首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang X Y  Chen L D  Fu B J  Li Q  Qi X  Ma Y 《农业工程》2006,26(10):3198-3203
The effects of agricultural land use and management practices on soil organic carbon (SOC) are of great concern. In this study, SOC changes were investigated in sandy loam soils (Ustochrepts, USDA Soil Taxonomy) under orchard, vegetable, corn (Zea maize L.), and soybean (Glycine max L.) cultivation in northern China. The corn fields were further classified into three categories based on their inputs, i.e. high-input, mid-input, and low-input corn fields. In April 2005, a total of 197 soil samples were collected from 42 soil sites within 100 cm soil depth in Yanhuai Basin, Beijing, China. SOC contents were determined using rapid dichromate oxidation, and ANOVA statistical analysis was used to test the significances between land use and management practices at p<0.05. The results showed that: (1) the effects of land use and management practices on SOC primarily occurred within the topsoil (0–25 cm), and the SOC contents sharply decreased with the increase in soil depth. (2) SOC content and density values of orchard, vegetable, and high-input corn fields were higher than those of soybean, mid- and low-input corn fields.  相似文献   

2.
Northern Europe supports large soil organic carbon (SOC) pools and has been subjected to high frequency of land‐use changes during the past decades. However, this region has not been well represented in previous large‐scale syntheses of land‐use change effects on SOC, especially regarding effects of afforestation. Therefore, we conducted a meta‐analysis of SOC stock change following afforestation in Northern Europe. Response ratios were calculated for forest floors and mineral soils (0–10 cm and 0–20/30 cm layers) based on paired control (former land use) and afforested plots. We analyzed the influence of forest age, former land‐use, forest type, and soil textural class. Three major improvements were incorporated in the meta‐analysis: analysis of major interaction groups, evaluation of the influence of nonindependence between samples according to study design, and mass correction. Former land use was a major factor contributing to changes in SOC after afforestation. In former croplands, SOC change differed between soil layers and was significantly positive (20%) in the 0–10 cm layer. Afforestation of former grasslands had a small negative (nonsignificant) effect indicating limited SOC change following this land‐use change within the region. Forest floors enhanced the positive effects of afforestation on SOC, especially with conifers. Meta‐estimates calculated for the periods <30 years and >30 years since afforestation revealed a shift from initial loss to later gain of SOC. The interaction group analysis indicated that meta‐estimates in former land‐use, forest type, and soil textural class alone were either offset or enhanced when confounding effects among variable classes were considered. Furthermore, effect sizes were slightly overestimated if sample dependence was not accounted for and if no mass correction was performed. We conclude that significant SOC sequestration in Northern Europe occurs after afforestation of croplands and not grasslands, and changes are small within a 30‐year perspective.  相似文献   

3.
黄土丘陵沟壑区小流域土壤有机碳空间分布及其影响因素   总被引:12,自引:0,他引:12  
孙文义  郭胜利 《生态学报》2011,31(6):1604-1616
研究局域尺度土壤有机碳空间分布特征,对准确估算大尺度土壤碳库储量和变化具有重要意义。以黄土丘陵沟壑区典型小流域为对象,采集0-10、10-20、20-40、40-60、60-80、80-100cm土层中(898个土壤样品),采用多元线性逐步回归和地理信息系统(GIS)相结合方法,分析了地形(峁顶、峁坡、沟底)、土地利用(农田、果园、川坝地、草地、灌木林、乔木林)等作用下,小流域不同深度土壤有机碳含量的空间分布特征。结果表明:地形因素不仅对表层(0-10cm)土壤有机碳含量空间分布差异影响显著,而且对深层(40-100cm)影响也显著,且空间格局图上40-100cm可以清晰地看地沟底与峁顶和峁坡显著差异。在0-10cm土层,峁顶以中值斑块(50%)和低值斑块(48%)为主;峁坡以中值斑块(62%)为主,其次是低值斑块(22%);沟底中值斑块占70%,其次为低值斑块(23%)。40-100cm均为低值斑块,沟底低值绿色斑块占34%,远高于峁坡(8%)和峁顶(13%)。土地利用对表层(0-40cm)有机碳含量影响显著,对40-100cm土层无影响。在0-10cm土层,乔木林、灌木林、草地上高值斑块分别占18%、47%、10%,川坝地、农田和果园没有高值斑块,中值斑块分别占80%、53%、85%、73%、39%、23%。10-40cm土层,乔木林、灌木林、草地、川坝地、农田和果园中值斑块分别占21%、46%、22%、19%、5%、4%。但在40-100cm土层,各土地利用下有机碳均处于低值斑块区。坡向上0-100cm各层土壤有机碳含量半阴坡(北部、东北、东部)最高,半阳坡(西部、西南、南部)含量较低。  相似文献   

