretreatment with the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) resulted in a dose-dependent, time-dependent inhibition of histamine-induced inositol phosphate formation and catecholamine secretion. In this inhibitory action, PMA exhibited high potency (IC50 of approximately 0.5 nM), an effect not shared by the inactive phorbol ester 4-alpha-phorbol 12,13-didecanoate. Pretreatment with forskolin, on the other hand, only marginally inhibited the histamine-induced inositol phospholipid metabolism and catecholamine secretion. These data suggest that protein kinase C activation in chromaffin cells may mediate a negative feedback control on inositol phospholipid metabolism.  相似文献   

8.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

9.
We have recently shown that vasoactive intestinal polypeptide (VIP) is as potent as acetylcholine in inducing the secretion of catecholamines from the rat adrenal medulla. In the present study we have investigated the molecular mechanism involved in the exocytotic secretion of catecholamines by VIP and the effects of VIP on Ca45 uptake and phosphoinositide breakdown and compared them with those of the classical cholinergic agonists. We now show that omission of Ca2+ from the perfusion medium had almost no effect on VIP-induced secretion; however, addition of 1 mM EGTA to calcium-free medium abolished the secretion. Stimulation with VIP did not result in a net increase in Ca45 uptake and it was not modified by a protein kinase C activator, phorbol ester. All these effects of VIP were comparable to those of muscarine. VIP (0.3 to 10 microM) and muscarine (30 to 100 microM) produced time-and concentration-dependent increase (up to 700%) in the production of [3H]inositol phosphates. The production of [3H]inositol phosphates by VIP and muscarine occurred in calcium-free and EGTA medium. The effect of VIP on [3H]IP, [3H]IP2, and [3H]IP3 production was reduced by (1 to 30 microM) VIP antagonist (an analogue of growth hormone-releasing factor, Ac-Tyr1hGRF) and 1 to 20 microM naloxone. Although nicotine produced a brisk secretory response, there was no change in [3H]inositol phosphates. We conclude that inositol 1,4,5-trisphosphate generated upon activation of VIP and muscarine receptors is linked to exocytotic secretion of adrenal medullary hormones through release of internal Ca2+ ions.  相似文献   

10.
When myo-[3H]inositol-prelabelled primary-cultured murine bone-marrow-derived macrophages were challenged with platelet-activating factor (PAF; 200 ng/ml), there was a rapid (2.5-fold at 10 s) rise in the intracellular concentration of D-myo-[3H]inositol 1,4,5-trisphosphate, followed by a rise in myo-[3H]inositol tetrakisphosphate. myo-[3H]Inositol tetrakisphosphate fractions were isolated by high-performance anion-exchange chromatography from myo-[3H]inositol-prelabelled chick erythrocytes and primary-cultured macrophages. In both cases [3H]iditol and [3H]inositol were the only significant products (greater than 90% of recovered radioactivity) after oxidation to completion with periodic acid, reduction with NaBH4 and dephosphorylation with alkaline phosphatase. The presence of [3H]inositol after this procedure is consistent with the occurrence of [3H]inositol 1,3,4,5-tetrakisphosphate in the cell extracts, whereas [3H]iditol could only be derived from D- or L-inositol 1,4,5,6-tetrakisphosphate. When [3H]inositol tetrakisphosphate fractions obtained from (A) unstimulated macrophages, (B) macrophages that had been stimulated with PAF for 40s or (C) chick erythrocytes were subjected to the above procedure, radioactivity was recovered in these polyols in the following proportions: A, 60-90% in iditol, with 10-40% in inositol; B, total radioactivity increased by a factor of 9.8, 94% being recovered in inositol and 8% in iditol; C, 70-80% in iditol and 20-30% in inositol. [3H]Iditol derived from myo-[3H]inositol tetrakisphosphate fractions from macrophages and chick erythrocytes was oxidized to sorbose by L-iditol dehydrogenase (L-iditol:NAD+2-oxidoreductase, 1.1.1.14) at the same rate as authentic L-iditol. D-[14C]Iditol, derived from D-myo-inositol 1,4,5-trisphosphate, was not oxidized by L-iditol dehydrogenase. This result indicates that the [3H]iditol was derived from L-myo-inositol inositol 1,4,5,6-tetrakisphosphate. The data are consistent with rapid PAF-sensitive synthesis of D-myo-[3H]inositol 1,3,4,5-tetrakisphosphate in macrophages, and demonstrate that L-myo-inositol 1,4,5,6-tetrakisphosphate is synthesized in both mammalian and avian cells. The levels of L-myo-[3H]inositol 1,4,5,6-tetrakisphosphate in primary-cultured macrophages are not acutely sensitive to PAF.  相似文献   

