首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Somatic hybrid plants were recovered following fusion of leaf mesophyll protoplasts isolated from tomato (Lycopersicon esculentum) cultivar UC82 with protoplasts isolated from suspension cultured cells of L. chilense, LA 1959. Iodoacetate was used to select against the growth of unfused tomato protoplasts. Two somatic hybrids were recovered in a population of 16 regenerants. No tomato regenerants were recovered; all of the non-hybrid regenerants were L. chilense. The L. chilense protoplast regenerants were tetraploid. The hybrid nature of the plants was verified using species-specific restriction fragment length polymorphisms for the nuclear, chloroplast and mitochondrial genomes. The somatic hybrids had inherited the chloroplast DNA of the tomato parent, and portions of the mitochondrial DNA of the L. chilense parent. The somatic hybrids formed flowers and developed seedless fruit.  相似文献   

2.
Transmission of organelle genomes in citrus somatic hybrids   总被引:3,自引:0,他引:3  
Restriction fragment length polymorphisms (RFLPs), were used to analyze the organelle composition of two-year-old trees, recovered from two different experiments: protoplasts from embryogenic cell suspensions of `Succari' sweet orange (C. sinensis L. Osbeck) were fused with leaf protoplasts of Citropsis gilletiana Swingle & M. Kell or to leaf protoplasts of Atalantia ceylanica(Arn.) Oliv. The somatic hybrids of both fusion combinations had the mitochondrial genome from the embryogenic partner. In some somatic hybrids, non-parental fragments were observed among the mitochondrial patterns. Somatic hybrids between `Succari' + Atalantia had plastid DNA from the embryogenic parent, while the somatic hybrids of `Succari' + Citropsis all had both parental chloroplast genomes. The relative abundance of organelle DNAs in the donor embryogenic and leaf cells may explain the consistent transmission of the embryogenic parent mitochondrial DNA and the inheritance of the chloroplast genome from either parent. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Summary The chloroplast (cp) and mitochondrial (mt) DNAs of Petunia somatic hybrid plants, which were derived from the fusion of wild-type P. parodii protoplasts with albino P. inflata protoplasts, were analyzed by endonuclease restriction and Southern blot hybridization. Using 32P-labelled probes that distinguished the two parental cpDNAs at a BamH1 site and at a HpaII site, only the P. parodii chloroplast genome was detected in the 10 somatic hybrid plants analyzed. To examine whether cytoplasmic mixing had resulted in rearrangement of the mitochondrial genome in the somatic hybrids, restriction patterns of purified somatic hybrid and parental mtDNAs were analyzed. Approximately 87% of those restriction fragments which distinguish the two parental genomes are P. inflata-specific. Restriction patterns of the somatic hybrid mtDNAs differ both from the parental patterns and from each other, suggesting that an interaction occurred between the parental mitochondrial genomes in the somatic fusion products which resulted in generation of the novel mtDNA patterns. Southern blot hybridization substantiates this conclusion. In addition, somatic hybrid lines derived from the same fusion product were observed to differ in mtDNA restriction pattern, reflecting a differential sorting-out of mitochondrial genomes at the time the plants were regenerated.  相似文献   

4.
Summary Somatic hybrid cell lines were constructed by the fusion of protoplasts isolated from cell suspensions of Zea mays L. (maize, 2n = 20) and Triticum sect, trititrigia MacKey (trititrigia, 2n = 35), a perennial hybrid of T. durum Desf. and Elytrigia intermedium (Host) Nevski. Iodoacetamide-inactivated protoplasts of maize were fused with trititrigia protoplasts, which were sensitive to the PEG/DMSO fusion treatment at high pH and high calcium. Based on physiological complementation, approximately 0.002% of the total protoplasts cultured following fusion treatment developed into cell colonies, and 79 lines of them, almost a half, were singled out and subcultured. Among the subcultured lines three were, in comparison with the parents, identified as somatic hybrids by their coupled XbaI restriction patterns of total DNAs probed with the ribosomal DNA of rice. Southern analysis of the digested total DNAs with a mitochondrial gene, atpA., from pea, or a chloroplast gene, trnK, from rice, revealed that all the hybrids carried only the organellar DNAs of trititrigia, which excluded the possibilities of a chimeric callus or any DNA contamination. Cytogenetically, one hybrid was mixoploid with a 2n of 46–67 in which chromosomal endoreduplication, characterized by the appearance of diplochromosomes, was occasionally observed. Its hybridity was reconfirmed by the fact that it bore the satellite chromosomes of both maize and trititrigia, which were distinguishable from each other by size. In contrast, the other two hybrids were aneuploids. The potential of gene transfer between Zea and Triticum species was thus conclusively established.  相似文献   

