首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cell migration is essential during development, regeneration, homeostasis, and disease. Depending on the microenvironment, cells use different mechanisms to migrate. Yet, all modes of migration require the establishment of an intracellular front–rear polarity axis for directional movement. Although front–rear polarity can be easily identified in in vitro conditions, its assessment in vivo by live‐imaging is challenging due to tissue complexity and lack of reliable markers. Here, we describe a novel and unique double fluorescent reporter mouse line to study front–rear cell polarity in living tissues, called GNrep. This mouse line simultaneously labels Golgi complexes and nuclei allowing the assignment of a nucleus‐to‐Golgi axis to each cell, which functions as a readout for cell front–rear polarity. As a proof‐of‐principle, we validated the efficiency of the GNrep line using an endothelial‐specific Cre mouse line. We show that the GNrep labels the nucleus and the Golgi apparatus of endothelial cells with very high efficiency and high specificity. Importantly, the features of fluorescent intensity and localization for both mCherry and eGFP fluorescent intensity and localization allow automated segmentation and assignment of polarity vectors in complex tissues, making GNrep a great tool to study cell behavior in large‐scale automated analyses. Altogether, the GNrep mouse line, in combination with different Cre recombinase lines, is a novel and unique tool to study of front–rear polarity in mice, both in fixed tissues or in intravital live imaging. This new line will be instrumental to understand cell migration and polarity in development, homeostasis, and disease.  相似文献   

2.
Nuclear migration and positioning are crucial for the morphogenesis of plant cells. We addressed the potential role of nuclear positioning for polarity induction using an experimental system based on regenerating protoplasts, where the induction of a cell axis de novo can be followed by quantification of specific regeneration stages. Using overexpression of fluorescently tagged extranuclear (perinuclear actin basket, kinesins with a calponin homology domain (KCH)) as well as intranuclear (histone H2B) factors of nuclear positioning and time‐lapse series of the early stages of regeneration, we found that nuclear position is no prerequisite for polarity formation. However, polarity formation and nuclear migration were both modulated in the transgenic lines, indicating that both phenomena depend on factors affecting cytoskeletal tensegrity and chromatin structure. We integrated these findings into a model where retrograde signals are required for polarity induction. These signals travel via the cytoskeleton from the nucleus toward targets at the plasma membrane.  相似文献   

3.
Cancer metastasis occurs via a progress involving abnormal cell migration. Cell migration, a dynamic physical process, is controlled by the cytoskeletal system, which includes the dynamics of actin organization and cellular adhesive organelles, focal adhesions (FAs). However, it is not known whether the organization of actin cytoskeletal system has a regulatory role in the physiologically relevant aspects of cancer metastasis. In the present studies, it was found that lung adenocarcinoma cells isolated from the secondary lung cancer of the lymph nodes, H1299 cells, show specific dynamics in terms of the actin cytoskeleton and FAs. This results in a higher level of mobility and this is regulated by an immature FA component, β‐PIX (PAK‐interacting exchange factor‐β). In H1299 cells, β‐PIX's activity was found not to be down‐regulated by sequestration onto stress fibres, as the cells did not bundle actin filaments into stress fibres. Thus, β‐PIX mainly remained localized at FAs, which allowed maturation of nascent adhesions into focal complexes; this resulted in actin polymerization, increased actin network integrity, changes in the intracellular microrheology at the peripheral of the cell, and cell polarity, which in turn regulated cell migration. Perturbation of β‐PIX caused an inhibition of cell migration, including migration velocity, accumulated distance and directional persistence. Our results demonstrate the importance of β‐PIX to the regulation of high mobility of lung adenocarcinoma cell line H1299 and that this occurs via regulation of FA dynamics, changes in actin cytoskeleton organization and cell polarity.  相似文献   