4.
Sequestration of soil organic carbon (SOC) has been recognized as an opportunity to off‐set global carbon dioxide (CO2) emissions. Flipping (full inversion to 1–3 m) is a practice used on New Zealand's South Island West Coast to eliminate water‐logging in highly podzolized sandy soils. Flipping results in burial of SOC formed in surface soil horizons into the subsoil and the transfer of subsoil material low in SOC to the “new” topsoil. The aims of this study were to quantify changes in the storage and stability of SOC over a 20‐year period following flipping of high‐productive pasture grassland. Topsoils (0–30 cm) from sites representing a chronosequence of flipping (3–20 years old) were sampled (2005/07) and re‐sampled (2017) to assess changes in topsoil carbon stocks. Deeper samples (30–150 cm) were also collected (2017) to evaluate the changes in stocks of SOC previously buried by flipping. Density fractionation was used to determine SOC stability in recent and buried topsoils. Total SOC stocks (0–150 cm) increased significantly by 69 ± 15% (179 ± 40 Mg SOC ha‐1) over 20 years following flipping. Topsoil burial caused a one‐time sequestration of 160 ± 14 Mg SOC ha‐1 (30–150 cm). The top 0–30 cm accumulated 3.6 Mg SOC ha‐1 year‐1. The chronosequence and re‐sampling revealed SOC accumulation rates of 1.2–1.8 Mg SOC ha‐1 year‐1 in the new surface soil (0–15 cm) and a SOC deficit of 36 ± 5% after 20 years. Flipped subsoils contained up to 32% labile SOC (compared to <1% in un‐flipped subsoils) thus buried SOC was preserved. This study confirms that burial of SOC and the exposure of SOC depleted subsoil results in an overall increase of SOC stocks of the whole soil profile and long‐term SOC preservation.  相似文献   

5.
Changes in soil organic carbon (SOC) in agricultural soils influence soil quality and greenhouse gas concentrations in the atmosphere. Land use, management practices, soil characteristics, and climate influence such changes. Using the Century model we estimated the rate of SOC change in agricultural soils of Canada for the period 1970 to 2010. This estimation was based on the estimated SOC change for 15% of the 1250 agriculturally designated soil landscape of Canada (SLC) polygons. Simulations were carried out for two to five crop rotations and for conventional and no‐tillage. The results indicate that the agricultural soils in Canada, whose SOC are currently very close to equilibrium, will stop being a net source of CO2 and will become a sink by the year 2000. Rates of carbon change for the years 1970, 1990, and 2010 were estimated to be ?67, ? 39, and 11 kgC ha?1. The rate of decline in the carbon content of agricultural soils in Canada has slowed considerably in the 1990s as a result of an increase in the adoption of no‐tillage management, a reduction in the use of summer fallowing, and an increase in fertilizer application. We estimate that the proportion of agricultural land storing SOC will have increased from 17% in 1990 to 53% by the year 2000.  相似文献   

6.
Woodland restoration is underway globally to counter the negative soil quality and ecological impacts of agricultural expansion and woodland fragmentation, and restore or enhance biodiversity, ecosystem functions and services. However, we lack information about the long‐term effects of woodland restoration on agricultural soils, particularly at temporal scales meaningful to woodland and soil development. This study utilized soil and earthworm sampling across a chronosequence of sites transitioning from “agricultural land” to “secondary woodland” (50–110 years) and “ancient woodland” (>400 years), with the goal of quantifying the effects of woodland restoration on agricultural land, on key soil quality parameters (soil bulk density, pH, carbon and nitrogen stocks, and earthworm abundance, biomass, species richness and diversity). Broad‐leaved woodland restoration led to significantly greater soil organic carbon (SOC) stocks compared to arable land, and young (50–60 years) secondary woodland increased earthworm species and functional diversity compared to both arable and pasture agricultural land. SOC stocks in secondary broad‐leaved woodlands (50–110 years) were comparable to those found in long‐term ancient woodlands (>400 years). Our findings show that broad‐leaved woodland restoration of agricultural land can lead to meaningful soil ecological improvement and gains in SOC within 50–110 years, and provide intel on how restoration activities may be best targeted to maximize soil quality and functions.  相似文献   

