首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both pro- and anti-inflammatory mediators. Whether this is paralleled by changes in gene expression within the circulating population of PBMCs is not fully understood. Fifteen healthy men (18-30 yr old) performed 30 min of constant work rate cycle ergometry (approximately 80% peak O2 uptake). Blood samples were obtained preexercise (Pre), end-exercise (End-Ex), and 60 min into recovery (Recovery), and gene expression was measured using microarray analysis (Affymetrix GeneChips). Significant differential gene expression was defined with a posterior probability of differential expression of 0.99 and a Bayesian P value of 0.005. Significant changes were observed from Pre to End-Ex in 311 genes, from End-Ex to Recovery in 552 genes, and from Pre to Recovery in 293 genes. Pre to End-Ex upregulation of PBMC genes related to stress and inflammation [e.g., heat shock protein 70 (3.70-fold) and dual-specificity phosphatase-1 (4.45-fold)] was followed by a return of these genes to baseline by Recovery. The gene for interleukin-1 receptor antagonist (an anti-inflammatory mediator) increased between End-Ex and Recovery (1.52-fold). Chemokine genes associated with inflammatory diseases [macrophage inflammatory protein-1alpha (1.84-fold) and -1beta (2.88-fold), and regulation-on-activation, normal T cell expressed and secreted (1.34-fold)] were upregulated but returned to baseline by Recovery. Exercise also upregulated growth and repair genes such as epiregulin (3.50-fold), platelet-derived growth factor (1.55-fold), and hypoxia-inducible factor-I (2.40-fold). A single bout of heavy exercise substantially alters PBMC gene expression characterized in many cases by a brisk activation and deactivation of genes associated with stress, inflammation, and tissue repair.  相似文献   

4.
5.
Lee SM  Youn B  Kim CS  Kim CS  Kang C  Kim J 《Molecules and cells》2005,20(3):331-338
Ionizing radiation and doxorubicin both produce oxidative damage and double-strand breaks in DNA. Double-strand breaks and oxidative damage are highly toxic and cause cell cycle arrest, provoking DNA repair and apoptosis in cancer cell lines. To investigate the response of normal human cells to agents causing oxidative damage, we monitored alterations in gene expression in F65 normal human fibroblasts. Treatment with g-irradiation and doxorubicin altered the expression of 23 and 68 known genes, respectively, with no genes in common. Both agents altered the expression of genes involved in cell cycle arrest, and arrested the treated cells in G2/M phase 12 h after treatment. 24 h after g-irradiation, the percentage of G1 cells increased, whereas after doxorubicin treatment the percentage of G2/M cells remained constant for 24 h. Our results suggest that F65 cells respond differently to g-irradiation- and doxorubicin-induced DNA damage, probably using entirely different biochemical pathways.  相似文献   

6.
7.
Inflammation is a complex, biologic event that aims to protect and repair tissue. Previous studies suggest that inflammation is critical to induce a healing response following acute injury; however, whether similar inflammatory responses occur as a result of beneficial, non-injurious loading is unknown. The objective of this study was to screen for alterations in a subset of inflammatory and extracellular matrix genes to identify the responses of rat supraspinatus tendon and muscle to a known, non-injurious loading condition. We sought to define how a subset of genes representative of specific inflammation and matrix turnover pathways is altered in supraspinatus tendon and muscle 1) acutely following a single loading bout and 2) chronically following repeated loading bouts. In this study, Sprague-Dawley rats in the acute group ran a single bout of non-injurious exercise on a flat treadmill (10 m/min, 1 hour) and were sacrificed 12 or 24 hours after. Rats in the chronic group ran 5 days/wk for 1 or 8 weeks. A control group maintained normal cage activity. Supraspinatus muscle and tendon were harvested for RNA extractions, and a custom Panomics QuantiGene 2.0 multiplex assay was used to detect 48 target and 3 housekeeping genes. Muscle/tendon and acute/chronic groups had distinct gene expression. Components of the arachidonic acid cascade and matrix metalloproteinases and their inhibitors were altered with acute and chronic exercise. Collagen expression increased. Using a previously validated model of non-injurious exercise, we have shown that supraspinatus tendon and muscle respond to acute and chronic exercise by regulating inflammatory- and matrix turnover-related genes, suggesting that these pathways are involved in the beneficial adaptations to exercise.  相似文献   

8.
Gene chip technology was used to determine the gene expression profiles in apoptotic K562 cells induced by homoharringtonine. The expression of forty-four mRNAs was found to be changed significantly were identified after screening with a gene chip capable of detecting 14,218 different human mRNA species simultaneously. Of these genes, 17 were up-regulated and 27 were down-regulated. Most of them were found to be related to apoptosis, oncogenes, or tumor suppression. Several genes with altered gene expression, such as human transforming growth factor-beta inducible early protein gene (TIEG), vitamin D3 upregulated protein 1 gene (VDUP1), RNA binding motif protein 4 gene (RBM4) and v-myc myelocytomatosis viral oncogene homolog (C-MFC), were confirmed by Northern blot analysis. According to the dynamic gene expression pattern in these apoptotic cells, the activated transforming growth factor-β and tumor necrosis factor signaling pathways play an important role in homoharringtonine-induced apoptosis. TIEG was significantly altered after apoptosis induction, it should be critical for apoptosis signal transmission.  相似文献   

