首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A study was made of sedimentation properties of the nucleoid (chromatin) of HeLa cells with radio- and thermostable mode of DNA synthesis induced by 5-fluorodeoxyuridine (FUdR). After the incubation of HeLa cells with FUdR (10(-6) M, 6 h or 24 h) the rate of nucleoid sedimentation was shown to rise by 40 and 25%, respectively. Maximum relaxation of the nucleoid was observed under 5 mg/ml ethidium bromide concentration in sucrose gradients. After the incubation with FUdR the nucleoid relaxes to a lesser extent, and after irradiation its response to ethidium bromide in various concentrations was similar to that of intact nucleoid, and by this property the "FUdR nucleoid" differs essentially from the irradiated "normal nucleoid". A model of chromatin structure of cells exposed to FUdR is proposed, based on the transformation of large domains in small ones, for the explanation of radioresistant DNA synthesis.  相似文献   

2.
The synthesis of mitochondrial DNA (mDNA) in HeLa cells is selectively inhibited by relatively low concentrations of ethidium bromide. After exposure of cells to strongly inhibitory concentrations of the drug, the apparent superhelix density of mDNA is rapidly increased, as judged by its buoyant density in CsCl in the presence of ethidium bromide. Mitochondrial DNA synthesized in the presence of partially inhibitory concentrations of ethidium bromide is also altered in its buoyant density in the presence of the dye, but is more heterogeneous in this respect. However, the change in buoyant density of newly synthesized mDNA may be explained by changes in structure other than a change in superhelix density, as indicated by its increased resistance to digestion by pancreatic DNase.  相似文献   

3.
4.
Circular dichroism in the 300-360 nm region and fluorescence induced by intercaltating binding of ethidum bromide to both DNA and RNA components were studied in isolated HeLa nucleoli. Both DNA and RNA compoents contribute to the induced dichroic elliticity. Digestion of nucleoli by RNase or DNase shows that most of the induced ellipticity comes from the DNA component. In nucleoli with an RNA/DNA = 0.8/1.0 the RNA component gives only 20% of the total ellipticity when measured at an ethidium bromide/DNA = 0.25. Spectro-fluorometric titration shows that ethidium bromide intercalates mostly into DNA in nucleoli. Both circular dichroism and fluorescence studies indicate that both DNA and RNA components in isolated nucleoli are less accessible to intercalating binding by ethidium bromide when compared to purified nucleolar DNA, DNA in chromatin or purified ribosomal RNA. Circular dichroic measurements of intercalating binding of ethidium bromide to to nucleoli may be used to study changes in nucleoli under different physiological or pathological conditions.  相似文献   

5.
Chinese hamster ovary cells labelled with [14C]thymidine were made permeable, incubated with various concentrations of the intercalating dye ethidium bromide, and centrifuged through neutral sucrose gradients. The gradient profiles of these cells were qualitatively similar to those obtained by centrifuging DNA from untreated, lysed permeable cells through gradients containing ethidium bromide. The sedimentation distance of DNA had a biphasic dependence on the concentration of ethidium bromide, suggesting that the dye altered the amount of DNA supercoiling in situ. The effect of ethidium bromide intercalation on incorporation of [3H]dTMP into acid-precipitable material in an in vitro DNA synthesis mixture was measured. The incorporation of [3H]dTMP was unaffected by less than 1 microgram/ml of ethidium bromide, enhanced up to two-fold by 1--10 microgram/ml, and inhibited by concentrations greater than 10 micrograms/ml. Alkaline sucrose gradient analysis revealed a higher percentage of small DNA fragments (6--20 S) in the cells treated with 2 micrograms/ml ethidium bromide than in control cells. These fragments attained parental size within the same time as the fragments in control cells. In cells treated with 2 micrograms/ml ethidium bromide, a significant fraction of newly synthesized DNA resulted from new starts, whereas in untreated cells practically none of the newly synthesized DNA resulted from new starts. These results suggest that relaxation of DNA supercoiled structures ahead of the replication fork generates spurious initiations of DNA synthesis and that in intact cells the rate of chain elongation is limited by supercoiled regions ahead of the growing point.  相似文献   