11.
Inositol 1,4,5-trisphosphate is an intracellular second messenger, produced upon stimulation of the phosphoinositide system, capable of mobilizing calcium from intracellular stores. We have recently identified high levels of specific binding sites for inositol 1,4,5-trisphosphate in brain membranes (Worley, P. F., Baraban, J. M., Colvin, J. S., and Snyder, S. H. (1987) Nature 325, 159-161) and have now further characterized these sites. In cerebellar membranes, inositol 1,4,5-trisphosphate binding sites are abundant (20 pmol/mg protein) and display high affinity and selectivity for inositol 1,4,5-trisphosphate (KD approximately equal to 40 nM), whereas other inositol phosphates such as inositol 1,3,4,5-tetrakisphosphate (Ki approximately equal to 10 microM) and inositol 1,4-bisphosphate (Ki approximately equal to 10 microM) exhibit much lower affinity for this site. Submicromolar concentrations of calcium strongly inhibit inositol 1,4,5-trisphosphate binding (IC50 approximately equal to 300 nM). A sharp increase in binding occurs at slightly alkaline pH. These results suggest that actions of inositol 1,4,5-trisphosphate are regulated by physiological alterations in intracellular pH and calcium concentrations.  相似文献   

12.
After 2 days of incubation of AR42J pancreatoma cells with 400 microM [3H]inositol, the specific radioactivity of [3H]phosphatidylinositol 4,5-bisphosphate and the specific radioactivity of [3H]inositol were similar, indicating that isotopic equilibrium had been achieved. The inositol 1,4,5-trisphosphate (1,4,5-IP3) level in cells was estimated to be approximately 2 microM and was increased by substance P receptor activation to about 25 microM. HPLC analysis of [3H]inositol phosphates indicated that only 1,4,5-IP3, inositol 1,4-bisphosphate, and inositol 4-monophosphate were increased upon receptor activation. There was no increase in inositol 1,3,4,5-tetrakisphosphate (1,3,4,5-IP4), or in any of its metabolites. Incubation of [3H]1,4,5-IP3 with a cell homogenate did not result in the formation of [3H]1,3,4,5-IP4. Therefore, it appears that 1,4,5-IP3 3-kinase is either not present or not functional under these assay conditions. Substance P increased cytosolic calcium levels in fura-2-loaded cells from about 600 nM to 2.5 microM. This increase in Ca2+ was partially attenuated in the absence of extracellular calcium, indicating that in AR42J cells, substance P stimulation appears to activate calcium signaling through both Ca2+ entry and intracellular Ca2+ release. These modes of Ca2+ mobilization occur without an increase in 1,3,4,5-IP4 or any of its metabolites.  相似文献   