9.
Impaired expression of NER gene network in sporadic solid tumors   总被引:1,自引:1,他引:0  
Nucleotide repair genes are not generally altered in sporadic solid tumors. However, point mutations are found scattered throughout the genome of cancer cells indicating that the repair pathways are dysfunctional. To address this point, in this work we focus on the expression pathways rather than in the DNA structure of repair genes related to either genome stability or essential metabolic functions. We present here a novel statistical analysis comparing ten gene expression pathways in human normal and cancer cells using serial analysis of gene expression (SAGE) data. We find that in cancer cells nucleotide-excision repair (NER) and apoptosis are the most impaired pathways and have a highly altered diversity of gene expression profile when compared to normal cells. We propose that genome point mutations in sporadic tumors can be explained by a structurally conserved NER with a functional disorder generated from its entanglement with the apoptosis gene network.  相似文献   

10.
3-Aminobenzamide (3AB) is an inhibitor of poly (ADP-ribose) polymerase (PARP), an enzyme implicated in the maintenance of genomic integrity, which is activated in response to radiation-induced DNA strand breaks. cDNA macroarray membranes containing 1536 clones were used to characterize the gene expression profiles displayed by mouse BALB/3T3 fibroblasts (A31 cell line) in response to ionizing irradiation alone or in combination with 3AB. A31 cells in exponential growth were pre-treated with 3AB 4mM 1h before gamma-irradiation (4Gy), remaining in culture during 6h until harvesting time. A31 cells treated with 3AB alone presented a down-regulation in genes involved in protein processing and cell cycle control, while an up-regulation of genes involved in apoptosis and related to DNA/RNA synthesis and repair was verified. A31 cells irradiated with 4Gy displayed 41 genes differentially expressed, being detected a down-regulation of genes involved in protein processing and apoptosis, and genes controlling the cell cycle. Concomitantly, another set of genes for protein processing and related to DNA/RNA synthesis and repair were found to be up-regulated. A positive or negative interaction effect between 3AB and radiation was verified for 29 known genes. While the combined treatment induced a synergistic effect on the expression of LCK proto-oncogene and several genes related to protein synthesis/processing, a negative interaction effect was found for the expression of genes related to cytoskeleton and extracellular matrix assembly (SATB1 and Anexin III), cell cycle control (tyrosine kinase), and genes participating in DNA/RNA synthesis and repair (RNA helicase, FLAP endonuclease-1, DNA-3 glycosylase methyladenine, splicing factor SC35 and Soh1). The present data open the possibility to investigate the direct participation of specific genes, or gene products acting in concert in the mechanism underlying the cell response to radiation-induced DNA damage under the influence of PARP inhibitor.  相似文献   

11.
AMP-activated protein kinase (AMPK) is an enzyme which may be involved in cardioprotective mechanisms in the ischemic heart. Exercise, AICAR, and metformin, all known activators of AMPK, induce delayed cardioprotection which protects the heart against ischemia-reperfusion injury. The objective was to determine the effect of exercise, AICAR, and metformin on gene expression profile and to demonstrate possible interactions in different genes and functions. Rats were divided into either an exercise, AICAR, metformin, or control group. 3, 12, and 24 h after either a single bout of exercise training, a single injection of AICAR or a single dose of metformin, hearts were removed and gene expression profiles were analyzed in tissue from the left ventricle using Affymetrix gene chip probe arrays. Ingenuity Pathway Analysis (IPA) tool was used to analyze the regulated genes for relevant functions and diseases. Each gene chip identified up to 30,000 different probesets of which Ingenuity identified approximately up to 12,000 genes. A total of 147, 304, and 114 different genes in the left ventricle whose expressions were altered >2.0-fold were identified in the exercise, AICAR, and metformin group, respectively. Seventy eight different genes were overlapping the exercise and AICAR group at 24 h. Ingenuity identified six overlapping genes between the exercise, AICAR, and metformin groups including NR4A3, TNFRSF12A, HBB, PENK, PAP, and MAP4K4. IPA software revealed an overabundance of focus molecules in all three intervention groups involving functions related to cell death, cellular growth and proliferation, gene expression and cancer. Exercise, AICAR, and metformin regulate several genes in the rat myocardium with the majority of overlapping genes observed in the exercise and AICAR group. Changes in gene programming mainly involved inflammatory and opioid systems recognized as cardioprotective pathways. Some of these genes may represent possible candidate genes involved in the molecular mechanisms of AMPK-induced delayed PC.  相似文献   