5.
Summary Mesophyl protoplasts of two genotypes of cultivated tomato (Lycopersicon esculentum Mill.) and one of its wild relative species (Lycopersicon peruvianum Mill.) were fused by using electrofusion and polyethyleneglycol-induced fusion. Forty-three fertile tetraploid somatic hybrid plants, each deriving from separate calli, were recovered from both fusion procedures. Electrofusion appeared more efficient than chemical fusion for the production of somatic hybrids. These plants appeared morphologically similar, whatever the fusion procedure and tomato genotype. They had intermediate leaf, inflorescence, and flower morphology. After self-pollination, the hybrids set fruit of intermediate size and color. The hybrid nature of these plants was confirmed by isoelectric focusing of the Rubisco small subunits used as nuclear markers. L. esculentum and L. peruvianum were distinguished by means of two chloroplast markers: CF1-ATPase subunit as analyzed by isoelectro-focusing and ct DNA restriction patterns. All hybrids displayed both ct markers of only one parent with no biased transmission. Mitochondrial (mt) DNAs were prepared from flower buds by using miniaturized CsCl gradients. Preliminary analysis indicated that mt genomes from the hybrids all differed from those of both parents. mt DNA Sall restriction enzyme analysis revealed that all but two hybrids contained one novel fragment of 13.5 kb. Gene mapping experiments showed that the mt apocytochrome b and ATPase subunit 9 homologies in the somatic hybrid mt DNA resembled L. esculentum and L. peruvianum, respectively; the mt nad5 probe distinguished at least four distinct patterns in the hybrids. These results indicated that mt DNA rearrangements involving intergenomic recombinations occurred through protoplast fusion. A greater mt DNA polymorphism was induced with chemical fusion than with electrofusion.  相似文献   

6.
Summary Cell suspension cultures of Daucus carota, D. capillifolius and a somatic hybrid of these lines were analyzed to determine their chloroplast and mitochondrial DNA compositions. The plastid DNAs (pDNA) from the somatic hybrid and D. carota were identical and were different from that of D. capillifolius when analyzed on agarose electrophoretic gels after digestion by the restriction endonuclease HpaII. The endonuclease restriction patterns of the mitochondrial DNAs (mtDNA) from each cell line were different. Although the restriction pattern of the mtDNA from the somatic hybrid contained fragments in common with one or both parents, unique fragments not found in the restriction pattern of either parent were also present.The amounts and feedback regulation of aspartokinase, homoserine dehydrogenase and dihydrodipicolinic acid synthase were quantified to define the effects of somatic hybridization upon the pathway leading to the biosynthesis of lysine, threonine, methionine and isoleucine. Regulation of each enzyme by end product inhibitors was not altered in the somatic hybrid, but levels of each enzyme appeared to be increased. However, isoenzyme analysis indicated two major forms of homoserine dehydrogenase were present in the hybrid, including one unique form not present in either parent.  相似文献   

