首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Apolipoprotein E (apoE) and the lipoprotein receptor SR-BI play critical roles in lipid and lipoprotein metabolism. We have examined the cholesterol efflux from wild-type (WT) and mutant forms of SR-BI expressed in ldlA-7 cells using reconstituted discoidal particles consisting of apoE, 1-palmitoyl-2-oleoyl-l-phospatidylcholine (POPC), and cholesterol (C) as acceptors. POPC/C-apoE particles generated using apoE2, apoE3, apoE4, or carboxy-terminally truncated forms apoE4-165, apoE4-202, apoE4-229, and apoE4-259 caused similar (20-25%) cholesterol efflux from WT SR-BI. Cholesterol efflux mediated by POPC/C-apoE was not enhanced in the presence of lipid-free apoE. The rate of cholesterol efflux mediated by particles containing the WT or carboxy-terminally truncated forms of apoE was decreased to approximately 30% of the WT control with the Q402R/Q418R mutant SR-BI form that is unable to bind native HDL normally but binds LDL. The rate of cholesterol efflux was further decreased to approximately 7% of the WT control with another SR-BI mutant (M158R) that binds neither HDL nor LDL. The level of binding of POPC/C-apoE particles (150 microg/mL) to SR-BI mutant forms Q402R/Q418R and M158R was 70 and 8% of the WT control, respectively. SR-BI-dependent binding of lipid-free apoE to cells was undetectable, and cholesterol efflux was less than 0.5%. The findings establish that only lipid-bound apoE promotes SR-BI-mediated cholesterol efflux and that the amino-terminal region of residues 1-165 of apoE is sufficient for both receptor binding and cholesterol efflux. The SR-BI-apoE interactions may contribute to overall cholesterol homeostasis in cells and tissues that express SR-BI and apoE.  相似文献   

2.
During the acute-phase reaction, SAA (serum amyloid A) replaces apoA-I (apolipoprotein A-I) as the major HDL (high-density lipoprotein)-associated apolipoprotein. A remarkable portion of SAA exists in a lipid-free/lipid-poor form and promotes ABCA1 (ATP-binding cassette transporter A1)-dependent cellular cholesterol efflux. In contrast with lipid-free apoA-I and apoE, lipid-free SAA was recently reported to mobilize SR-BI (scavenger receptor class B, type I)-dependent cellular cholesterol efflux [Van der Westhuyzen, Cai, de Beer and de Beer (2005) J. Biol. Chem. 280, 35890-35895]. This unique property could strongly affect cellular cholesterol mobilization during inflammation. However, in the present study, we show that overexpression of SR-BI in HEK-293 cells (human embryonic kidney cells) (devoid of ABCA1) failed to mobilize cholesterol to lipid-free or lipid-poor SAA. Only reconstituted vesicles containing phospholipids and SAA promoted SR-BI-mediated cholesterol efflux. Cholesterol efflux from HEK-293 and HEK-293[SR-BI] cells to lipid-free and lipid-poor SAA was minimal, while efficient efflux was observed from fibroblasts and CHO cells (Chinese-hamster ovary cells) both expressing functional ABCA1. Overexpression of SR-BI in CHO cells strongly attenuated cholesterol efflux to lipid-free SAA even in the presence of an SR-BI-blocking IgG. This implies that SR-BI attenuates ABCA1-mediated cholesterol efflux in a way that is not dependent on SR-BI-mediated re-uptake of cholesterol. The present in vitro experiments demonstrate that the lipidation status of SAA is a critical factor governing cholesterol acceptor properties of this amphipathic apolipoprotein. In addition, we demonstrate that SAA mediates cellular cholesterol efflux via the ABCA1 and/or SR-BI pathway in a similar way to apoA-I.  相似文献   