7.
Contemporary carbon stocks of mineral forest soils in the Swiss Alps   总被引:2,自引:1,他引:1  
Soil organic carbon (SOC) has been identified as the main globalterrestrial carbon reservoir, but considerable uncertainty remains as toregional SOC variability and the distribution of C between vegetationand soil. We used gridded forest soil data (8–km × 8–km)representative of Swiss forests in terms of climate and forest typedistribution to analyse spatial patterns of mineral SOC stocks alonggradients in the European Alps for the year 1993. At stand level, meanSOC stocks of 98 t C ha–1 (N = 168,coefficient of variation: 70%) were obtained for the entiremineral soil profile, 76 t C ha–1 (N =137, CV: 50%) in 0–30 cm topsoil, and 62 t Cha–1 (N = 156, CV: 46%) in0–20 cm topsoil. Extrapolating to national scale, we calculatedcontemporary SOC stocks of 110 Tg C (entire mineral soil, standarderror: 6 Tg C), 87 Tg C (0–30 cm topsoil, standarderror: 3.5 Tg C) and 70 Tg C (0–20 cm topsoil, standarderror: 2.5 Tg C) for mineral soils of accessible Swiss forests(1.1399 Mha). According to our estimate, the 0–20 cm layers ofmineral forest soils in Switzerland store about half of the Csequestered by forest trees (136 Tg C) and more than five times morethan organic horizons (13.2 Tg C).At stand level, regression analyses on the entire data set yielded nostrong climatic or topographic signature for forest SOC stocks in top(0–20 cm) and entire mineral soils across the Alps, despite thewide range of values of site parameters. Similarly, geostatisticalanalyses revealed no clear spatial trends for SOC in Switzerland at thescale of sampling. Using subsets, biotic, abiotic controls andcategorial variables (forest type, region) explained nearly 60%of the SOC variability in topsoil mineral layers (0–20 cm) forbroadleaf stands (N = 56), but only little of thevariability in needleleaf stands (N = 91,R 2 = 0.23 for topsoil layers).Considerable uncertainties remain in assessments of SOC stocks, due tounquantified errors in soil density and rock fraction, lack of data onwithin-site SOC variability and missing or poorly quantifiedenvironmental control parameters. Considering further spatial SOCvariability, replicate pointwise soil sampling at 8–km × 8–kmresolution without organic horizons will thus hardly allow to detectchanges in SOC stocks in strongly heterogeneous mountain landscapes.  相似文献   

8.
The break‐up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large‐scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub‐Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land‐use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land‐use type had an effect on carbon accumulation in the topsoil (0–5 cm), no independent land‐use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha?1 yr?1 (1–20 years old, 0–5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1–10 years old, 1.04 Mg C ha?1 yr?1) compared to earlier abandoned crop fields (11–20 years old, 0.26 Mg C ha?1 yr?1). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model‐based continent‐wide SOC prediction.  相似文献   

9.
Reforestation of formerly cultivated land is widely understood to accumulate above‐ and belowground detrital organic matter pools, including soil organic matter. However, during 40 years of study of reforestation in the subtropical southeastern USA, repeated observations of above‐ and belowground carbon documented that significant gains in soil organic matter (SOM) in surface soils (0–7.5 cm) were offset by significant SOM losses in subsoils (35–60 cm). Here, we extended the observation period in this long‐term experiment by an additional decade, and used soil fractionation and stable isotopes and radioisotopes to explore changes in soil organic carbon and soil nitrogen that accompanied nearly 50 years of loblolly pine secondary forest development. We observed that accumulations of mineral soil C and N from 0 to 7.5 cm were almost entirely due to accumulations of light‐fraction SOM. Meanwhile, losses of soil C and N from mineral soils at 35 to 60 cm were from SOM associated with silt and clay‐sized particles. Isotopic signatures showed relatively large accumulations of forest‐derived carbon in surface soils, and little to no accumulation of forest‐derived carbon in subsoils. We argue that the land use change from old field to secondary forest drove biogeochemical and hydrological changes throughout the soil profile that enhanced microbial activity and SOM decomposition in subsoils. However, when the pine stands aged and began to transition to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth eased due to pine mortality, and subsoil organic matter levels stabilized. This study emphasizes the importance of long‐term experiments and deep measurements when characterizing soil C and N responses to land use change and the remarkable paucity of such long‐term soil data deeper than 30 cm.  相似文献   