7.
Summary Fusion of leaf protoplasts from an inbred line of Brassica oleracea ssp. botrytis (cauliflower, n=9) carrying the Ogura (R1) male sterile cytoplasm with hypocotyl protoplasts of B. campestris ssp. oleifera (cv Candle, n=10) carrying an atrazine-resistant (ATR) cytoplasm resulted in the production of synthetic B. napus (n=19). Thirty-four somatic hybrids were produced; they were characterized for morphology, phosphoglucose isomerase isoenzymes, ribosomal DNA hybridization patterns, chromosome numbers, and organelle composition. All somatic hybrids carried atrazine-resistant chloroplasts derived from B. campestris. The mitochondrial genomes in 19 hybrids were examined by restriction endonuclease and Southern blot analyses. Twelve of the 19 hybrids contained mitochondria showing novel DNA restriction patterns; of these 12 hybrids, 5 were male sterile and 7 were male fertile. The remaining hybrids contained mitochondrial DNA that was identical to that of the ATR parent and all were male fertile.  相似文献   

8.
Summary Gametosomatic hybrids produced by the fusion of microspore protoplasts of Nicotiana tabacum Km+Sr+ with somatic cell protoplasts of N. rustica were analysed for their organelle composition. For the analysis of mitochondrial (mt)DNA, species-specific patterns were generated by Southern hybridization of restriction endonuclease digests of total DNA and mtDNA with four DNA probes of mitochondrial origin: cytochrome oxidase subunit I, cytochrome oxidase subunit II, 26s rDNA and 5s-18s rDNA. Of the 22 hybrids analyzed, some had parental-type pattern for some probes and novel-type for the others, indicating interaction between mtDNA of the two parent species. For chloroplast (cp)DNA analysis, species-specific patterns were generated by Southern hybridization of restriction endonuclease digests of total DNA with large subunits of ribulose bisphosphate carboxylase and cpDNA as probes. All the hybrids had N. rustica-specific patterns. Hybrids were not resistant to streptomycin, a trait encoded by the chloroplast genome of N. tabacum. In gametosomatic fusions of the two Nicotiana species, mitochondria but not the chloroplasts are transmitted from the parent contributing microspore protoplasts.  相似文献   

9.
Summary Five somatic hybrids between Brassica campestris and B. oleracea were obtained. Molecular, morphological and cytological information all suggest that the resynthesized B. napus plants were hybrids. All five plants were diploid (2n=38) and had mainly bivalents at meiosis. Seedset was low after selfing but normal after crossing with B. napus. Molecular proof of the hybrid nature of these plants was obtained by hybridization of a rDNA repeat to total DNA. Analysis of chloroplast DNA restriction patterns revealed that all hybrids had chloroplasts identical to the B. oleracea parent. The analysis of mitochondrial DNA indicated that three hybrids had restriction patterns identical to those of B. campestris, and the other two had restriction patterns similar to those of B. oleracea. The 11.3 kb plasmid present in mitochondria of the B. campestris parent was also found in mitochondria of all five hybrids. This suggests that the plasmid from a B. campestris type of mitochondria was transferred into mitochondria of a B. oleracea type.  相似文献   

10.
Summary Mitochondrial DNA from three somatic hybrid cell lines of Pennisetum americanum + Panicum maximum was compared with mitochondrial DNA of the parents. Gel electrophoresis of BamHI-restricted mitochondrial DNA indicated that extensive rearrangements had occurred in each of the three hybrid lines. The hybrid restriction patterns showed a combination of some bands from each parent plus novel fragments not present in either parent. Additional evidence for rearrangements was obtained by hybridization of eight DNA probes, carrying sequences of known coding regions, to Southern blots. Each of the somatic hybrids exhibited a partial combination of the parental mitochondrial genomes. These data suggest recombination or amplification of the mitochondrial genomes in the somatic hybrids.  相似文献   

11.
Summary The organization of the mitochondrial genome and the genotype of the chloroplast genome was characterized using restriction fragment length polymorphisms in a population (82 individuals) of symmetric and asymmetric somatic hybrids of tomato. The protoplast fusion products were regenerated following the fusion of leaf mesophyll protoplasts of Lycopersicon esculentum (tomato cv UC82) with suspension cell protoplasts of L. pennellii that had been irradiated with 5, 10, 15, 25, 50, or 100 kRads from a gamma source. The chloroplast genome in the somatic hybrids showed a random pattern of inheritance, i.e., either parental genome was present in equal numbers of regenerants, while in asymmetric somatic hybrids, the chloroplast genotype reflected the predominant nuclear genotype, i.e., tomato. The mitochondrial genome in the symmetric somatic hybrids showed a non-random pattern of inheritance, i.e., predominantly from the L. pennellii parent; asymmetric somatic hybrids had more tomato-specific mitochondrial sequences than symmetric somatic hybrids. The non-random inheritance of the chloroplast and mitochondrial DNA in these tomato protoplast fusion products appears to be influenced by the nuclear background of the regenerant.  相似文献   