13.
Human neutrophils synthesize platelet-activating factor (PAF) and leukotriene B4 (LTB4) when stimulated with the Ca2+ ionophore A23187. These processes are enhanced to a variable extent by phorbol 12-myristate 13-acetate (PMA), a direct activator of protein kinase C. The long chain amines sphingosine, stearylamine (Hannun, Y.A., Loomis, C.R., Merrill, A.H., Jr., and Bell, R.M. (1986) J. Biol. Chem. 261, 12604-12609), and palmitoylcarnitine competitively inhibit activation of purified protein kinase C in vitro and inhibit protein kinase C-mediated activation of the respiratory burst in human neutrophils (Wilson, E., Olcott, M.C., Bell, R.M., Merrill, A.H., Jr., and Lambeth, J.D. (1986) J. Biol. Chem. 261, 12616-12623). These amines were found to inhibit A23187-induced PAF and LTB4 synthesis. Inhibition of PAF and LTB4 synthesis occurred in parallel; half-maximal inhibition by sphingosine occurred at 7 microM, with complete inhibition at 15 microM. PMA by itself did not induce the synthesis of PAF or LTB4, although it did enhance PAF and LTB4 synthesis at suboptimal concentrations of A23187. PMA reversed long chain amine inhibition of PAF and LTB4 accumulation. Reversal of the inhibition of PAF and LTB4 accumulation occurred in parallel, was concentration-dependent, and was complete by approximately 3 x 10(-8) M PMA. The inactive 4 alpha-phorbol didecanoate ester did not reverse inhibition at these concentrations. Sphingosine completely prevented the A23187-induced release of [3H]arachidonate and its various metabolites from [3H]arachidonate-labeled cells. PMA, but not 4 alpha-phorbol didecanoate, restored arachidonate release and its metabolism. Therefore, while activation of protein kinase C is not sufficient to induce PAF and LTB4 synthesis, its action appears to be required to couple a rise in intracellular Ca2+ to their synthesis. This coupling occurs at the level of the initial reaction in the production of lipid mediators, a phospholipase A2-like activity that mobilizes the two substrates 1-O-alkyl-sn-glycero-3-phosphocholine and arachidonic acid from complex lipids.  相似文献   

14.
myo-Inositol 1,4,5-trisphosphate is an intracellular second messenger generated from the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C. In the present study, we have used the abilities of inositol 1,4,5-trisphosphate to inhibit inositol 1,4,5-tris[32P]phosphate binding and to stimulate release of sequestered stores of 45Ca2+ to assay the mass of inositol 1,4,5-trisphosphate in extracts derived from [3H]inositol-prelabeled chemoattractant-stimulated neutrophils. These assays are specific for inositol 1,4,5-trisphosphate since the relative capacity of the extracts to compete with inositol 1,4,5-tris[32P]phosphate binding and to release 45Ca2+ correlated well with the [3H]inositol 1,4,5-trisphosphate content of the extract as determined by high pressure liquid chromatography. No correlation of these activities was observed with the content in the extract of either [3H]inositol 1,3,4-trisphosphate or [3H]inositol 1,3,4,5-tetrakisphosphate, whose formation exhibited kinetics distinct from [3H]inositol 1,4,5-trisphosphate. Thus, within 10 s of stimulation with 10 nM formyl-methionyl-leucyl-phenylalanine, the inositol 1,4,5-trisphosphate content of the extract increased from 0.05 to 0.55 pmol/10(6) cells, equivalent to a change in intracellular concentration from 100 nM to 1.1 microM. These studies demonstrate that neutrophils produce sufficient quantities of inositol 1,4,5-trisphosphate to mobilize Ca2+ from intracellular stores.  相似文献   