3.
This study was undertaken to identify the alpha-helical domains of human apoE that mediate cellular cholesterol efflux and HDL assembly via ATP-binding cassette transporter A1 (ABCA1). The C-terminal (CT) domain (residues 222-299) of apoE was found to stimulate ABCA1-dependent cholesterol efflux in a manner similar to that of intact apoE2, -E3, and -E4 in studies using J774 macrophages and HeLa cells. The N-terminal (NT) four-helix bundle domain (residues 1-191) was a relatively poor mediator of cholesterol efflux. On a per molecule basis, the CT domain stimulated cholesterol efflux with the same efficiency (Km approximately 0.2 microM) as intact apoA-I and apoE. Gel filtration chromatography of conditioned medium from ABCA1-expressing J774 cells revealed that, like the intact apoE isoforms, the CT domain promoted the assembly of HDL particles with diameters of 8 and 13 nm. Removal of the CT domain abolished the formation of HDL-sized particles, and only larger particles eluting in the void volume were formed. Studies with CT truncation mutants of apoE3 and peptides indicated that hydrophobic helical segments governed the efficiency of cellular cholesterol efflux and that conjoined class A and G amphipathic alpha-helices were required for optimal efflux activity. Collectively, the data suggest that the CT lipid-binding domain of apoE encompassing amino acids 222-299 is necessary and sufficient for mediating ABCA1 lipid efflux and HDL particle assembly.  相似文献   

4.
Formation of macrophage-derived foam cells is a hallmark in earlier stages of atherosclerosis (AS). Increased cholesterol efflux from macrophage foam cells promote atherosclerotic regression. In the present study, lysophosphatidylcholine (LPC) promoting cholesterol efflux from macrophage foam cells was observed, and the mechanism underlying the action was investigated. Macrophage foam cells from mice were incubated with different concentrations of LPC (10, 20, 40, 80 microM), and the free cholesterol in medium increased but total intracellular cholesterol decreased. At the same time, the expression of PPARgamma, LXRalpha, ABCA1 was enhanced in a dose-dependent manner. The treatment of macrophage foam cells with 40 microM LPC for 12, 24 and 48 h promoted cellular cholesterol efflux in a time-dependent manner, meanwhile expression of PPARgamma, LXRalpha, ABCA1 was also raised respectively. Addition of different specific inhibitors of PPARgamma (GW9662), LXRalpha (GGPP), ABCA1 (DIDS) to the foam cells significantly suppressed LPC-induced cholesterol efflux. Also treatment with specific inhibitors of PPARgamma or LXRalpha decreased ABCA1 mRNA and protein expressions. LPC (40 microM)-induced cholesterol efflux was significantly lower in macrophage foam cells from apoE deficient mice than from normal C57BL/6J mice. In contrast, 10 microg apoAI-induced cholesterol efflux from foam cells remained in apoE deficient mice. The present results indicate that LPC promotes cholesterol efflux from macrophage foam cells via a PPARgamma-LXRalpha-ABCA1-dependent pathway. Furthermore, apoE may be involved in this process.  相似文献   

5.
Li X  Kypreos K  Zanni EE  Zannis V 《Biochemistry》2003,42(35):10406-10417
We have studied the contribution of the carboxy terminal domains of lipid-free apoE isolated from apoE-expressing cell cultures in binding to phospholipids and have determined the affinities of reconstituted POPC-apoE particles for the apoER2. It was found that the initial rate of association of apoE2, apoE3, apoE4, and a mutant form apoE4R158M to multilamellar DMPC vesicles was similar and was reduced and eventually diminished by gradual deletion of the carboxy terminal segments. The truncated apoE forms retained their ability to associate with plasma lipoproteins. Receptor binding studies were performed using the ldlA-7 cells expressing apoER2 and transiently transfected COS-M6 and the appropriate control untransfected cells. Specific binding to apoER2 was obtained by subtracting from the total binding to the receptor-expressing cells the nonspecific binding values of the untransfected cells. POPC-apoE particles generated using apoE3, apoE4, the truncated apoE4-259, apoE4-229, apoE4-202, and apoE-165, and the mutant apoE4R158M all bound tightly to the apoER2 (K(d) range of 12 +/- 3 to 19 +/- 4 microg/mL). POPC-apoE2 bound with reduced affinity (K(d) = 31 +/- 5.3 microg/mL). The findings establish that the apoER2 binding domain of apoE is in the 1-165 amino terminal region, whereas the carboxy terminal 230-299 region of apoE is required for efficient initial association with phospholipids.  相似文献   