4.
With regard to the fact that, in anchorage-dependent lens epithelial cells, DNA synthesis can be switched on and off by cell flattening and cell rounding, respectively, the state of the microfilaments has been followed by labelling actin with FL-phalloidin during cell-shape alterations. Cell flattening proved to be accompanied by both a structural organization of actin filaments into stress fibres and an enlargement of the area of the cell nucleus. Cell rounding, on the other hand, caused the microfilament bundles to disappear and the area of the nucleus to become smaller. From the time course of the inhibition of DNA synthesis by cytochalasin B, it was inferred that functionally intact microfilaments are required for the entrance of the cells into DNA synthesis but not for the maintenance of ongoing DNA synthesis. The assumption has been made that the tension, generated by microfilaments during cell spreading, will affect the state of the plasma membrane as well as the shape and the structure of the nucleus, which in turn seems to be preparatory for cells to enter the cycle.  相似文献   

5.
With regard to the fact that, in anchorage-dependent lens epithelial cells, DNA synthesis can be switched on and off by cell flattening and cell rounding, respectively, the state of the microfilaments has been followed by labelling actin with FL-phalloidin during cell-shape alterations. Cell flattening proved to be accompanied by both a structural organization of actin filaments into stress fibres and an enlargement of the area of the cell nucleus. Cell rounding, on the other hand, caused the microfilament bundles to disappear and the area of the nucleus to become smaller. From the time course of the inhibition of DNA synthesis by cytochalasin B, it was inferred that functionally intact microfilaments are required for the entrance of the cells into DNA synthesis but not for the maintenance of ongoing DNA synthesis. the assumption has been made that the tension, generated by microfilaments during cell spreading, will affect the state of the plasma membrane as well as the shape and the structure of the nucleus, which in turn seems to be preparatory for cells to enter the cycle.  相似文献   

6.
Cell polarization is crucial for the development of multicellular organisms, and aberrant cell polarization contributes to various diseases, including cancer. How cell polarity is established and how it is maintained remain fascinating questions. Conserved proteins of the partitioning defective (PAR), Scribble and Crumbs complexes guide the establishment of cell polarity in various organisms. Moreover, GTPases that regulate actin cytoskeletal dynamics have been implicated in cell polarization. Recent findings provide insights into polarization mechanisms and show intriguing crosstalk between small GTPases and members of polarity complexes in regulating cell polarization in different cellular contexts and cell types.  相似文献   

7.
Cell‐wall (CW) development in the desmid Penium margaritaceum (Ehrenb.) Bréb. was studied using immunofluorescence labeling of living cells with the monoclonal antibodies (mAbs) JIM5 and JIM7, which recognize unesterified and methyl‐esterified homogalacturonan (HG), respectively. During cell expansion, HG was secreted in a high‐esterified form at a narrow band, called the HG secretion band or HGSB, at the isthmus or the polar tip of a daughter semicell. As newly secreted HG is displaced outward on the cell surface, deesterification and subsequent calcium (Ca2+)‐complexing occurred to yield a rigid covering. HG secretion and CW/cell expansion were reversibly inhibited by dark, brefeldin A (BFA), and incubation in 0.24–0.36 M sucrose but were not altered by treatment with actin/microfilament drugs. The HGSB was detected near the nucleus during most cell‐cycle events. Centrifugation displaced the nucleus away from the HGSB, but HG synthesis was not affected. HGSB activity was preceded by, and coordinated with, Calcofluor labeling, which suggests that cellulose production in CW/cell‐expansion sites was critical to expansion control. In many first‐cell‐division products, asymmetric patterning of HG was noted in the CW. These asymmetric patterns most likely were a result of timing mechanisms and displacement of the nucleus‐HGSB during the cell cycle.  相似文献   

8.
Insall RH  Machesky LM 《Cell》2004,118(2):140-141
Cdc42 is a key regulator of cell polarity and actin dynamics. One of its effectors, WASP, initiates the assembly of new actin filaments. In this issue of Cell, show that a previously unknown regulator named Toca-1 is required for Cdc42 to activate WASP. This discovery changes our picture of how small GTPases and multiple other signals converge to stimulate actin polymerization and cell motility.  相似文献   