10.
Deep ploughing increases agricultural soil organic matter stocks   总被引:4,自引:0,他引:4       下载免费PDF全文
Subsoils play an important role within the global C cycle, since they have high soil organic carbon (SOC) storage capacity due to generally low SOC concentrations. However, measures for enhancing SOC storage commonly focus on topsoils. This study assessed the long‐term storage and stability of SOC in topsoils buried in arable subsoils by deep ploughing, a globally applied method for breaking up hard pans and improving soil structure to optimize crop growing conditions. One effect of deep ploughing is translocation of SOC formed near the surface into the subsoil, with concomitant mixing of SOC‐poor subsoil material into the ‘new’ topsoil. Deep‐ploughed croplands represent unique long‐term in situ incubations of SOC‐rich material in subsoils. In this study, we sampled five loamy and five sandy soils that were ploughed to 55–90 cm depth 35–50 years ago. Adjacent, similarly managed but conventionally ploughed subplots were sampled as reference. The deep‐ploughed soils contained on average 42 ± 13% more SOC than the reference subplots. On average, 45 years after deep ploughing, the ‘new’ topsoil still contained 15% less SOC than the reference topsoil, indicating long‐term SOC accumulation potential in the topsoil. In vitro incubation experiments on the buried sandy soils revealed 63 ± 6% lower potential SOC mineralisation rates and also 67 ± 2% lower SOC mineralisation per unit SOC in the buried topsoils than in the reference topsoils. Wider C/N ratio in the buried sandy topsoils than in the reference topsoils indicates that deep ploughing preserved SOC. The SOC mineralisation per unit SOC in the buried loamy topsoils was not significantly different from that in the reference topsoils. However, 56 ± 4% of the initial SOC was preserved in the buried topsoils. It can be concluded that deep ploughing contributes to SOC sequestration by enlarging the storage space for SOC‐rich material.  相似文献   

11.
Precise estimations of soil organic carbon (SOC) stocks are of decided importance for the detection of C sequestration or emission potential induced by land use changes. For Germany, a comprehensive, land use–specific SOC data set has not yet been compiled. We evaluated a unique data set of 1460 soil profiles in southeast Germany in order to calculate representative SOC stocks to a depth of 1 m for the main land use types. The results showed that grassland soils stored the highest amount of SOC, with a median value of 11.8 kg m?2, whereas considerably lower stocks of 9.8 and 9.0 kg m?2 were found for forest and cropland soils, respectively. However, the differences between extensively used land (grassland, forest) and cropland were much lower compared with results from other studies in central European countries. The depth distribution of SOC showed that despite low SOC concentrations in A horizons of cropland soils, their stocks were not considerably lower compared with other land uses. This was due to a deepening of the topsoil compared with grassland soils. Higher grassland SOC stocks were caused by an accumulation of SOC in the B horizon which was attributable to a high proportion of C‐rich Gleysols within grassland soils. This demonstrates the relevance of pedogenetic SOC inventories instead of solely land use–based approaches. Our study indicated that cultivation‐induced SOC depletion was probably often overestimated since most studies use fixed depth increments. Moreover, the application of modelled parameters in SOC inventories is questioned because a calculation of SOC stocks using different pedotransfer functions revealed considerably biased results. We recommend SOC stocks be determined by horizon for the entire soil profile in order to estimate the impact of land use changes precisely and to evaluate C sequestration potentials more accurately.  相似文献   

12.
Increasing soil organic carbon (SOC) stocks is increasingly targeted as a key strategy in climate change mitigation and improved ecosystem resiliency. Agricultural land, a dominant global land use, provides substantial challenges and opportunities for global carbon sequestration. Despite this, global estimates of soil carbon sequestration potential often exclude agricultural land and estimates are coarse for regions in the Global South. To address these discrepancies and improve estimates, we develop a hybrid, data-augmented database approach to better estimate the magnitude of SOC sequestration potential of agricultural soils. With high-resolution (30 m) soil maps of Africa developed by the International Soils Database (iSDA) and Malawi as a case study, we create a national adjustment using site-specific soil data retrieved from 1160 agricultural fields. We use a benchmark approach to estimate the amount of SOC Malawian agricultural soils can sequester, accounting for edaphic and climatic conditions, and calculate the resulting carbon gap. Field measurements of SOC stocks and sequestration potentials were consistently larger than iSDA predictions, with an average carbon gap of 4.42 ± 0.23 Mg C ha−1 to a depth of 20 cm, with some areas exceeding 10 Mg C ha−1. Augmenting iSDA predictions with field data also improved sensitivity to identify areas with high SOC sequestration potential by 6%—areas that may benefit from improved management practices. Overall, we estimate that 6.8 million ha of surface soil suitable for agriculture in Malawi has the potential to store 274 ± 14 Tg SOC. Our approach illustrates how ground truthing efforts remain essential to reduce errors in continent-wide soil carbon predictions for local and regional use. This work begins efforts needed across regions to develop soil carbon benchmarks that inform policies and identify high-impact areas in the effort to increase SOC globally.  相似文献   