12.
In a previous report, intergeneric somatic hybrids between red cabbage (Brassica oleracea L. var.capitata) and radish (Raphanus sativus L. cv. Shougoin) were produced by protoplast fusion. Plant morphology, chromosome number, isozyme patterns, andSma1 cleavage pattern of chloroplast DNA indicated that the hybrid plants have the red cabbage nucleus and the radish chloroplasts. In this report, we analyzed the organization of chloroplast and mitochondrial DNAs from this hybrid using Southern hybridization. The restriction patterns of almost all regions of the chloroplast DNA from the hybrid were similar to that of radish, except for one region near therps16 gene, which encodes the chloroplast ribosomal protein S16. In contrast to chloroplast DNA, the restriction pattern of mitochondrial DNA from the hybrid was quite different from that of the parents.Abbreviations CMS cytoplasmic male-sterility - ctDNA chloroplast DNA - mtDNA mitochondrial DNA  相似文献   

13.
甜橙与酸橙体细胞杂种核质组成鉴定(英文)   总被引:2,自引:0,他引:2  
采用流式细胞术(flow cytometry, FCM)、简单重复序列(simple sequence repeat, SSR)和酶切扩增多型性序列(cleaved amplified polymorphic sequence, CAPS)等技术分析酸橙(Citrus aurantium L. )叶肉原生质体和甜橙(C. sinenis Osbeck cv. Shamouti)胚性愈伤组织原生质体电融合再生的体细胞杂种。FCM研究结果表明,所有的体细胞杂种植株荧光强度是二倍体对照的2倍,说明所分析的植株为四倍体。用SSR和CAPS分析了体细胞杂种的核质遗传组成,在试验的4对SSR引物中,有2对能区分开融合亲本。在2对引物中,体细胞杂种植株包含双亲的全部特异带,表明它们为异核杂种。通用引物扩增结合限制性内切酶酶切能鉴别融合亲本,在具有多型性的引物/酶组合中,所有体细胞杂种的线粒体和叶绿体DNA带型与胚性亲本(甜橙)完全一样。结果表明体细胞杂种核基因组来自双亲,而胞质基因组来自悬浮系亲本。讨论了所用技术的特点、柑橘四倍体体细胞杂种核质遗传规律及本组合体细胞杂种的应用。  相似文献   

14.
Summary The organization of the mitochondrial genome in somatic hybrids and cybrids regenerated following fusion of protoplasts from cultivated tomato, Lycopersicon esculentum, and the wild species, L. Pennellii, was compared to assess the role of the nuclear genotype on the inheritance of organellar genomes. No organellar-encoded traits were required for the recorvery of either somatic hybrids or cybrids. The organization of the mitochondrial genome was characterized using Southern hybridization of restriction digestions of total DNA isolated from ten cybrids and ten somatic hybrids. A bank of cosmid clones carrying tomato mitochondrial DNA was used as probes, as well as a putative repeated sequence from L. pennellii mitchondrial DNA. The seven cosmids used to characterize the mitochondrial genomes are predicted to encompass at least 60% of the genome. The frequency of nonparental organizations of the mitochondrial genome was highest with a probe derived from a putative repeat element from the L. pennellii mitochondrial DNA. There was no difference in the average frequency of rearranged mitochondrial sequences in somatic hybrids (12%) versus cybrids (10%), although there were individual cybrids with a very high frequency of novel fragments (30%). The frequency of tomato-specific mtDNA sequences was higher in cybrids (25%) versus somatic hybrids (12%), suggesting a nuclear-cytoplasmic interaction on the inheritance of tomato mitochondrial sequences.  相似文献   

