首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previously, we reported that tolerance to nickel, induced by oral administration of Ni(2+) ions, can be adoptively transferred to naive mice with only 10(2) splenic T cells. Here we show that 10(2) T cell-depleted spleen cells (i.e., APCs) from orally tolerized donors can also transfer nickel tolerance. This cannot be explained by simple passive transfer of the tolerogen. The APCs from orally tolerized donors displayed a reduced allostimulatory capacity, a tolerogenic phenotype, and an increased expression of CD38 on B cells. In fact, it was B cells among the APCs that carried the thrust of tolerogenicity. Through serial adoptive transfers with Ly5.1(+) donors and two successive sets of Ly5.2(+) recipients, we demonstrated that nickel tolerance was infectiously spread from donor to host cells. After the transfer of either T cells or APCs from orally tolerized donors, the spread of tolerance to the opposite cell type of the recipients (i.e., APCs and T cells, respectively) required recipient immunization with NiCl(2)/H(2)O(2). For the spread of tolerance from a given donor cell type, T cell or APC, to the homologous host cell type, the respective opposite cell type in the host was required as intermediate. We conclude that T suppressor cells and tolerogenic APCs induced by oral administration of nickel are part of a positive feedback loop that can enhance and maintain tolerance when activated by Ag associated with a danger signal. Under these conditions, APCs and T suppressor effector cells infectiously spread the tolerance to naive T cells and APCs, respectively.  相似文献   

2.
Whereas oral nickel administration to C57BL/6 mice (Ni(high) mice) renders the animals tolerant to immunization with NiCl2 combined with H2O2 as adjuvant, as determined by ear-swelling assay, it fails to tolerize Jalpha18-/- mice, which lack invariant NKT (iNKT) cells. Our previous work also showed that Ni(high) splenic B cells can adoptively transfer the nickel tolerance to untreated (Ni(low)) recipients, but not to Jalpha18-/- recipients. In this study, we report that oral nickel administration increased the nickel content of splenic Ni(high) B cells and up-regulated their Fas expression while down-regulating expression of bcl-2 and Bcl-xL, thus giving rise to an Ag-carrying, apoptosis-prone B cell phenotype. Although oral nickel up-regulated Fas expression on B cells of both wild-type Ni(high) and Jalpha18-/- Ni(high) mice, only the former showed a reduced number of total B cells in spleen when compared with untreated, syngeneic mice, indicating that iNKT cells are involved in B cell homeostasis by eliciting apoptosis of effete B cells. Upon transfer of Ni(high) B cells, an infectious spread of nickel tolerance ensues, provided the recipients are immunized with NiCl2/H2O2. As a consequence of immunization, Fas ligand-positive (FasL+) iNKT cells appeared in the spleen and apparently elicited apoptosis of Ni(high) B cells. The apoptotic Ni(high) B cells were taken up by splenic dendritic cells, which thereby became tolerogenic for nickel-reactive Ni(low) T cells. In conclusion, FasL+ iNKT cells may act as ready-to-kill sentinels of innate immunity, but at the same time assist in tolerance induction by eliciting Fas/FasL-mediated apoptosis of effete, Ag-containing B cells.  相似文献   

3.
An active role of T regulatory cells (Treg) and tolerogenic dendritic cells (Tol-DC) is believed important for the induction and maintenance of transplantation tolerance. However, interactions between these cells remain unclear. We induced donor-specific tolerance in a fully MHC-mismatched murine model of cardiac transplantation by simultaneously targeting T cell and DC function using anti-CD45RB mAb and LF 15-0195, a novel analog of the antirejection drug 15-deoxyspergualin, respectively. Increases in splenic Treg and Tol-DC were observed in tolerant recipients as assessed by an increase in CD4(+)CD25(+) T cells and DC with immature phenotype. Both these cell types exerted suppressive effects in MLR. Tol-DC purified from tolerant recipients incubated with naive T cells induced the generation/expansion of CD4(+)CD25(+) Treg. Furthermore, incubation of Treg isolated from tolerant recipients with DC progenitors resulted in the generation of DC with Tol-DC phenotype. Treg and Tol-DC generated in vitro were functional based on their suppressive activity in vitro. These results are consistent with the notion that tolerance induction is associated with a self-maintaining regulatory loop in which Tol-DC induce the generation of Treg from naive T cells and Treg programs the generation of Tol-DC from DC progenitors.  相似文献   