13.
城市沿江土地覆被变化对土壤有机碳和轻组有机碳的影响   总被引:7,自引:0,他引:7  
采用Vario EL III型元素分析仪,2007年7月分析了福州城市沿江3种土地覆被类型(芦苇湿地以及草坪和片林)土壤有机碳(SOC)与轻组有机碳(LFOC)的垂直分布特征.结果表明:3种土地覆被类型SOC和LFOC含量均表现为在土壤表层富集并向下层递减的趋势,且人工绿地在土壤剖面(0~60 cm)不同层次的SOC和LFOC含量均显著高于沿江芦苇湿地,其中,草坪0~20 cm土层的SOC含量显著高于片林;沿江芦苇湿地转为草坪和片林后,其SOC储量分别增加了94.8%和72.0%,LFOC储量分别增加了225%和93%;城市沿江湿地转变为城市人工绿地后,因植物物种、密度以及周期性人工管理等变化,使土壤质量得以改善、SOC和LFOC储量增加,其中LFOC对土地覆被变化的响应较SOC敏感,以表层(0~20 cm)土壤LFOC受到土地利用/覆地变化的影响最大.  相似文献   

14.
The demand for bioenergy has increased the interest in short‐rotation woody crops (SRWCs) in temperate zones. With increased litter input and ceased annual soil cultivation, SRWC plantations may become soil carbon sinks for climate change mitigation. A chronosequence of 26 paired plots was used to study the potential for increasing soil organic carbon (SOC) under SRWC willow and poplar after conversion from cropland (CR) on well‐drained soils. We estimated SOC stocks in SRWC stands and adjacent CR and related the difference to time since conversion, energy crop species, SOC stock of the adjacent CR (proxy for initial SOC of SRWC) and the fine soil percentage (<63 μm) (FS). Soil cores to 40 cm depth were sampled and separated by layers of fixed depths (0–5, 5–10, 10–15, 15–25 and 25–40 cm). Additionally, soils were sampled from soil pits by genetic horizons to 100 cm depth. Comparisons of SOC stocks by equivalent soil masses showed that mean SOC stocks in SRWC were 1.7 times higher than those of CR in the top 5 cm of the soil (P < 0.001). The differences between SRWC and CR remained significant for the plough layer (0–25 cm) by a factor of 1.2 (P = 0.003), while no changes were detectable for the 0–40 cm (P = 0.32), or for the entire 0–100 cm soil layer (P = 0.29). The SOC stock ratio, that is the ratio of SOC stock in SRWC relative to CR, did not change significantly with time since conversion, although there was a tendency to an increase over time for the top 40 cm (P = 0.09). The SOC stock ratio was negatively correlated to SOC in CR and FS percentage, but there was no significant difference between willow and poplar at any depth. Our results suggest that SOC stocks in the plough layer increase after conversion to SRWC.  相似文献   

15.
Organic carbon (OC) sequestration in degraded semi‐arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi‐arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles <20 μm, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78–85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi‐arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long‐term OC sequestration.  相似文献   