15.
Patterns of organelle inheritance were examined among fertile somatic hybrids between allotetraploid Nicotiana tabacum L. (2n=4x=48) and a diploid wild relative N. glutinosa L. (2n=2x=24). Seventy somatic hybrids resistant to methotrexate and kanamycin were recovered following fusion of leaf mesophyll protoplasts of transgenic methotrexate-resistant N. tabacum and kanamycin-resistant N. glutinosa. Evidence for hybridization of nuclear genomes was obtained by analysis of glutamate oxaloacetate transaminase and peroxidase isoenzymes and by restriction fragment length polymorphism (RFLP) analysis using a heterologous nuclear ribosomal DNA probe. Analysis of chloroplast genomes in a population of 41 hybrids revealed a random segregation of chloroplasts since 25 possessed N. glutinosa chloroplasts and 16 possessed N. tabacum chloroplasts. This contrasts with the markedly non-random segregation of plastids in N. tabacum (+)N. rustica and N. tabacum (+) N. debneyi somatic hybrids which we described previously and which were recovered using the same conditions for fusion and selection. The organization of the mitochondrial DNA (mtDNA) in 40 individuals was examined by RFLP analysis with a heterologous cytochrome B gene. Thirty-eight somatic hybrids possessed mitochondrial genomes which were rearranged with respect to the parental genomes, two carried mtDNA similar to N. tabacum, while none had mtDNA identical to N. glutinosa. The somatic hybrids were self-fertile and fertile in backcrosses with the tobacco parent.Contribution No. 1487 Plant Research Centre  相似文献   

16.
Summary Protoplast fusion makes possible the fusion of two different cytoplasms, allowing genetical analysis of cytoplasmic factors. Two varieties of Nicotiana tabacum differing by their cytoplasms have been used. Techne, the first variety, obtained by an interspecific cross between N. debneyi (female) and N. tabacum (male) is characterized by the nuclear tabacum genome inside the debneyi cytoplasm. Techne plants present abnormal flowers with cytoplasmic male sterility (cytoplasmic marker) and sessile leave (nuclear marker). Techne leaf protoplasts were fused with leaf protoplasts of N. tabacum var. Samsun (or Xanthi). The last variety is characterized by petiolated leaves and normal flowers, because it possesses the nuclear tabacum genome associated with the tabacum cytoplasm. The nuclear marker (leaf shape) and the cytoplasmic one (flower shape inducing male sterility or fertility) have been used to distinguish among the whole regenerated plants the somatic nuclear hybrids and the cytoplasmic hybrids (cybrids) displaying the nuclear phenotype of one of the two parents associated with a modified flower type, intermediate between the parental ones.The chloroplastic (cp) DNA contained in each parent has been specifically identified by using EcoRI restriction nuclease and gel electrophoresis. EcoRI fragment patterns of cp DNA isolated from the first progeny of the regenerated cytoplasmic hybrids revealed that only one of the two parental cp DNAs is present in all cases; neither mixture of both parental cp DNAs nor recombinant cp DNA molecules were observed. This indicates that a specific elimination of one or the other parental cp DNAs occurs after the initial mixing of the cytoplasms. The study of the association of the modified flower type with the cp DNA isolated from the corresponding plant showed that cp DNA seems independent from the mechanism of cytoplasmic male sterility in tobacco.  相似文献   