9.
Cell polarity determines the direction of cell growth in bacteria. MreB actin spatially regulates peptidoglycan synthesis to enable cells to elongate bidirectionally. MreB densely localizes in the cylindrical part of the rod cell and not in polar regions in Escherichia coli. When treated with A22, which inhibits MreB polymerization, rod‐shaped cells became round and MreB was diffusely distributed throughout the cytoplasmic membrane. A22 removal resulted in restoration of the rod shape. Initially, diffuse MreB started to re‐assemble, and MreB‐free zones were subsequently observed in the cytoplasmic membrane. These MreB‐free zones finally became cell poles, allowing the cells to elongate bidirectionally. When MreB was artificially located at the cell poles, an additional pole was created, indicating that artificial localization of MreB at the cell pole induced local peptidoglycan synthesis. It was found that the anionic phospholipids (aPLs), phosphatidylglycerol and cardiolipin, which were enriched in cell poles preferentially interact with monomeric MreB compared with assembled MreB in vitro. MreB tended to localize to cell poles in cells lacking both aPLs, resulting in production of Y‐shaped cells. Their findings indicated that aPLs exclude assembled MreB from cell poles to establish cell polarity, thereby allowing cells to elongate in a particular direction.  相似文献   

10.
During cell migration, the movement of the nucleus must be coordinated with the cytoskeletal dynamics at the leading edge and trailing end, and, as a result, undergoes complex changes in position and shape, which in turn affects cell polarity, shape, and migration efficiency. We here describe the steps of nuclear positioning and deformation during cell polarization and migration, focusing on migration through three-dimensional matrices. We discuss molecular components that govern nuclear shape and stiffness, and review how nuclear dynamics are connected to and controlled by the actin, tubulin and intermediate cytoskeleton-based migration machinery and how this regulation is altered in pathological conditions. Understanding the regulation of nuclear biomechanics has important implications for cell migration during tissue regeneration, immune defence and cancer.  相似文献   

11.
Cell polarity reflected by asymmetric distribution of proteins at the plasma membrane is a fundamental feature of unicellular and multicellular organisms. It remains conceptually unclear how cell polarity is kept in cell wall‐encapsulated plant cells. We have used super‐resolution and semi‐quantitative live‐cell imaging in combination with pharmacological, genetic, and computational approaches to reveal insights into the mechanism of cell polarity maintenance in Arabidopsis thaliana. We show that polar‐competent PIN transporters for the phytohormone auxin are delivered to the center of polar domains by super‐polar recycling. Within the plasma membrane, PINs are recruited into non‐mobile membrane clusters and their lateral diffusion is dramatically reduced, which ensures longer polar retention. At the circumventing edges of the polar domain, spatially defined internalization of escaped cargos occurs by clathrin‐dependent endocytosis. Computer simulations confirm that the combination of these processes provides a robust mechanism for polarity maintenance in plant cells. Moreover, our study suggests that the regulation of lateral diffusion and spatially defined endocytosis, but not super‐polar exocytosis have primary importance for PIN polarity maintenance.  相似文献   

12.
The polysaccharide β‐1,6‐glucan is a major component of the cell wall of Cryptococcus neoformans, but its function has not been investigated in this fungal pathogen. We have identified and characterized seven genes, belonging to the KRE family, which are putatively involved in β‐1,6‐glucan synthesis. The H99 deletion mutants kre5Δ and kre6Δskn1Δ contained less cell wall β‐1,6‐glucan, grew slowly with an aberrant morphology, were highly sensitive to environmental and chemical stress and were avirulent in a mouse inhalation model of infection. These two mutants displayed alterations in cell wall chitosan and the exopolysaccharide capsule, a primary cryptococcal virulence determinant. The cell wall content of the GPI‐anchored phospholipase B1 (Plb1) enzyme, which is required for cryptococcal cell wall integrity and virulence, was reduced in kre5Δ and kre6Δskn1Δ. Our results indicate that KRE5, KRE6 and SKN1 are involved in β‐1,6‐glucan synthesis, maintenance of cell wall integrity and retention of mannoproteins and known cryptococcal virulence factors in the cell wall of C. neoformans. This study sets the stage for future investigations into the function of this abundant cell wall polymer.  相似文献   