4.
We adapted our mouse model of allergic contact hypersensitivity to nickel for the study of tolerance. Sensitization in this model is achieved by the administration of nickel ions with H(2)O(2); nickel ions alone are unable to prime naive T cells, but can restimulate primed ones. A 4-wk course of oral or i.p. administration of 10 mM NiCl(2) to naive mice induced tolerance, preventing the induction of hypersensitivity for at least 20 wk; long term desensitization of nickel-sensitized mice, however, required continuous NiCl(2) administration. When splenic T cells of orally tolerized donors, even after a treatment-free interval of 20 wk, were transferred to naive recipients, as with lymph node cells (LNC), they specifically prevented sensitization of the recipients. The LNC of such donors were anergic, because upon in vivo sensitization with NiCl(2) in H(2)O(2) and in vitro restimulation with NiCl(2), they failed to show the enhanced proliferation and IL-2 production as seen with LNC of mice not tolerized before sensitization. As few as 10(2) bulk T cells, consisting of both CD4(+) and CD8(+) cells, were able to specifically transfer tolerance to nickel. A hypothesis is provided to account for this extraordinarily high frequency of nickel-reactive, suppressive T cells; it takes into account that nickel ions fail to act as classical haptens, but form versatile, unstable metal-protein and metal-peptide complexes. Furthermore, a powerful amplification mechanism, such as infectious tolerance, must operate which allows but a few donor T cells to tolerize the recipient.  相似文献   

5.
It has long been established that exposure of naive T cells to specific Ag in the absence of adjuvant leads to tolerization. Nonetheless, the potential of effector CD4 cells to be tolerized has been less well characterized. To address this issue, we have used an adoptive transfer system in which naive TCR transgenic hemagglutinin (HA)-specific CD4(+) T cells are initially primed to express effector function upon exposure to an immunogenic recombinant vaccinia virus expressing HA, and then exposed to forms of HA that are tolerogenic for naive CD4 cells. HA-specific effector CD4 cells residing in both the spleen as well as in two separate nonlymphoid tissues were tolerized upon exposure to high doses of exogenous soluble HA peptide. Additionally, tolerance could also be induced by bone marrow-derived APCs that cross-present parenchymally derived self-HA. Thus, effector CD4 cells are susceptible to similar tolerogenic stimuli as are naive CD4 cells.  相似文献   

6.
Dendritic cells (DCs) induce immunity and immunological tolerance as APCs. It has been shown that DCs secreting IL-10 induce IL-10(+) Tr1-type regulatory T (Treg) cells, whereas Foxp3-positive Treg cells are expanded from naive CD4(+) T cells by coculturing with mature DCs. However, the regulatory mechanism of expansion of Foxp3(+) Treg cells by DCs has not been clarified. In this study, we demonstrated that suppressors of cytokine signaling (SOCS)-3-deficient DCs have a strong potential as Foxp3(+) T cell-inducing tolerogenic DCs. SOCS3(-/-) DCs expressed lower levels of class II MHC, CD40, CD86, and IL-12 than wild-type (WT)-DCs both in vitro and in vivo, and showed constitutive activation of STAT3. Foxp3(-) effector T cells were predominantly expanded by the priming with WT-DCs, whereas Foxp3(+) Treg cells were selectively expanded by SOCS3(-/-) DCs. Adoptive transfer of SOCS3(-/-) DCs reduced the severity of experimental autoimmune encephalomyelitis. Foxp3(+) T cell expansion was blocked by anti-TGF-beta Ab, and SOCS3(-/-) DCs produced higher levels of TGF-beta than WT-DCs, suggesting that TGF-beta plays an essential role in the expansion of Foxp3(+) Treg cells. These results indicate an important role of SOCS3 in determining on immunity or tolerance by DCs.  相似文献   