15.
Epidermal growth factor (EGF) treatment of A-431 cells induces a biphasic increase in the levels of inositol phosphates. The growth factor produces an initial, rapid increase in the level of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) due to hydrolysis of phosphatidyl-inositol-4,5-bisphosphate (Wahl, M., Sweatt, J. D., and Carpenter, G. (1987) Biochem. Biophys. Res. Commun. 142, 688-695). The level of inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) also rises rapidly in response to treatment with EGF. The initial formation (less than 1 min) of Ins-1,4,5-P3 and Ins-1,3,4,5-P4 does not require Ca2+ present in the culture medium. However, the addition of Ca2+ to the medium at levels of 100 microM or greater potentiates the growth factor-stimulated increases in the levels of all inositol phosphates at later times after EGF addition (1-60 min). The data suggest that EGF-receptor complexes initially stimulate the enzyme phospholipase C in a manner that is independent of an influx of extracellular Ca2+. The presence of Ca2+ in the medium allows prolonged growth factor activation of phospholipase C. Treatment of A-431 cells with Ca2+ ionophores (A23187 and ionomycin) did not mimic the activity of EGF in producing a rapid increase in the formation of the Dowex column fraction containing Ins-1,4,5-P3, Ins-1,3,4,5-P4, and inositol 1,3,4-trisphosphate (InsP3). However, the initial EGF-stimulated formation of inositol phosphates was substantially diminished in cells loaded with the Ca2+ chelator Quin 2/AM. EGF receptor occupancy studies indicated that maximal stimulation of InsP3 accumulation by EGF requires nearly full (75%) occupancy of available EGF binding sites, while half-maximal stimulation requires 25% occupancy. 12-O-Tetradecanoylphorbol-13-acetate (TPA), an exogenous activator of Ca2+/phospholipid-dependent protein kinase (protein kinase C), causes a dramatic, but transient, inhibition of the EGF-stimulated formation of inositol phosphates. Tamoxifen and sphingosine, reported pharmacologic inhibitors of protein kinase C activity, potentiate the capacity of EGF to induce formation of inositol phosphates. Neither TPA nor tamoxifen significantly affects the 125I-EGF binding capacity of A-431 cells; however, TPA appeared to enhance internalization of the ligand. Ligand occupation of the EGF receptor on the A-431 cell appears to initiate a complex signaling mechanism involving production of intracellular messengers for Ca2+ mobilization and activation of protein kinase C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The kinetics of [3H]inositol phosphate metabolism in agonist-activated rat parotid acinar cells were characterized in order to determine the sources of [3H]inositol monophosphates and [3H]inositol bisphosphates. The turnover rates of D-myo-inositol 1,4,5-trisphosphate and its metabolites, D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate, were examined following the addition of the muscarinic receptor antagonist, atropine, to cholinergically stimulated parotid cells. D-myo-Inositol 1,4,5-trisphosphate declined with a t1/2 of 7.6 +/- 0.7 s, D-myo-inositol 1,3,4-trisphosphate declined with a t1/2 of 8.6 +/- 1.2 min, and D-myo-inositol 1,4-bisphosphate was metabolized with a t1/2 of 6.0 +/- 0.7 min. The sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate (2.54% phosphatidylinositol/min) did not exceed the calculated rate of breakdown of D-myo-inositol 1,4,5-trisphosphate (2.76% phosphatidylinositol/min). Thus, there is no evidence for the direct hydrolysis of phosphatidylinositol 4-phosphate in intact cells since D-myo-inositol 1,4-bisphosphate formation can be attributed to the dephosphorylation of D-myo-inositol 1,4,5-trisphosphate. The source of the [3H]inositol monophosphates also was examined in cholinergically stimulated parotid cells. When parotid cells were stimulated with methacholine, D-myo-inositol 1,4,5-trisphosphate, D-myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 4-monophosphate levels increased within 2 s, whereas D-myo-inositol 1-monophosphate accumulation was delayed by several seconds. Rates of [3H]inositol monophosphate accumulation also were examined by the addition of LiCl to cells stimulated to steady state levels of [3H]inositol phosphates. The sum of the rates of accumulation of D-myo-inositol 1-monophosphate and D-myo-inositol 4-monophosphate did not exceed the rate of breakdown of D-myo-inositol 1,4,5-trisphosphate or the sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate. These kinetic analyses suggest that agonist-stimulated [3H]inositol bis- and monophosphate formation in intact rat parotid acinar cells can be accounted for by the metabolism of D-myo-[3H]inositol 1,4,5-trisphosphate rather than by phospholipase C-catalyzed hydrolysis of phosphatidylinositol or phosphatidylinositol 4-phosphate.  相似文献   