13.
Many bacteria are able to assume a transient cell wall‐deficient (or L‐form) state under favourable osmotic conditions. Cell wall stress such as exposure to β‐lactam antibiotics can enforce the transition to and maintenance of this state. L‐forms actively proliferate and can return to the walled state upon removal of the inducing agent. We have adopted Escherichia coli as a model system for the controlled transition to and reversion from the L‐form state, and have studied these dynamics with genetics, cell biology and ‘omics’ technologies. As such, a transposon mutagenesis screen underscored the requirement for the Rcs phosphorelay and colanic acid synthesis, while proteomics show only little differences between rods and L‐forms. In contrast, metabolome comparison reveals the high abundance of lysophospholipids and phospholipids with unsaturated or cyclopropanized fatty acids in E. coli L‐forms. This increase of membrane lipids associated with increased membrane fluidity may facilitate proliferation through bud formation. Visualization of the residual peptidoglycan with a fluorescently labelled peptidoglycan binding protein indicates de novo cell wall synthesis and a role for septal peptidoglycan synthesis during bud constriction. The DD‐carboxypeptidases PBP5 and PBP6 are threefold and fourfold upregulated in L‐forms, indicating a specific role for regulation of crosslinking during L‐form proliferation.  相似文献   

14.
One of the essential features of fungal morphogenesis is the polarized synthesis of cell wall components such as chitin. The actin cytoskeleton provides the structural basis for cell polarity in Aspergillus nidulans, as well as in most other eukaryotes. A class V chitin synthase, CsmA, which contains a myosin motor-like domain (MMD), is conserved among most filamentous fungi. The DeltacsmA null mutant showed remarkable abnormalities with respect to cell wall integrity and the establishment of polarity. In this study, we demonstrated that CsmA tagged with 9x HA epitopes localized near actin structures at the hyphal tips and septation sites and that its MMD was able to bind to actin. Characterization of mutants bearing a point mutation or deletion in the MMD suggests that the interaction between the MMD and actin is not only necessary for the proper localization of CsmA, but also for CsmA function. Thus, the finding of a direct interaction between the chitin synthase and the actin cytoskeleton provides new insight into the mechanisms of polarized cell wall synthesis and fungal morphogenesis.  相似文献   

15.
AIR9 is a cytoskeleton‐associated protein in Arabidopsis thaliana with roles in cytokinesis and cross wall maturation, and reported homologues in land plants and excavate protists, including trypanosomatids. We show that the Trypanosoma brucei AIR9‐like protein, TbAIR9, is also cytoskeleton‐associated and colocalizes with the subpellicular microtubules. We find it to be expressed in all life cycle stages and show that it is essential for normal proliferation of trypanosomes in vitro. Depletion of TbAIR9 from procyclic trypanosomes resulted in increased cell length due to increased microtubule extension at the cell posterior. Additionally, the nucleus was re‐positioned to a location posterior to the kinetoplast, leading to defects in cytokinesis and the generation of aberrant progeny. In contrast, in bloodstream trypanosomes, depletion of TbAIR9 had little effect on nucleus positioning, but resulted in aberrant cleavage furrow placement and the generation of non‐equivalent daughter cells following cytokinesis. Our data provide insight into the control of nucleus positioning in this important pathogen and emphasize differences in the cytoskeleton and cell cycle control between two life cycle stages of the T. brucei parasite.  相似文献   