7.
The T cell response to B cell lymphomas differs from the majority of solid tumors in that the malignant cells themselves are derived from B lymphocytes, key players in immune response. B cell lymphomas are therefore well situated to manipulate their surrounding microenvironment to enhance tumor growth and minimize anti-tumor T cell responses. We analyzed the effect of T cells on the growth of a transplantable B cell lymphoma and found that iNKT cells suppressed the anti-tumor CD8(+) T cell response. Lymphoma cells transplanted into syngeneic wild type (WT) mice or Jalpha18(-/-) mice that specifically lack iNKT cells grew initially at the same rate, but only the mice lacking iNKT cells were able to reject the lymphoma. This effect was due to the enhanced activity of tumor-specific CD8(+) T cells in the absence of iNKT cells, and could be partially reversed by reconstitution of iNKT cells in Jalpha 18(-/-) mice. Treatment of tumor-bearing WT mice with alpha -galactosyl ceramide, an activating ligand for iNKT cells, reduced the number of tumor-specific CD8(+) T cells. In contrast, lymphoma growth in CD1d1(-/-) mice that lack both iNKT and type II NKT cells was similar to that in WT mice, suggesting that type II NKT cells are required for full activation of the anti-tumor immune response. This study reveals a tumor-promoting role for iNKT cells and suggests their capacity to inhibit the CD8(+) T cell response to B cell lymphoma by opposing the effects of type II NKT cells.  相似文献   

8.
9.
Subnanomolar doses of an unaltered, naturally occurring nucleosomal histone peptide epitope, H4(71-94), when injected s.c. into lupus-prone mice, markedly prolong lifespan by generating CD4+25+ and CD8+ regulatory T cells (Treg) producing TGF-beta. The induced Treg cells suppress nuclear autoantigen-specific Th and B cells and block renal inflammation. Splenic dendritic cells (DC) captured the s.c.-injected H4(71-94) peptide rapidly and expressed a tolerogenic phenotype. The DC of the tolerized animal, especially plasmacytoid DC, produced increased amounts of TGF-beta, but diminished IL-6 on stimulation via the TLR-9 pathway by nucleosome autoantigen and other ligands; and those plasmacytoid DC blocked lupus autoimmune disease by simultaneously inducing autoantigen-specific Treg and suppressing inflammatory Th17 cells that infiltrated the kidneys of untreated lupus mice. Low-dose tolerance with H4(71-94) was effective even though the lupus immune system is spontaneously preprimed to react to the autoepitope. Thus, H4(71-94) peptide tolerance therapy that preferentially targets pathogenic autoimmune cells could spare lupus patients from chronically receiving toxic agents or global immunosuppressants and maintain remission by restoring autoantigen-specific Treg cells.  相似文献   

10.
In this study, we investigated whether mesenchymal stem cells (MSC) had immunomodulatory properties in solid organ allotransplantation, using a semiallogeneic heart transplant mouse model, and studied the mechanism(s) underlying MSC tolerogenic effects. Either single (portal vein, day -7) or double (portal vein, day -7 and tail vein, day -1) pretransplant infusions of donor-derived B6C3 MSC in B6 recipients induced a profound T cell hyporesponsiveness and prolonged B6C3 cardiac allograft survival. The protolerogenic effect was abrogated when donor-derived MSC were injected together with B6C3 hematopoietic stem cells (HSC), suggesting that HSC negatively impact MSC immunomodulatory properties. Both the induction (pretransplant) and the maintenance phase (>100 days posttransplant) of donor-derived MSC-induced tolerance were associated with CD4(+)CD25(+)Foxp3(+) Treg expansion and impaired anti-donor Th1 activity. MSC-induced regulatory T cells (Treg) were donor-specific since adoptive transfer of splenocytes from tolerant mice prevented the rejection of fully MHC-mismatched donor-specific secondary allografts but not of third-party grafts. In addition, infusion of recipient-derived B6 MSC tolerized a semiallogeneic B6C3 cardiac allograft, but not a fully MHC-mismatched BALB/c graft, and expanded Treg. A double i.v. pretransplant infusion of recipient-derived MSC had the same tolerogenic effect as the combined intraportal/i.v. MSC infusions, which makes the tolerogenic protocol applicable in a clinical setting. In contrast, single MSC infusions given either peritransplant or 1 day after transplant were less effective. Altogether these findings indicate that MSC immunomodulatory properties require HSC removal, partial sharing of MHC Ags between the donor and the recipient and pretransplant infusion, and are associated with expansion of donor-specific Treg.  相似文献   