16.
Soil carbon, nitrogen, and phosphorus cycles are strongly interlinked and controlled through biological processes, and the phosphorus cycle is further controlled through geochemical processes. In dryland ecosystems, woody encroachment often modifies soil carbon, nitrogen, and phosphorus stores, although it remains unknown if these three elements change proportionally in response to this vegetation change. We evaluated proportional changes and spatial patterns of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) concentrations following woody encroachment by taking spatially explicit soil cores to a depth of 1.2 m across a subtropical savanna landscape which has undergone encroachment by Prosopis glandulosa (an N2 fixer) and other woody species during the past century in southern Texas, USA. SOC and TN were coupled with respect to increasing magnitudes and spatial patterns throughout the soil profile following woody encroachment, while TP increased slower than SOC and TN in topmost surface soils (0–5 cm) but faster in subsurface soils (15–120 cm). Spatial patterns of TP strongly resembled those of vegetation cover throughout the soil profile, but differed from those of SOC and TN, especially in subsurface soils. The encroachment of woody species dominated by N2‐fixing trees into this P‐limited ecosystem resulted in the accumulation of proportionally less soil P compared to C and N in surface soils; however, proportionally more P accrued in deeper portions of the soil profile beneath woody patches where alkaline soil pH and high carbonate concentrations would favor precipitation of P as relatively insoluble calcium phosphates. This imbalanced relationship highlights that the relative importance of biotic vs. abiotic mechanisms controlling C and N vs. P accumulation following vegetation change may vary with depth. Our findings suggest that efforts to incorporate effects of land cover changes into coupled climate–biogeochemical models should attempt to represent C‐N‐P imbalances that may arise following vegetation change.  相似文献   

17.
Increasing soil organic carbon (SOC) via organic inputs is a key strategy for increasing long‐term soil C storage and improving the climate change mitigation and adaptation potential of agricultural systems. A long‐term trial in California's Mediterranean climate revealed impacts of management on SOC in maize‐tomato and wheat–fallow cropping systems. SOC was measured at the initiation of the experiment and at year 19, at five depth increments down to 2 m, taking into account changes in bulk density. Across the entire 2 m profile, SOC in the wheat–fallow systems did not change with the addition of N fertilizer, winter cover crops (WCC), or irrigation alone and decreased by 5.6% with no inputs. There was some evidence of soil C gains at depth with both N fertilizer and irrigation, though high variation precluded detection of significant changes. In maize?tomato rotations, SOC increased by 12.6% (21.8 Mg C/ha) with both WCC and composted poultry manure inputs, across the 2 m profile. The addition of WCC to a conventionally managed system increased SOC stocks by 3.5% (1.44 Mg C/ha) in the 0–30 cm layer, but decreased by 10.8% (14.86 Mg C/ha) in the 30–200 cm layer, resulting in overall losses of 13.4 Mg C/ha. If we only measured soil C in the top 30 cm, we would have assumed an increase in total soil C increased with WCC alone, whereas in reality significant losses in SOC occurred when considering the 2 m soil profile. Ignoring the subsoil carbon dynamics in deeper layers of soil fails to recognize potential opportunities for soil C sequestration, and may lead to false conclusions about the impact of management practices on C sequestration.  相似文献   

18.
Estimates of regional and national topsoil soil organic carbon (SOC) stock change may help evaluating the soil role in mitigation of greenhouse gas (GHG) emissions through carbon (C) sequestration in soils. However, understanding of the exact mitigation role is often constrained by the uncertainty of the stock estimation associated with different methodologies. In this paper, a soil database of topsoil (0–20 cm) SOC measurements of Jiangsu Province, China, obtained from a soil survey in 1982, and from a geological survey in 2004, was used to analyze the variability of topsoil SOC among soil groups and among soil regions, and to estimate the change in SOC stocks that have occurred in the province over the last two decades. The soil survey data was obtained from measurements of 662 690 randomly collected samples, while the geological survey data was from 24 167 samples taken using a 2 km × 2 km grid. Statistical analysis was conducted on SOC values for 1982 and 2004 for different categories of soil groups, soil regions, and administrative municipalities, respectively. Topsoil SOC storage was then calculated and the provincial topsoil SOC stock was estimated for each sampling time. There were remarkable differences in SOC levels between soil groups and soil regions and different municipalities. The grid sampling with the geological survey in 2004 yielded smaller variability of topsoil SOC averages, both with soil groups and with soil spatial distribution than the random sampling method used in 1982. Variation of SOC was greater with soil groups than with soil regions in both sampling times, although it was less variable across soil taxonomic categories than within a spatial category. Little variance of the SOC level with soil groups could be explained by clay content. However, the prevalence of paddy fields in the total cropland area governed the regional and municipal average SOC levels. The average provincial topsoil SOC content increased from 9.45 g kg−1 in 1982 to 10.9 g kg−1 in 2004, and the total provincial topsoil SOC stock was enhanced from 149.0±58.1 Tg C in 1982 to 173.2±51.4 Tg C in 2004, corresponding to a provincial average SOC sequestration rate of 0.16±0.09 t C ha−1 yr−1. The SOC sequestration trend for the last two decades could be, in part, attributed to the enhanced agricultural production, symbolized by the grain yield per hectare. The results of SOC stock changes suggest a significant C sequestration in soils of Jiangsu, China, during 1980–2000, with paddy management playing an important role in regional SOC storage and sequestration capacity.  相似文献   