6.
Y Akine  K Nomura  K Iwasaki 《Human cell》1989,2(4):411-415
Radiation damage of DNA in HeLa cells was measured according to a method reported by Milner, et al. Cells were suspended in lysis buffer to obtain nucleoid. They were stained with ethidium bromide immediately before the measurement by using a system of flow cytometry. The mean position of channels for forward scatters increased at first and decreased thereafter as the concentration of ethidium bromide increased. The biphasic response disappeared with irradiation given to the cells. When the concentration of ethidium bromide was constant, the mean position of channels for forward scatters increased as the dose of irradiation increased. It might be possible to use the method in predicting the response of a tumor to irradiation in the clinical practice.  相似文献   

7.
A pyrene-labeled Zn2+-cyclen complex for the staining of DNA in agarose gels is reported. The metal chelate coordinates reversibly to the DNA phosphate backbone, which induces the formation of pyrene excimers. The typical pyrene excimer emission is used for the detection of the DNA. Staining is limited to agarose gels and is less sensitive than ethidium bromide, but DNA amounts as low as 10 ng and short DNA strands (~300 b.p.) are detectable. Gel extraction as a standard technique in molecular biology was successfully performed after staining with Zn2+-cyclen-pyrene. Cytotoxicity tests on HeLa and V-79 cells reveal that the zinc-cyclen pyrene probe is significant less toxic compared to ethidium bromide.  相似文献   

8.
Ethidium bromide was used to determine the success of cDNA synthesis reactions. Since ethidium bromide in agarose can be used to quantitate RNA and DNA, conditions under which the greater fluorescence of double-stranded DNA (dsDNA) is utilized were devised to assay dsDNA synthesis from mRNA. Ethidium bromide at 5 micrograms/ml in agarose allowed quantitative detection of cDNA in the range of 0.03 to 0.0015 microgram. Sodium dodecyl sulfate had an adverse effect on the measurement of cDNA. Subsequent cDNA analysis by alkaline gel electrophoresis and staining in 5 micrograms/ml ethidium bromide allowed accurate and rapid sizing of cDNA and required only 0.1-0.05 microgram cDNA.  相似文献   

9.
A pyrene-labeled Zn2+-cyclen complex for the staining of DNA in agarose gels is reported. The metal chelate coordinates reversibly to the DNA phosphate backbone, which induces the formation of pyrene excimers. The typical pyrene excimer emission is used for the detection of the DNA. Staining is limited to agarose gels and is less sensitive than ethidium bromide, but DNA amounts as low as 10 ng and short DNA strands (~300 b.p.) are detectable. Gel extraction as a standard technique in molecular biology was successfully performed after staining with Zn2+-cyclen-pyrene. Cytotoxicity tests on HeLa and V-79 cells reveal that the zinc-cyclen pyrene probe is significant less toxic compared to ethidium bromide.  相似文献   

10.
Bovine fetal fibroblast cells were treated with ethidium bromide at a low concentration for 15 passages in culture to determine its effect on mitochondrial DNA copy number and on cell metabolism. Mitochondrial membrane potential and lactate production were estimated in order to characterize cell metabolism. In addition, mitochondrial DNA ND5 in proportion to a nuclear gene (luteinizing hormone receptor) was determined at the 1st, 2nd, 3rd, 10th, and 15th passages using semi-quantitative PCR amplification. Treated cells showed a lower mitochondrial membrane potential and higher levels of lactate production compared with control cells. However, the mitochondrial DNA/nuclear DNA ratio was higher in treated cells compared with control cells at the 10th and 15th passages. This ratio changed between the 3rd and 10th passages. Despite a clear impairment in mitochondrial function, ethidium bromide treatment did not lead to mitochondrial DNA depletion. It is possible that in response to a lower synthesis of ATP, due to an impairment in oxidative phosphorylation, treated cells develop a mechanism to resist the ethidium bromide effect on mtDNA replication, resulting in an increase in mitochondrial DNA copy number.  相似文献   

11.
The effect of hyperthermic treatment on the binding of 59Fe-labeled bleomycin to DNA has been studied. Enhanced binding was observed at elevated temperatures. The influence of the DNA-intercalating agent, ethidium bromide, on bleomycin-DNA interaction was also studied and revealed a considerable decrease in this interaction at ethidium bromide levels below 1 microgram/ml. Ethidium bromide was observed to remove the enhanced bleomycin-DNA interaction recorded previously following incubation at hyperthermic temperatures. Synergistic action of bleomycin and hyperthermia on loss of clonogenic ability of HT29R cells is reported. Incubation of cells under hyperthermic conditions with bleomycin in the presence of ethidium bromide removes this synergism, producing a less than additive effect for the action of bleomycin and heat after ethidium bromide effects are taken into account.  相似文献   