16.
Actin microfilament (MF) organization and remodelling is critical to cell function. The formin family of actin binding proteins are involved in nucleating MFs in Arabidopsis thaliana. They all contain formin homology domains in the intracellular, C‐terminal half of the protein that interacts with MFs. Formins in class I are usually targeted to the plasma membrane and this is true of Formin1 (AtFH1) of A. thaliana. In this study, we have investigated the extracellular domain of AtFH1 and we demonstrate that AtFH1 forms a bridge from the actin cytoskeleton, across the plasma membrane and is anchored within the cell wall. AtFH1 has a large, extracellular domain that is maintained by purifying selection and that contains four conserved regions, one of which is responsible for immobilising the protein. Protein anchoring within the cell wall is reduced in constructs that express truncations of the extracellular domain and in experiments in protoplasts without primary cell walls. The 18 amino acid proline‐rich extracellular domain that is responsible for AtFH1 anchoring has homology with cell‐wall extensins. We also have shown that anchoring of AtFH1 in the cell wall promotes actin bundling within the cell and that overexpression of AtFH1 has an inhibitory effect on organelle actin‐dependant dynamics. Thus, the AtFH1 bridge provides stable anchor points for the actin cytoskeleton and is probably a crucial component of the signalling response and actin‐remodelling mechanisms.  相似文献   

17.
Rho proteins are key regulators of cellular morphogenesis, but their function in filamentous fungi is poorly understood. By generating conditional rho‐1 mutants, we dissected the function of the essential GTPase RHO1 in cell polarization and maintenance of cell wall integrity in Neurospora crassa. We identified NCU00668/RGF1 as RHO1‐specific exchange factor, which controls actin organization and the cell wall integrity MAK1 MAP kinase pathway through the direct interaction of active RHO1 with the formin BNI1 and PKC1 respectively. The activity of RGF1 is controlled by an intramolecular interaction of its DEP and GEF domains that blocks the activation of the GTPase. Moreover, the N‐terminal region including the DEP domain of RGF1 interacts with the plasma membrane sensor NCU06910/WSC1, potentially to activate the cell wall integrity pathway. RHO1 also functions as regulatory subunit of the glucan synthase. N. crassa possesses a second GTPase, RHO2, that is highly homologous to RHO1. RHO2 is of minor importance for growth and does not interact with BNI1. Conditional rho‐1;rho‐2 double mutants display strong synthetic growth and cell polarity defects. We show that RHO2 does not regulate glucan synthase activity and the actin cytoskeleton, but physically interacts with PKC1 to regulate the cell wall integrity pathway.  相似文献   

18.
The dynamics of actin-filament organization in pollen-tube subprotoplasts ofNicotiana tabacum L. cv. Samsun during regeneration and outgrowth was examined using phalloidin probes and a non-fixation method. A succession of actin arrays was examined during subprotoplast regeneration that strongly resembled the actin dynamics described for developing microspores by Van Lammeren et al. (1989, Planta178, 531–539) and activated pollen by Tiwari and Polito (1988, Protoplasma147, 5–15). At the end of the succession the actin filaments often became extended between two opposite polar foci. The ordering of the cortical actin filaments reflected a polarity in the subprotoplasts which determined the plane of outgrowth. The site of outgrowth was often marked by a ring of actin filaments. As growth proceeded and tube-like structures were formed, the arrangement of cortical actin filaments was found to be transverse to the elongation axis. Since the patterns of actin distribution were identical in both caryoplasts and cytoplasts, it was concluded that the pollen-tube cytoplasm has the intrinsic capacity of reorganizing actin filaments and imposing polarity on the spherical subprotoplasts.  相似文献   

19.
In virtually all bacteria, the cell wall is crucial for mechanical integrity and for determining cell shape. Escherichia coli's rod‐like shape is maintained via the spatiotemporal patterning of cell‐wall synthesis by the actin homologue MreB. Here, we transiently inhibited cell‐wall synthesis in E. coli to generate cell‐wall‐deficient, spherical L‐forms, and found that they robustly reverted to a rod‐like shape within several generations after inhibition cessation. The chemical composition of the cell wall remained essentially unchanged during this process, as indicated by liquid chromatography. Throughout reversion, MreB localized to inwardly curved regions of the cell, and fluorescent cell wall labelling revealed that MreB targets synthesis to those regions. When exposed to the MreB inhibitor A22, reverting cells regrew a cell wall but failed to recover a rod‐like shape. Our results suggest that MreB provides the geometric measure that allows E. coli to actively establish and regulate its morphology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号