11.
Self-reactive T cells are known to be eliminated by negative selection in the thymus or by the induction of tolerance in the periphery. However, developmental pathways that allow self-reactive T cells to inhabit the normal repertoire are not well-characterized. In this investigation, we made use of anti-small nuclear ribonucleoprotein particle (snRNP) Ig transgenic (Tg) mice (2-12 Tg) to demonstrate that autoreactive T cells can be detected and activated in both normal naive mice and autoimmune-prone MRL lpr/lpr mice. In contrast, autoreactive T cells of nonautoimmune Tg mice are tolerized by Tg B cells in the periphery. In adoptive transfer studies, autoreactive T cells from MRL lpr/lpr mice can stimulate autoantibody synthesis in nonautoimmune anti-snRNP Tg mice. Transferred CD4 T cells migrate to regions of the spleen proximal to the B cell follicles, suggesting that cognate B cell-T cell interactions are critical to the autoimmune response. Taken together, our studies suggest that anti-snRNP B cells are important APCs for T cell activation in autoimmune-prone mice. Additionally, we have demonstrated that anti-snRNP B cell anergy in nonautoimmune mice may be reversed by appropriate T cell help.  相似文献   

12.
Dendritic cells (DCs) are professional APCs that have a unique capacity to initiate primary immune responses, including tolerogenic responses. We have genetically engineered bone marrow-derived DCs to express the immunosuppressive cytokine IL-10 and tested the ability of these cells to control experimental asthma. A single intratracheal injection of OVA-pulsed IL-10-transduced DCs (OVA-IL-10-DCs) to naive mice before OVA sensitization and challenge prevented all of the cardinal features of airway allergy, namely, eosinophilic airway inflammation, airway hyperreactivity, and production of mucus, Ag-specific Igs, and IL-4. OVA-IL-10-DCs also reversed established experimental asthma and had long-lasting and Ag-specific effects. We furthermore showed, by using IL-10-deficient mice, that host IL-10 is required for mediating the immunomodulatory effects of OVA-IL-10-DCs and demonstrated a significant increase in the percentage of OVA-specific CD4(+)CD25(+)Foxp3(+)IL-10(+) regulatory T cells in the mediastinal lymph nodes of OVA-IL-10-DC-injected mice. Finally, adoptive transfer of CD4(+) mediastinal lymph node T cells from mice injected with OVA-IL-10-DCs protected OVA-sensitized recipients from airway eosinophilia upon OVA provocation. Our study describes a promising strategy to induce long-lasting Ag-specific tolerance in airway allergy.  相似文献   

13.
Our previous study showed that intraperitoneal injection of α‐galactosylceramide (α‐GalCer) has the ability to activate lung iNKT cells, but α‐GalCer‐activated iNKT cells do not result in airway inflammation in wild‐type (WT) mice. Many studies showed that iNKT cells had the capacity to induce Treg cells, which gave rise to peripheral tolerance. Therefore, we examined the influence of intraperitoneal administration of α‐GalCer on the expansion and suppressive activity of lung Treg cells using iNKT cell‐knockout mice and co‐culture experiments in vitro. We also compared airway inflammation and airway hyperresponsiveness (AHR) after α‐GalCer administration in specific anti‐CD25 mAb‐treated mice. Our data showed that intraperitoneal injection of α‐GalCer could promote the expansion of lung Treg cells in WT mice, but not in iNKT cell‐knockout mice. However, α‐GalCer administration could not boost suppressive activity of Treg cells in WT mice and iNKT cell‐knockout mice. Interestingly, functional inactivation of Treg cells could induce airway inflammation and AHR in WT mice treated with α‐GalCer. Furthermore, α‐GalCer administration could enhance iNKT cells to secrete IL‐2, and neutralization of IL‐2 reduced the expansion of Treg cells in vivo and in vitro. Thus, intraperitoneal administration of α‐GalCer can induce the generation of lung Treg cells in mice through the release of IL‐2 by the activated iNKT cells.  相似文献   

14.
Invariant NK T (iNKT) cells regulate immune responses, express NK cell markers and an invariant TCR, and recognize lipid Ags in a CD1d-restricted manner. Previously, we reported that activation of iNKT cells by alpha-galactosylceramide (alpha-GalCer) protects against type 1 diabetes (T1D) in NOD mice via an IL-4-dependent mechanism. To further investigate how iNKT cells protect from T1D, we analyzed whether iNKT cells require the presence of another subset(s) of regulatory T cells (Treg), such as CD4+ CD25+ Treg, for this protection. We found that CD4+ CD25+ T cells from NOD.CD1d(-/-) mice deficient in iNKT cell function similarly in vitro to CD4+ CD25+ T cells from wild-type NOD mice and suppress the proliferation of NOD T responder cells upon alpha-GalCer stimulation. Cotransfer of NOD diabetogenic T cells with CD4+ CD25+ Tregs from NOD mice pretreated with alpha-GalCer demonstrated that activated iNKT cells do not influence the ability of T(regs) to inhibit the transfer of T1D. In contrast, protection from T1D mediated by transfer of activated iNKT cells requires the activity of CD4+ CD25+ T cells, because splenocytes pretreated with alpha-GalCer and then inactivated by anti-CD25 of CD25+ cells did not protect from T1D. Similarly, mice inactivated of CD4+ CD25+ T cells before alpha-GalCer treatment were also not protected from T1D. Our data suggest that CD4+ CD25+ T cells retain their function during iNKT cell activation, and that the activity of CD4+ CD25+ Tregs is required for iNKT cells to transfer protection from T1D.  相似文献   