12.
Summary Germinating spores of the fungus Botryodiplodia theobromae incorporated guanine-8-C14 into both the nuclear DNA and mitochondrial DNA fractions. Ethidium bromide inhibited the synthesis of mitochondrial DNA without having a significant effect on nuclear DNA synthesis or on the rate and extent of spore germination. Rates of leucine and uracil incorporation and of oxygen uptake were not significantly affected by ethidium bromide until germination was nearly completed. Mitochondrial DNA synthesis is apparently not required for germination of the spores of B. theobromae but is probably essential to continued vegetative growth.Abbreviations DNA deoxyribonucleic acid - mit-DNA mitochondrial DNA - nuc-DNA nuclear DNA - RNA ribonucleic acid - EB ethidium bromide - Tris tris (hydroxymethyl)aminomethane Published with the approval of the Director as Paper No. 3331, Journal Series, Nebraska Agricultural Experiment Station. Research reported was conducted under Project No. 21-17. Paper No. 7877, Scientific Journal Series, Minnesota Agricultural Experiment Station.  相似文献   

13.
The cell cycle dependence of retrovirus replication was studied. Canine sarcoma (D-17) cells were infected de novo with the xenotropic feline retrovirus RD-114 under conditions previously reported to simultaneously inhibit virus replication and cell DNA synthesis and/or cell division. RD-114 viral antigen synthesis was observed under conditions previously reported to be inhibitory to avian and murine oncornavirus replication, including confluency and serum deprivation, X-irradiation, mitomycin C pretreatment, colchicine, and ethidium bromide treatments of cells. Several mechanisms that could account for viral antigen synthesis under the restrictive conditions used are discussed.  相似文献   

14.
This paper describes investigations into the effects of ethidium bromide on the mitochondrial genomes of a number of different petite mutants derived from one respiratory competent strain of Saccharomyces cerevisiae. It is shown that the mutagenic effects of ethidium bromide on petite mutants occur by a similar mechanism to that previously reported for the action of this dye on grande cells. The consequences of ethidium bromide action in both cases are inhibition of the replication of mitochondrial DNA, fragmentation of pre-existing mitochondrial DNA, and the induction, often in high frequency, of cells devoid of mitochondrial genetic information (ρ ° cells).The susceptibility of the mitochondrial genomes to these effects of ethidium bromide varies in the different clones studied. The inhibition of mitochondrial DNA replication requires higher concentrations of ethidium bromide in petite cells than in the parent grande strain. Furthermore, the susceptibility of mitochondrial DNA replication to inhibition by ethidium bromide varies in different petite clones.It is found that during ethidium bromide treatment of the suppressive petite clones, the over-all suppressiveness of the cultures is reduced in parallel with the reduction in the over-all cellular levels of mitochondrial DNA. Furthermore, ethidium bromide treatment of petite clones carrying mitochondrial erythromycin resistance genes (ρ?ERr) leads to the elimination of these genes from the cultures. The rates of elimination of these genes are different in two ρ?ERr clones, and in both the gene elimination rate is slower than in the parent ρ+ ERr strain. It is proposed that the rate of elimination of erythromycin resistance genes by ethidium bromide is related to the absolute number of copies of these genes in different cell types. In general, the more copies of the gene in the starting cells, the slower is the rate of elimination by ethidium bromide. These concepts lead us to suggest that petite mutants provide a system for the biological purification of particular regions of yeast mitochondrial DNA and of particular relevance is the possible purification of erythromycin resistance genes.  相似文献   

15.
16.
Xu et al. [Biochem. Biophys. Res. Commun. 305 (2003) 941] reported that, when a mutant strain of Pseudomonas aeruginosa lacking its major multidrug efflux pump complex, MexAB-OprM, was incubated with 100 μM ethidium bromide, the fluorescence, caused by its binding to DNA following its entry into cells, decreased gradually. The authors concluded that the intracellular ethidium bromide “induced” either its degradation or its efflux through the assembly of unknown efflux pumps. We found, through quantitation of ethidium bromide by absorption spectroscopy, that the total amount of ethidium bromide in the system remained constant under these conditions, indicating the absence of its degradation. Furthermore, intracellular ethidium bromide kept increasing during the experiment, showing that the decrease of fluorescence was due to self-quenching, and that ethidium bromide is not pumped out by a newly assembled efflux system.  相似文献   