19.
Despite the importance of the secondary forest (SF) in tropical areas, few studies have quantified the soil organic carbon (SOC) pool in Costa Rica. Most of the studies conducted to date in this country have focused mainly on changes in the soil C pool following conversion of forests to pastures, which is the predominant land use in the tropics. The aim of this study was to measure SOC concentration and pool in particle-size fractions down to 50 cm depth in four SF stands regenerating from different intensities of prior land use in loamy sand and sandy loam soils of northeast Costa Rica: (i) a gallery forest (GF), (ii) a 15-year-old SF enriched with commercially planted native trees (15SF), (iii) a 25-year-old SF (25SF), and (iv) an abandoned Theobromma cacao plantation >60 years old (60SF). Additional objectives were (1) to determine the relationship of SOC concentration with selected physical and chemical soil properties, and (2) to establish the key determinants of the depth distribution of SOC in order to identify meaningful trends in the SOC pool. The SOC pool was highest under the 60SF (221.4 Mg C ha−1) followed by the 15SF (212.1 Mg C ha−1), the 25SF (195.9 Mg C ha−1) and the lowest in the GF (183.5 Mg C ha−1). The SOC concentration decreased significantly from 59.7 to 94.1 g kg−1 in the 0–10 cm layer down to 31.0 to 45.5 g kg−1 in the 40–50 cm layer in all forest stands. The fine silt + clay fraction contained the highest values of SOC concentration in all forest stands. Soil texture and the age of the SF were identified as the main factors that explained the variability in SOC. The age of SF stand influenced the distribution of size class aggregates and SOC.  相似文献   

20.
Topsoil organic carbon storage of China and its loss by cultivation   总被引:40,自引:0,他引:40  
Topsoil is very sensitive to human disturbance under the changing climate. Estimates of topsoil soil organic carbon (SOC) pool may be crucial for understanding soil C dynamics under human land uses and soil potential of mitigating the increasing atmospheric CO2 by soil C sequestration. China is a country with long history of cultivation. In this paper, we present an estimate of topsoil SOC pool and cultivation-induced pool reduction of China soils based upon the data of all the soil types identified in the 2nd national soil survey conducted during 1979–1982. The area of cultivated soils of China amounted to 138 × 106 ha while the uncultivated soils occupied 740 × 106 ha in 1980. Topsoil SOC density ranged from 0.77 to 1489 t Cha−1 in uncultivated soils and 3.52 to 591 t Cha−1 in cultivated soils with the average being 50 ± 47 t Cha−1 and 35 ± 32 t Cha−1, respectively. Geographically, the maximum mean topsoil SOC density was found in northeastern China, being of 70 ± 104 t Cha−1 for uncultivated soils and of 57 ± 54 t Cha−1 for cultivated soils, respectively. The lowest topsoil SOC density for uncultivated soils was found in East China, being of 38 ± 33 t Cha−1 and that for cultivated soils in North China, being of 30 ± 30 t Cha−1. There is still uncertainty in estimating the total topsoil SOC of uncultivated soils because a large portion of them was not surveyed during the 2nd Soil Survey. However, an estimate of total SOC for cultivated soils amounted to 5.1 Pg. On average, cultivation of China’s soils had induced a decrease of SOC density of 15 t Cha−1 giving rise to an overall pool reduction at 2 Pg. This is significantly smaller than the total SOC pool decline of 7 Pg due to cultivation of natural soils in China reported by Wu et al. (Glob. Change Biol. 2003, 9: 305–315), who made a pool estimation of whole soil profile assuming 1 m depth for all soils. As the mean topsoil SOC density of China was lower than the world average value given by Batjes (J. Soil Sci. 1996, 47: 151–163), China may be considered as a country with low SOC density and may have great potential for C sequestration under well defined management. However, the dynamics of topsoil C storage in China agricultural soils since 1980’s and the effects of modern agricultural developments on C dynamics need further study for elucidating the role of China agriculture in global climatic change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号