17.
To investigate the relationship between inositol lipid hydrolysis and reactive oxygen-intermediate (ROI) production in macrophages we have examined the effect of platelet-activating factor (PAF) on normal bone marrow-derived macrophages. Addition of PAF to macrophages prelabelled with [3H]inositol caused a marked and rapid increase in [3H]inositol trisphosphate levels. Similarly when PAF was added to [3H]-glycerol prelabelled macrophages there was a rapid increase in 1,2-diacyl[3H]glycerol levels. These events preceded any increase in the rate of PAF-stimulated ROI production by a discernible period of several seconds. Increasing concentrations of PAF led to a markedly similar increase in both ROI production and [3H]inositol lipid hydrolysis suggesting that inositol lipid hydrolysis may lead to the generation of ROI in macrophages. Further evidence that this is the case came from experiments in which pretreatment of macrophages with phorbol esters was shown to inhibit both PAF-stimulated [3H]inositol phosphate production and ROI production to a markedly similar degree. Similarly pertussis toxin inhibited both PAF-stimulated ROI production and [3H]inositol phosphate production. Phorbol esters were shown to activate ROI production in normal bone marrow-derived macrophages whereas the Ca2+ ionophore, A23187, did not. These experiments suggest that PAF stimulates a pertussis toxin-sensitive activation of inositol lipid hydrolysis leading to the formation of inositol trisphosphate and diacylglycerol. The diacylglycerol formed can then activate protein kinase C leading to the stimulation of ROI production in normal bone marrow-derived macrophages.  相似文献   

18.
Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver   总被引:29,自引:0,他引:29  
The inositol lipid pools of isolated rat hepatocytes were labeled with [3H]myo-inositol, stimulated maximally with vasopressin and the relative contents of [3H]inositol phosphates were measured by high performance liquid chromatography. Inositol 1,4,5-trisphosphate accumulated rapidly (peak 20 s), while inositol 1,3,4-trisphosphate and a novel inositol phosphate (ascribed to inositol 1,3,4,5-tetrakisphosphate) accumulated at a slower rate over 2 min. Incubation of hepatocytes with 10 mM Li+ prior to vasopressin addition selectively augmented the levels of inositol monophosphate, inositol 1,4-bisphosphate, and inositol 1,3,4-trisphosphate. A kinase was partially purified from liver and brain cortex which catalyzed an ATP-dependent phosphorylation of [3H]inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. Incubation of purified [3H]inositol 1,3,4,5-tetrakisphosphate with diluted liver homogenate produced initially inositol 1,3,4-trisphosphate and subsequently inositol 1,3-bisphosphate, the formation of which could be inhibited by Li+. The data demonstrate that the most probable pathway for the formation of inositol 1,3,4,5-tetrakisphosphate is by 3-phosphorylation of inositol 1,4,5-trisphosphate by a soluble mammalian kinase. Degradation of both compounds occurs first by a Li+-insensitive 5-phosphatase and subsequently by a Li+-sensitive 4-phosphatase. The prolonged accumulation of both inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in vasopressin-stimulated hepatocytes suggest that they have separate second messenger roles, perhaps both relating to Ca2+-signalling events.  相似文献   