6.
ABCA1 is an ATP-binding cassette protein that transports cellular cholesterol and phospholipids onto high density lipoproteins (HDL) in plasma. Lack of ABCA1 in humans and mice causes abnormal lipidation and increased catabolism of HDL, resulting in very low plasma apoA-I, apoA-II, and HDL. Herein, we have used Abca1-/- mice to ask whether ABCA1 is involved in lipidation of HDL in the central nervous system (CNS). ApoE is the most abundant CNS apolipoprotein and is present in HDL-like lipoproteins in CSF. We found that Abca1-/- mice have greatly decreased apoE levels in both the cortex (80% reduction) and the CSF (98% reduction). CSF from Abca1-/- mice had significantly reduced cholesterol as well as small apoE-containing lipoproteins, suggesting abnormal lipidation of apoE. Astrocytes, the primary producer of CNS apoE, were cultured from Abca1+/+, +/-, and -/- mice, and nascent lipoprotein particles were collected. Abca1-/- astrocytes secreted lipoprotein particles that had markedly decreased cholesterol and apoE and had smaller apoE-containing particles than particles from Abca1+/+ astrocytes. These findings demonstrate that ABCA1 plays a critical role in CNS apoE metabolism. Since apoE isoforms and levels strongly influence Alzheimer's disease pathology and risk, these data suggest that ABCA1 may be a novel therapeutic target.  相似文献   

7.
ATP binding cassette A1 (ABCA1) is a membrane protein that promotes cellular cholesterol efflux. Using RAW 264.7 macrophages, we studied the relative effects of apolipoprotein (apo) E3 and apoE4 on ABCA1 and on the signaling pathway that regulates its expression. Both lipid-associated and lipid-free apoE4 forms induced ∼30% lower levels of ABCA1 protein and mRNA than apoE3 forms. Phosphorylated levels of phosphoinositol 3-kinase (PI3K), protein kinase Cζ (PKCζ) and specificity protein 1 (Sp1) were also lower when treated with apoE4 compared to apoE3. The reduced ability of apoE4 to induce ABCA1 expression, PKCζ and Sp1 phosphorylation were confirmed in human THP-1 monocytes/macrophages. Sequential phosphorylation of PI3K, PKCζ and Sp1 has been suggested as a mechanism for upregulation of ABCA1 expression. Both apoE3 and apoE4 reduced total cholesterol and cholesterol esters in lipid-laden RAW 264.7 cells, and induced apoAI-mediated cholesterol efflux. However, the cholesterol esters and cholesterol efflux in apoE4-treated cells were ∼50% and ∼24% lower, respectively, compared to apoE3-treated cells. Accumulation of cholesterol esters in macrophages is a mechanism for foam cell formation. Thus the reduced ability of apoE4 to activate the PI3K-PKCζ-Sp1 signaling pathway and induce ABCA1 expression likely impairs cholesterol ester removal, and increases foam cell formation.  相似文献   

8.
ATP-binding cassette transporter A7 (ABCA7) is expressed in the brain and, like its closest homolog ABCA1, belongs to the ABCA subfamily of full-length ABC transporters. ABCA1 promotes cellular cholesterol efflux to lipid-free apolipoprotein acceptors and also inhibits the production of neurotoxic β-amyloid (Aβ) peptides in vitro . The potential functions of ABCA7 in the brain are unknown. This study investigated the ability of ABCA7 to regulate cholesterol efflux to extracellular apolipoprotein acceptors and to modulate Aβ production. The transient expression of ABCA7 in human embryonic kidney cells significantly stimulated cholesterol efflux (fourfold) to apolipoprotein E (apoE) discoidal lipid complexes but not to lipid-free apoE or apoA-I. ABCA7 also significantly inhibited Aβ secretion from Chinese hamster ovary cells stably expressing human amyloid precursor protein (APP) or APP containing the Swedish K670M671→N670L671 mutations when compared with mock-transfected cells. Studies with fluorogenic substrates indicated that ABCA7 had no impact on α-, β-, or γ-secretase activities. Live cell imaging of Chinese hamster ovary cells expressing APP-GFP indicated an apparent retention of APP in a perinuclear location in ABCA7 co-transfected cells. These studies indicate that ABCA7 has the capacity to stimulate cellular cholesterol efflux to apoE discs and regulate APP processing resulting in an inhibition of Aβ production.  相似文献   