15.
Involvement of dectin-2 in ultraviolet radiation-induced tolerance   总被引:5,自引:0,他引:5  
Hapten sensitization through UV-exposed skin induces hapten-specific tolerance which can be adoptively transferred by injecting T cells into naive recipients. The exact phenotype of the regulatory T cells responsible for inhibiting the immune response and their mode of action remain largely unclear. Dectin-2 is a C-type lectin receptor expressed on APCs. It was postulated that dectin-2 interacts with its putative ligands on T cells and that the interaction may deliver costimulatory signals in naive T cells. Using a soluble fusion protein of dectin-2 (sDec2) which should inhibit this interaction, we studied the effect on contact hypersensitivity (CHS) and its modulation by UV radiation. Injection of sDec2 affected neither the induction nor the elicitation phase of CHS. In contrast, UV-induced inhibition of the CHS induction was prevented upon injection of sDec2. In addition, hapten-specific tolerance did not develop. Even more importantly, injection of sDec2 into tolerized mice rendered the recipients susceptible to the specific hapten, indicating that sDec2 can break established tolerance. FACS analysis of spleen and lymph node cells revealed a significantly increased portion of sDec2-binding T cells in UV-tolerized mice. Furthermore, transfer of UV-mediated suppression was lost upon depletion of the sDec2-positive T cells. Taken together, these data indicate that dectin-2 and its yet unidentified ligand may play a crucial role in the mediation of UV-induced immunosuppression. Moreover, sDec2-reactive T cells appear to represent the regulatory T cells responsible for mediating UV-induced tolerance.  相似文献   

16.
Invariant natural killer T (iNKT) cells are involved in various autoimmune diseases. Although iNKT cells are arthritogenic, transforming growth factor beta (TGFβ)-treated tolerogenic peritoneal macrophages (Tol-pMφ) from wild-type (WT) mice are more tolerogenic than those from CD1d knock-out iNKT cell-deficient mice in a collagen-induced arthritis (CIA) model. The underlying mechanism by which pMφ can act as tolerogenic antigen presenting cells (APCs) is currently unclear. To determine cellular mechanisms underlying CD1d-dependent tolerogenicity of pMφ, in vitro and in vivo characteristics of pMφ were investigated. Unlike dendritic cells or splenic Mφ, pMφ from CD1d+/− mice showed lower expression levels of costimulatory molecule CD86 and produced lower amounts of inflammatory cytokines upon lipopolysaccharide (LPS) stimulation compared to pMφ from CD1d-deficient mice. In a CIA model of CD1d-deficient mice, adoptively transferred pMφ from WT mice reduced the severity of arthritis. However, pMφ from CD1d-deficient mice were unable to reduce the severity of arthritis. Hence, the tolerogenicity of pMφ is a cell-intrinsic property that is probably confer-red by iNKT cells during pMφ development rather than by interactions of pMφ with iNKT cells during antigen presentation to cognate T cells.  相似文献   

17.
APC exposed to TGFbeta2 and Ag (tolerogenic APC) promote peripheral Ag-specific tolerance via the induction of CD8(+) T regulatory cells capable of suppressing Th1 and Th2 immunity. We postulated that tolerogenic APC might reinstate tolerance toward self-neuronal Ags and ameliorate ongoing experimental autoimmune encephalomyelitis (EAE). Seven days after immunization with myelin basic protein (MBP), mice received MBP-specific tolerogenic APC, and EAE was evaluated clinically. To test for the presence and the phenotype of T regulatory cells, CD4 and/or CD8 T cells from tolerogenic APC-treated mice were transferred to naive mice before their immunization with MBP. The MBP-specific tolerogenic APC decreased both the severity and incidence of ongoing EAE. Tolerance to self-neuronal Ags was induced in naive recipient mice via adoptive transfer of CD8(+), but not CD4(+) T cells. Rational use of in vitro-generated tolerogenic APC may lead to novel therapy for autoimmune disease.  相似文献   