17.
HeLa cell mitochondria were allowed to incorporate 3H-thymidine in a cell free system and the effect of ethidium bromide, cytosine arabinoside and cytosine arabinoside triphosphate on the labeling of mitochondrial DNA was studied. The labeled products, isolated by sedimentation velocity in CsCl-ethidium bromide two-step gradients, showed similar sedimentation profiles as in vivo labeled mtDNA. Cytosine arabinoside triphosphate and ethidium bromide strongly inhibited the labeling of mitochondrial DNA, whereas cytosine arabinoside appeared to be much less effective. Tritiated deoxycytidine was found to be incorporated by isolated mitochondria, whereas cytosine arabinoside was shown to enter the mitochondrial acid-soluble pool but not to be incorporated in acid-insoluble form. These results are in agreement with the previously reported findings of in vivo experiments.  相似文献   

18.
Summary Mitochondrial DNA (mtDNA) replication in petite mutants ofSaccharomyces cerevisiae is generally less sensitive to inhibition by ethidium bromide than in grande (respiratory competent) cells. In every petite that we have examined, which retain a range of different grande mtDNA sequences, this general phenomenon has been demonstrated by measurements of the loss of mtDNA from cultures grown in the presence of the drug. The resistance is also demonstrable by direct analysis of drug inhibition of mtDNA replication in isolated mitochondria. Furthermore, the resistance to ethidium bromide is accompanied, in every case tested, by cross-resistance to berenil and euflavine, although variations in the levels of resistance are observed.In one petite the level of in vivo resistance to the three drugs was very similar (4-fold over the grande parent) whilst another petite was mildly resistant to ethidium bromide and berenil (each 1.6-fold over the parent) and strongly resistant (nearly 8-fold) to inhibition of mtDNA replication by euflavine. The level of resistance to ethidium bromide in several other petite clones tested was found to vary markedly. Using genetic techniques it is possible to identify those petites which display an enhanced resistance to ethidium bromide inhibition of mtDNA replication.It is considered that the general resistance of petites arises because a product of mitochondrial protein synthesis is normally involved in facilitating the inhibitory action of these drugs on mtDNA synthesis in grande cells. The various levels of resistance in petites may be modulated by the particular mtDNA sequences retained in each petite.  相似文献   

19.
S. Madle  J. Nowak  G. Obe 《Human genetics》1976,34(2):143-149
Summary Cells containing X-ray induced micronuclei were treated for a few hours before fixation with inhibitors of DNA synthesis (cytosine arabinoside; azathioprine; thymidine; trenimon), of RNA synthesis (actinomycin D; ethidium bromide), and of protein synthesis (puromycin). Only the inhibitors of DNA synthesis lead to a significant suppression of the frequencies of mitoses with micronucleus derived premature chromosome condensation (PCC). We tend to interprete the result as follows: Micronuclei that are in the G1 phase of their cell cycles are accumulated at the G1/S border or in the early S phase of their cell cycles under the influence of the inhibitors of the DNA synthesis. Micronuclei blocked in this way cannot be induced to undergo PCC and seem to disappear from the cells.  相似文献   

20.
Petite induction of ethidium analogs was examined in both resting and growing yeast cells. All of the analogs used in these experiments were active in dividing cells of Saccharomyces cerevisiae; only the parent ethidium bromide was mutagenic under resting conditions. Incorporation of adenine into mitochondrial DNA appeared to be prevented completely by ethidium and partially inhibited by other analogs. Treatment of growing cells with analogs affected fragmentation of pre-existing DNA as seen by the loss of a mitochondrial antibiotic resistance marker. The rates of elimination of the marker were different; ethidium generated greater loss than the monoamino analogs (3-amino and 8-amino-); and the deaminated analog was least effective. However, in resting yeast the marker was partially eliminated only with treatment of the parent ethidium. The degradation of the mitochondrial DNA by exposure to ethidium compounds was confirmed by agarose gel electrophoresis. Electrophoretic patterns of the mitochondrial DNA treated with each of the analogs under growing conditions and only with ethidium under resting conditions showed degradation of the mitochondrial DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号