9.
This study elucidates the factors underlying the enhancement in efflux of human fibroblast unesterified cholesterol and phospholipid (PL) by lipid-free apolipoprotein (apo) A-I that is induced by cholesterol enrichment of the cells. Doubling the unesterified cholesterol content of the plasma membrane by incubation for 24 h with low density lipoprotein and lipid/cholesterol dispersions increases the pools of PL and cholesterol available for removal by apoA-I from about 0.8-5%; the initial rates of mass release of cholesterol and PL are both increased about 6-fold. Expression of the ATP binding cassette transporter A1 (ABCA1) is critical for this increased efflux of lipids, and cholesterol loading of the fibroblasts over 24 h increases ABCA1 mRNA about 12-fold. The presence of more ABCA1 and cholesterol in the plasma membrane results in a 2-fold increase in the level of specific binding of apoA-I to the cells with no change in binding affinity. Characterization of the species released from either control or cholesterol-enriched cells indicates that the plasma membrane domains from which lipids are removed are cholesterol-enriched with respect to the average plasma membrane composition. Cholesterol enrichment of fibroblasts also affects PL synthesis, and this leads to enhanced release of phosphatidylcholine (PC) relative to sphingomyelin (SM); the ratios of PC to SM solubilized from control and cholesterol-enriched fibroblasts are approximately 2/1 and 5/1, respectively. Biosynthesis of PC is critical for this preferential release of PC and the enhanced cholesterol efflux because inhibition of PC synthesis by choline depletion reduces cholesterol efflux from cholesterol-enriched cells. Overall, it is clear that enrichment of fibroblasts with unesterified cholesterol enhances efflux of cholesterol and PL to apoA-I because of three effects, 1) increased PC biosynthesis, 2) increased PC transport via ABCA1, and 3) increased cholesterol in the plasma membrane.  相似文献   

10.
It has been suggested that the signal transduction pathway initiated by apoA-I activates key proteins involved in cellular lipid efflux. We investigated apoA-I-mediated cAMP signaling in cultured human fibroblasts induced with (22R)-hydroxycholesterol and 9-cis-retinoic acid (stimulated cells). Treatment of stimulated fibroblasts with apoA-I for short periods of time (相似文献   

11.
Maintenance of an adequate supply of cholesterol is important for neuronal function, whereas excess cholesterol promotes amyloid precursor protein (APP) cleavage generating toxic amyloid-beta (Abeta) peptides. To gain insights into the pathways that regulate neuronal cholesterol level, we investigated the potential for reconstituted apolipoprotein E (apoE) discs, resembling nascent lipoprotein complexes in the central nervous system, to stimulate neuronal [3H]cholesterol efflux. ApoE discs potently accelerated cholesterol efflux from primary human neurons and cell lines. The process was saturable (17.5 microg of apoE/ml) and was not influenced by APOE genotype. High performance liquid chromatography analysis of cholesterol and cholesterol metabolites effluxed from neurons indicated that <25% of the released cholesterol was modified to polar products (e.g. 24-hydroxycholesterol) that diffuse from neuronal membranes. Thus, most cholesterol (approximately 75%) appeared to be effluxed from neurons in a native state via a transporter pathway. ATP-binding cassette transporters ABCA1, ABCA2, and ABCG1 were detected in neurons and neuroblastoma cell lines and expression of these cDNAs revealed that ABCA1 and ABCG1 stimulated cholesterol efflux to apoE discs. In addition, ABCA1 and ABCG1 expression in Chinese hamster ovary cells that stably express human APP significantly reduced Abeta generation, whereas ABCA2 did not modulate either cholesterol efflux or Abeta generation. These data indicate that ABCA1 and ABCG1 play a significant role in the regulation of neuronal cholesterol efflux to apoE discs and in suppression of APP processing to generate Abeta peptides.  相似文献   