19.
Pasteurella multocida toxin, both native and recombinant, is an extremely potent mitogen for Swiss 3T3 cells and acts to enhance the formation of total inositol phosphates (Rozengurt, E., Higgins, T., Changer, N., Lax, A.J., and Staddon, J.M. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 123-127). P. multocida toxin also stimulates diacylglycerol production and activates protein kinase C (Staddon, J.M., Chanter, N., Lax, A.J., Higgins, T.E., and Rozengurt, E. (1990) J. Biol. Chem. 265, 11841-11848). Here we analyze, by [3H]inositol labeling and high performance liquid chromatography, the inositol phosphates in recombinant P. multocida toxin-treated cells. Recombinant P. multocida toxin stimulated increases in [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) and its metabolic products, including Ins(1,3,4,5)P4, Ins(1,3,4)P3, Ins(1,4)P2, Ins(4/5)P, and Ins(1/3)P. The profile of the increase in the cellular content of these distinct inositol phosphates was very similar to that elicited by bombesin. Furthermore, recombinant P. multocida toxin, like bombesin, mobilizes an intracellular pool of Ca2+. Recombinant P. multocida toxin pretreatment greatly reduces the Ca2(+)-mobilizing action of bombesin, consistent with Ca2+ mobilization from a common pool by the two agents. The enhancement of inositol phosphates and mobilization of Ca2+ by recombinant P. multocida toxin were blocked by the lysosomotrophic agents methylamine, ammonium chloride, and chloroquine and occurred after a dose-dependent lag period. The stimulation of inositol phosphate production by recombinant P. multocida toxin persisted after removal of extracellular toxin, in contrast to the reversibility of the action of bombesin. Recombinant P. multocida toxin, unlike bombesin and guanosine 5'-O-(gamma-thiotriphosphate), did not cause the release of inositol phosphates in permeabilized cells. These data demonstrate that recombinant P. multocida toxin, acting intracellularly, stimulates the phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate.  相似文献   

20.
When [3H]inositol prelabelled cultured bovine adrenal chromaffin cells were stimulated with 56 mM KCl (high K+), 300 microM carbamylcholine (CCh) or 10 microM angiotensin II (Ang II), a rapid accumulation of [3H]IP3 was observed. At the same time, high K+ or CCh induced rapid increases in 45Ca2+ uptake, but Ang II did not induce a significant 45Ca2+ uptake. The concentration-response curve for KCl-induced [3H]IP3 accumulation coincided well with that for KCl-induced 45Ca2+ uptake into the cells. Nifedipine, a Ca2+ channel antagonist, inhibited the high K(+)-induced [3H]IP3 accumulation and 45Ca2+ uptake with a similar potency. Nifedipine at a similar concentration range also inhibited CCh-induced 45Ca2+ uptake. Although nifedipine inhibited CCh-induced [3H]IP3 accumulation, the potency was approximately 300-fold less than that for the inhibition of 45Ca2+ uptake. Nifedipine failed to affect the Ang II-induced [3H]IP3 accumulation. BAY K 8644 (2 microM), a Ca2+ channel activator, plus partially depolarizing concentration of KCl (14 mM), induced 45Ca2+ uptake and [3H]IP3 accumulation. Ionomycin (1 microM and 10 microM), a Ca2+ ionophore, also induced 45Ca2+ uptake and [3H]IP3 accumulation in a concentration-dependent manner. Pretreatment of the cells with protein kinase C activator, 100 nM 12-O-tetradecanoyl phorbol-13-acetate, for 10 min, partially inhibited CCh and Ang II-induced [3H]IP3 accumulation, but failed to inhibit the high K(+)-induced accumulation. Furthermore, the effects of high K+ and Ang II on the IP3 accumulation was additive. Ang II and CCh induced a rapid and transient increase in inositol 1,4,5-trisphosphate (1,4,5-IP3) accumulation (5 s) followed by a slower accumulation of inositol 1,3,4-trisphosphate (1,3,4-IP3). High K+ evoked an increase in 1,3,4-IP3 accumulation but obvious accumulation of 1,4,5-IP3 could not be detected. In Ca2(+)-depleted medium, high K(+)-induced [3H]IP3 accumulation was completely abolished, whereas [3H]IP3 accumulation induced by CCh and Ang II was partially inhibited. These results demonstrate the existence of the Ca2+ uptake-triggered mechanism of IP3 accumulation represented by high K+, and also the Ca2+ uptake-independent mechanism of IP3 accumulation represented by Ang II in cultured bovine adrenal chromaffin cells. Mechanism of CCh-induced IP3 accumulation has an intermediate property between those of high K+ and Ang II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号