17.
Summary Tall fescue (Festuca arundinacea Schreb.) protoplasts, inactivated by iodoacetamide, and non-morphogenic Italian ryegrass (Lolium multiflorum Lam.) protoplasts, both derived from suspension cultures, were electrofused and putative somatic hybrid plants were recovered. Two different genotypic fusion combinations were carried out and several green plants were regenerated in one of them. With respect to plant habitus, leaf and inflorescence morphology, the regenerants had phenotypes intermediate between those of the parents. Southern hybridization analysis using a rice ribosomal DNA probe revealed that the regenerants contained both tall fescue- and Italian ryegrass-specific-DNA fragments. A cloned Italian ryegrass-specific interspersed DNA probe hybridized to total genomic DNA from Italian ryegrass and from the green regenerated somatic hybrid plants but not to tall fescue. Chromosome counts and zymograms of leaf esterases suggested nuclear genome instability of the somatic hybrid plants analyzed. Four mitochondrial probes and one chloroplast DNA probe were used in Southern hybridization experiments to analyze the organellar composition of the somatic hybrids obtained. The somatic hybrid plants analyzed showed tall fescue, additive or novel mtDNA patterns when hybridized with different mitochondrial gene-specific probes, while corresponding analysis using a chloroplast gene-specific probe revealed in all cases the tall fescue hybridization profile. Independently regenerated F. arundinacea (+) L. multiflorum somatic hybrid plants were successfully transferred to soil and grown to maturity, representing the first flowering intergeneric somatic hybrids recovered in Gramineae.  相似文献   

18.
Summary Behavior of ribosomal RNA genes in the process of somatic hybridization was analyzed using hybrids Nicotiana tabacum + Atropa belladonna. Blothybridization of parental species DNAs to 32P-rDNA specific probes revealed two classes of ribosomal repeats in both tobacco and nightshade; their length was 11.2 kb, 10.4 kb (tobacco) and 9.4 kb, 10.2 kb (night-shade). For analysis of hybrids, labelled 32P rDNA specific probes were hybridized to DNA of parental species and somatic hybrids digested with restriction endonucleases EcoR1, EcoRV and BamH1. A new class of ribosomal DNA repeat, absent in parental species, was found in hybrid line NtAb-1. Possible mechanisms of appearence of a new rDNA class in the process of somatic cell fusion are discussed.  相似文献   

19.
Interspecific somatic fusion was performed between Seminole tangelo (Citrus reticulata Blanco xC. paradisi Macf.) protoplasts isolated from embryogenic callus and rough lemon (C. jambhiri Lush.) mesophyll protoplasts. Eight plants out of ten randomly selected regenerants had 18 chromosomes and the same nuclear rDNA fragment patterns as that of the mesophyll parent. The remaining two plants showed rDNA fragment patterns from both parents and had 36 chromosomes. For the analysis of mitochondrial DNA (mtDNA),rrn26 derived from pea was used to probeBamHI digests of the regenerants. All plants showed mtDNA band patterns identical to that of the callus parent, suggesting that eight plants were cybrids and the remaining two plants were somatic hybrids. In addition to the callus parent band patterns, additional fragments from the mesophyll parent and/or a novel band fragment were revealed in some of the putative cybrids by peaatpA probe after digestion withDraI andPstI. These results suggest the occurrence of mtDNA recombination/rearrangement inCitrus cybrids produced by somatic fusion in this interspecific combination.Abbreviations mtDNA Mitochondrial DNA  相似文献   

20.
采用流式细胞术(flow cytometry,FCM)、简单重复序列(simple sequence repeat,SSR)和酶切扩增多型性序列(cleaved amplifiedpolymorphic sequence,CAPS)等技术分析酸橙(Citrus aurantium L.)叶肉原生质体和甜橙(C.sinenis Osbeck cv.Shamouti)胚性愈伤组织原生质体电融合再生的体细胞杂种.FCM研究结果表明,所有的体细胞杂种植株荧光强度是二倍体对照的2倍,说明所分析的植株为四倍体.用SSR和CAPS分析了体细胞杂种的核质遗传组成,在试验的4对SSR引物中,有2对能区分开融合亲本.在2对引物中,体细胞杂种植株包含双亲的全部特异带,表明它们为异核杂种.通用引物扩增结合限制性内切酶酶切能鉴别融合亲本,在具有多型性的引物/酶组合中,所有体细胞杂种的线粒体和叶绿体DNA带型与胚性亲本(甜橙)完全一样.结果表明体细胞杂种核基因组来自双亲,而胞质基因组来自悬浮系亲本.讨论了所用技术的特点、柑橘四倍体体细胞杂种核质遗传规律及本组合体细胞杂种的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号