12.
The dynamics of ABCA1-mediated apoA-I lipidation were investigated in intact human fibroblasts induced with 22(R)-hydroxycholesterol and 9-cis-retinoic acid (stimulated cells). Specific binding parameters of (125)I-apoA-I to ABCA1 at 37 degrees C were determined: K(d) = 0.65 microg/ml, B(max) = 0.10 ng/microg cell protein. Lipid-free apoA-I inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than pre-beta(1)-LpA-I, reconstituted HDL particles r(LpA-I), or HDL(3) (IC(50) = 0.35 +/- 1.14, apoA-I; 1.69 +/- 1.07, pre-beta(1)-LpA-I; 17.91 +/- 1.39, r(LpA-I); and 48.15 +/- 1.72 microg/ml, HDL(3)). Treatment of intact cells with either phosphatidylcholine-specific phospholipase C or sphingomyelinase affected neither (125)I-apoA-I binding nor (125)I-apoA-I/ABCA1 cross-linking. We next investigated the dynamics of apoA-I lipidation by monitoring the kinetic of apoA-I dissociation from ABCA1. The dissociation of (125)I-apoA-I from normal cells at 37 degrees C was rapid (t((1/2)) = 1.4 +/- 0.66 h; n = 3) but almost completely inhibited at either 15 or 4 degrees C. A time course analysis of apoA-I-containing particles released during the dissociation period showed nascent apoA-I-phospholipid complexes that exhibited alpha-electrophoretic mobility with a particle size ranging from 9 to 20 nm (designated alpha-LpA-I-like particles), whereas lipid-free apoA-I incubated with ABCA1 mutant (Q597R) cells was unable to form such particles. These results demonstrate that: 1) the physical interaction of apoA-I with ABCA1 does not depend on membrane phosphatidylcholine or sphingomyelin; 2) the association of apoA-I with lipids reduces its ability to interact with ABCA1; and 3) the lipid translocase activity of ABCA1 generates alpha-LpA-I-like particles. This process plays in vivo a key role in HDL biogenesis.  相似文献   

13.
ABCA1 is a key element of cellular cholesterol homeostasis. ApoE K/O mice fed with high-fat diet were infused with anti-ABCA1 antibody or control IgM. Infusion of anti-ABCA1 antibody led to 72% increase in the area of atherosclerotic plaque in aorta. After 16 weeks on high-fat diet plasma level of high density lipoprotein cholesterol (HDL-C) was reduced in control group, but was unchanged in mice infused with anti-ABCA1 antibody. Total plasma cholesterol level was elevated while the capacity of plasma to support cholesterol efflux ex vivo was reduced after 16 weeks on high-fat diet; the effects were similar in the two groups. We conclude that functional blocking of ABCA1-dependent cholesterol efflux stimulates development of atherosclerosis in apoE K/O mice independently from HDL-C levels.  相似文献   

14.
It is widely accepted that functional ATP-binding cassette transporter A1 (ABCA1) is critical for the formation of nascent high density lipoprotein particles. However, the cholesterol pool(s) and the cellular signaling processes utilized by the ABCA1-mediated pathway remain unclear. Sphingomyelin maintains a preferential interaction with cholesterol in membranes, and its catabolites, especially ceramide, are potent signaling molecules that could play a role in ABCA1 regulation or function. To study the potential role of ceramide in this process, we treated a variety of cell lines with 20 microM C2-ceramide and examined apolipoprotein-mediated cholesterol efflux to lipid-free apoA-I. We found that cell lines expressing ABCA1 displayed 2-3-fold increases in cholesterol efflux to apoA-I. Cell lines not expressing ABCA1 were unaffected by ceramide. We further characterized the cholesterol efflux effect in Chinese hamster ovary cells. Ceramide treatment did not cause significant cytotoxicity or apoptosis and did not affect cholesterol efflux to non-apolipoprotein acceptors. Raising endogenous ceramide levels increased cholesterol efflux to apoA-I. Using a cell surface biotinylation method, we found that the total cellular ABCA1 and that at the plasma membrane were increased with ceramide treatment. Also ceramide enhanced the binding of fluorescently labeled apoA-I to Chinese hamster ovary cells. These data suggest that ceramide may increase the plasma membrane content of ABCA1, leading to increased apoA-I binding and cholesterol efflux.  相似文献   