18.
1alpha,25-dihydroxyvitamin D3, the active form of vitamin D3, and mycophenolate mofetil, a selective inhibitor of T and B cell proliferation, modulate APC function and induce dendritic cells (DCs) with a tolerogenic phenotype. Here we show that a short treatment with these agents induces tolerance to fully mismatched mouse islet allografts that is stable to challenge with donor-type spleen cells and allows acceptance of donor-type vascularized heart grafts. Peritransplant macrophages and DCs from tolerant mice express down-regulated CD40, CD80, and CD86 costimulatory molecules. In addition, DCs from the graft area of tolerant mice secrete, upon stimulation with CD4+ cells, 10-fold lower levels of IL-12 compared with DCs from acutely rejecting mice, and induce a CD4+ T cell response characterized by selective abrogation of IFN-gamma production. CD4+ but not CD8+ or class II+ cells from tolerant mice, transferred into naive syngeneic recipients, prevent rejection of donor-type islet grafts. Graft acceptance is associated with impaired development of IFN-gamma-producing type 1 CD4+ and CD8+ cells and an increased percentage of CD4+CD25+ regulatory cells expressing CD152 in the spleen and in the transplant-draining lymph node. Transfer of CD4+CD25+ cells from tolerant but not naive mice protects 100% of the syngeneic recipients from islet allograft rejection. These results demonstrate that a short treatment with immunosuppressive agents, such as 1alpha,25-dihydroxyvitamin D3/mycophenolate mofetil, induces tolerance to islet allografts associated with an increased frequency of CD4+CD25+ regulatory cells that can adoptively transfer transplantation tolerance.  相似文献   

19.
Previous studies have shown that pretransplant donor lymphocyte infusion (DLI) can enhance xenograft survival. However, the mechanism by which DLI induces xenograft survival remains obscure. Using T cell subset-deficient mice as recipients we show that CD4+, but not CD8+, T cells are necessary to mediate the rejection of concordant cardiac xenografts. Adoptive transfer of naive CD4+ T cells induces rejection of accepted cardiac xenografts in CD4-/- mice. This rejection can be prevented by pretransplant DLI in the absence of any other treatment. Furthermore, we demonstrate that DLI activates alphabeta-TCR+CD3+CD4-CD8- double-negative (DN) regulatory T (Treg) cells in xenograft recipients, and that DLI-activated DN Treg cells can inhibit the proliferation of donor-specific xenoreactive CD4+ T cells in vitro. More importantly, adoptive transfer of DLI-activated DN Treg cells from xenograft recipients can suppress the proliferation of xenoreactive CD4+ T cells and their ability to produce IL-2 and IFN-gamma in vivo. Adoptive transfer of DLI-activated DN Treg cells also prevents CD4+ T cell-mediated cardiac xenograft rejection in an Ag-specific fashion. These data provide direct evidence that DLI can activate recipient DN Treg cells, which can induce donor-specific long-term cardiac xenograft survival by suppressing the proliferation and function of donor-specific CD4+ T cells in vivo.  相似文献   

20.
An emerging concept is that different types of dendritic cells (DCs) initiate different immune outcomes, such as tolerance vs inflammation. In this study, we have characterized the DCs from the lung draining lymph nodes of mice immunized for allergic airway inflammation or tolerance and examined their interactions with CD4(+) T cells. The DC population derived from tolerized mice was predominantly CD11c(+), B220(+), Gr-1(+), CD11b(-), and MHC class II(low), which resembled plasmacytoid-type DCs whereas DCs from the inflammatory condition were largely CD11c(+), B220(-), Gr-1(-), CD11b(+), and MHC class II(high) resembling myeloid-type DCs. The DCs from the tolerogenic condition were poor inducers of T cell proliferation. DCs from both conditions induced T cell IL-4 production but the T cells cultured with tolerogenic DCs were unresponsive to IL-4 as indicated by inhibition of STAT6 activation and expression of growth factor-independent 1, which has been recently shown to be important for STAT6-activated Th2 cell expansion. Our data suggest that airway tolerance vs inflammation is determined by the DC phenotype in lung draining lymph nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号