15.
The release of cholesterol from choroid plexus epithelial cells (CPE) plays an important role in cholesterol homeostasis in the CSF. The purpose of this study was to clarify the molecules involved in cholesterol release in CPE and the regulation mechanisms of the cholesterol release by the liver X receptor (LXR) using a conditionally immortalized CPE line (TR-CSFB3). The mRNA expression of LXRalpha, LXRbeta and their target genes, ATP-binding cassette transporter (ABC)A1, ABCG1, ABCG4 and ABCG5, were detected in rat choroid plexus. ABCA1 and ABCG1 protein were detected in the plasma membrane of TR-CSFB3 cells. Following treatment with 24S-hydroxycholesterol, an endogenous LXR ligand, the expression of ABCA1 and ABCG1 were induced in TR-CSFB3 cells. Moreover, apolipoprotein (apo)AI- and high-density lipoprotein (HDL)-mediated cholesterol release to the apical side of TR-CSFB3 cells was facilitated by this treatment, whereas that to the basal side was not affected. Following 24S-hydroxycholesterol treatment, apoE3-dependent cholesterol release from TR-CSFB3 cells was enhanced more than the apoE4-dependent release. These results suggest that LXR activation facilitates cholesterol release into the CSF from CPE through the functional induction of ABCA1 and ABCG1. The difference between apoE3 and apoE4 suggests that the cholesterol release from CPE is related to the development of neurodegenerative diseases.  相似文献   

16.
Hypertriglyceridemia is a common pathological condition in humans of mostly unknown etiology. Here we report induction of dyslipidemia characterized by severe hypertriglyceridemia as a result of point mutations in human apolipoprotein A-I (apoA-I). Adenovirus-mediated gene transfer in apoA-I-deficient (apoA-I(-)(/)(-)) mice showed that mice expressing an apoA-I[E110A/E111A] mutant had comparable hepatic mRNA levels with WT controls but greatly increased plasma triglyceride and elevated plasma cholesterol levels. In addition, they had decreased apoE and apoCII levels and increased apoB48 levels in very low-density lipoprotein (VLDL)/intermediate-density lipoprotein (IDL). Fast protein liquid chromatography (FPLC) analysis of plasma showed that most of cholesterol and approximately 15% of the mutant apoA-I were distributed in the VLDL and IDL regions and all the triglycerides in the VLDL region. Hypertriglyceridemia was corrected by coinfection of mice with recombinant adenoviruses expressing the mutant apoA-I and human lipoprotein lipase. Physicochemical studies indicated that the apoA-I mutation decreased the alpha-helical content, the stability, and the unfolding cooperativity of both lipid-free and lipid-bound apoA-I. In vitro functional analyses showed that reconstituted HDL (rHDL) particles containing the mutant apoA-I had 53% of scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux capacity and 37% capacity to activate lecithin:cholesterol acyltransferase (LCAT) as compared to the WT control. The mutant lipid-free apoA-I had normal capacity to promote ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol efflux. The findings indicate that subtle structural alterations in apoA-I may alter the stability and functions of apoA-I and high-density lipoprotein (HDL) and may cause hypertriglyceridemia.  相似文献   

17.
Activation of very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (apoER2) results in either pro- or anti-atherogenic effects depending on the ligand. Using reelin and apoE as ligands, we studied the impact of VLDLR- and apoER2-mediated signaling on the expression of ATP binding cassette transporter A1 (ABCA1) and cholesterol efflux using RAW264.7 cells. Treatment of these mouse macrophages with reelin or human apoE3 significantly increased ABCA1 mRNA and protein levels, and apoAI-mediated cholesterol efflux. In addition, both reelin and apoE3 significantly increased phosphorylated disabled-1 (Dab1), phosphatidylinositol 3-kinase (PI3K), protein kinase Cζ (PKCζ), and specificity protein 1 (Sp1). This reelin- or apoER2-mediated up-regulation of ABCA1 expression was suppressed by 1) knockdown of Dab1, VLDLR, and apoER2 with small interfering RNAs (siRNAs), 2) inhibition of PI3K and PKC with kinase inhibitors, 3) overexpression of kinase-dead PKCζ, and 4) inhibition of Sp1 DNA binding with mithramycin A. Activation of the Dab1-PI3K signaling pathway has been implicated in VLDLR- and apoER2-mediated cellular functions, whereas the PI3K-PKCζ-Sp1 signaling cascade has been implicated in the regulation of ABCA1 expression induced by apoE/apoB-carrying lipoproteins. Taken together, these data support a model in which activation of VLDLR and apoER2 by reelin and apoE induces ABCA1 expression and cholesterol efflux via a Dab1-PI3K-PKCζ-Sp1 signaling cascade.  相似文献   

18.
ATP-binding cassette transporter-1 (ABCA1) gene is mutated in patients with familial high-density lipoprotein deficiency (FHD). In order to know the molecular basis for FHD, we characterized three different ABCA1 mutations associated with FHD (G1158A/A255T, C5946T/R1851X, and A5226G/N1611D) with respect to their expression in the passaged fibroblasts from the patients and in the cells transfected with the mutated cDNAs. Fibroblasts from the all patients showed markedly decreased cholesterol efflux to apolipoprotein (apo)-Al. In the fibroblasts homozygous for G1158A/A255T, the immunoreactive mass of ABCA1 could not be detected, even when stimulated by 9-cis-retinoic acid and 22-R-hydroxycholesterol. In the fibroblasts homozygous for C5946T/R1851X, ABCA1 mRNA was comparable. Because the mutant ABCA1 protein (R1851X) was predicted to lack the epitope for the antibody used, we transfected FLAG-tagged truncated mutant (R1851X/ABCA1-FLAG) cDNA into Cos-7 cells, showing that the mutant protein expression was markedly reduced. The expression of N1611D ABCA1 protein was comparable in both fibroblasts and overexpressing cells, although cholesterol efflux from the cells was markedly reduced. These data indicated that, in the three patients investigated, the abnormalities and dysfunction of ABCA1 occurred at the different levels, providing important information about the expression, regulation, and function of ABCA1.  相似文献   

19.
The contribution of ABCA1-mediated efflux of cellular phospholipid (PL) and cholesterol to human apolipoprotein A-I (apoA-I) to the formation of pre beta 1-HDL (or lipid-poor apoA-I) is not well defined. To explore this issue, we characterized the nascent HDL particles formed when lipid-free apoA-I was incubated with fibroblasts in which expression of the ABCA1 was upregulated. After a 2 h incubation, the extracellular medium contained small apoA-I/PL particles (pre beta 1-HDL; diameter = 7.5 +/- 0.4 nm). The pre beta 1-HDL (or lipid-poor apoA-I) particles contained a single apoA-I molecule and three to four PL molecules and one to two cholesterol molecules. An apoA-I variant lacking the C-terminal alpha-helix did not form such particles when incubated with the cell, indicating that this helix is critical for the formation of lipid-poor apoA-I particles. These pre beta 1-HDL particles were as effective as lipid-free apoA-I molecules in mediating both the efflux of cellular lipids via ABCA1 and the formation of larger, discoidal HDL particles. In conclusion, pre beta 1-HDL is both a product and a substrate in the ABCA1-mediated reaction to efflux cellular PL and cholesterol to apoA-I. A monomeric apoA-I molecule associated with three to four PL molecules (i.e., lipid-poor apoA-I) has similar properties to the lipid-free apoA-I molecule.  相似文献   

20.
The ABC transporter ABCA1 has been implicated to control cholesterol efflux in a variety of cell types including macrophages, fibroblasts, and intestinal epithelial cells. In this study we have investigated whether the 6-kD protein anionic peptide fraction/calcium binding protein (APF/CBP) which has homology to apolipoprotein AI may regulate efflux mediated by lipoproteins. APF/CBP was purified from T-tube bile by ultracentrifugation and preparative reversed phase HPLC. Cholesterol efflux to a variety of acceptors was determined using cultured fibroblasts from controls and patients with Tangiers disease. APF/CBP (0.1 to 2.4 microg/ml) inhibited ApoA-1 (2 microg/ml) mediated cholesterol efflux from normal fibroblasts in a dose dependent manner but had no effect on aspecific efflux to methyl-beta-cyclodextrin or phosphatidylcholine liposomes. In ABCA1 deficient fibroblasts no effect of APF/CBP on efflux was seen. We conclude that APF/CBP specifically interferes with ApoA-I mediated cholesterol trafficking. We hypothesize that competitive binding to ABCA1 may explain the decreased ApoA-I mediated efflux from fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号