12.
Palmitic acid (PA) is the most common saturated long-chain fatty acid in food that causes cell apoptosis. However, little is known about the molecular mechanisms of PA toxicity. In this study, we explore the effects of PA on proliferation and apoptosis in human osteoblast-like Saos-2 cells and uncover the signaling pathways involved in the process. Our study showed that endoplasmic reticulum (ER) stress and autophagy are involved in PA-induced Saos-2 cell apoptosis. We found that PA inhibited the viability of Saos-2 cells in a dose- and time-dependent manner. At the same time, PA induced the expression of ER stress marker genes (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)), altered autophagy-related gene expression (microtubule-associated protein 1 light chain 3 (LC3), ATG5, p62, and Beclin), promoted apoptosis-related gene expression (Caspase 3 and BAX), and affected autophagic flux. Inhibiting ER stress with 4-PBA diminished the PA-induced cell apoptosis, activated autophagy, and increased the expression of Caspase 3 and BAX. Inhibiting autophagy with 3-MA attenuated the PA and ER stress-induced cell apoptosis and the apoptosis-related gene expression (Caspase 3 and BAX), but seemed to have no obvious effects on ER stress, although the CHOP expression was downregulated. Taken together, our results suggest that PA-induced Saos-2 cell apoptosis is activated via ER stress and autophagy, and the activation of autophagy depends on the ER stress during this process.  相似文献   

13.
Fibroblast growth factor 10 (FGF10) has multiple biological activities involved in angiogenesis, mitogenesis, cellular differentiation, development, and tissue injury repair. Our previous studies revealed that treatment of FGF10 remarkably stimulated HaCaT cell proliferation and abbreviated cell apoptosis. However, the molecular mechanisms remain largely unknown. The aim of this study was to investigate FGF10-induced modifications in gene expression in the HaCaT cells by using the cDNA microarray technique. The microarray data showed that FGF10 modified the expression of 2117 genes, 861 being up-regulated and 1256 down-regulated, using a threshold of twofold. Eight of nine candidate genes, validated by real-time quantitative polymerase chain reaction (qPCR), were correlated well with the array data. The GenMAPP and MappFinder software packages were further used for pathway analysis of these significantly altered genes. In support of multiple biological functions for FGF10, several gene pathways were found to be involved in processes of cell cycle, DNA repair, apoptosis, development, and wound healing. These data also provide a basis to further investigation of FGF10 molecular mechanisms.  相似文献   

14.
This study determined the effects of exercise training on cardiac function, gene expression, and apoptosis. Rats exposed to a regimen of treadmill exercise for 13 wk had a significant increase in cardiac index and stroke volume index and a concomitant decrease in systemic vascular resistance compared with both age-matched and body weight-matched sedentary controls in the conscious state at rest. In exercise-trained animals, there was no change in the expression of several marker genes known to be associated with pathological cardiac adaptation, including atrial natriuretic factor, beta-myosin heavy chain, alpha-skeletal and smooth muscle actins, and collagens I and III. Exercise training, however, produced a significant induction of alpha-myosin heavy chain, which was not observed in rats with myocardial infarction. No histological features of cardiac apoptosis were observed in the treadmill-trained rats. In contrast, apoptotic myocytes were detected in animals with myocardial infarction. In summary, exercise training improves cardiac function without evidence of cardiac apoptosis and produces a pattern of cardiac gene expression distinct from pathological cardiac adaptation.  相似文献   

15.
The present trend of increasing paternal age is accompanied by concerns for the development of complex multigene diseases (e.g., autism and schizophrenia) in progeny. Recent studies have established strong correlations between male age, increased oxidative stress, decreased sperm quality, and structural aberrations of chromatin and DNA in spermatozoa. We tested the hypothesis that increasing age would result in altered gene expression relating to oxidative stress and DNA damage/repair in germ cells. To test this hypothesis, pachytene spermatocytes and round spermatids were isolated from Brown Norway (BN) rats at 4 (young) and 18 (aged) mo of age. Microarray analysis was used to compare gene expression between the groups. The probe sets with significantly altered expression were linked to DNA damage/repair and oxidative stress in pachytene spermatocytes but not in round spermatids. Further analysis of pachytene spermatocytes demonstrated that genes involved in the base excision repair (BER) and nucleotide excision repair (NER) pathways were specifically altered. Quantitative RT-PCR confirmed that NER genes were upregulated (>1.5-fold), whereas BER genes were downregulated (>1.5-fold). At the protein level the members of the BER pathway were also altered by up to 2.3-fold; levels of NER proteins remained unchanged. Furthermore, there was an increase in 8-oxo-2'-deoxyguanosine (8-oxodG) immunoreactivity in testes from aged males and in the number of spermatozoa positive for 8-oxodG. In conclusion, aging is associated with differential regulation of DNA repair pathways with a decrease in the BER pathway leading to deficient repair of 8-oxo-dG lesions in germ cells and spermatozoa.  相似文献   

16.
17.
18.
The expression of extracellular proteinase inhibitor (Expi) gene was induced during the involution of mammary gland, when apoptosis occurs in this tissue. Transient transfection of Expi gene partially induced apoptosis of mammary epithelial HC11 cells. We developed the stable cell lines overexpressing Expi gene and found that overexpression of Expi accelerated apoptosis of mammary epithelial cells under serum starvation. To understand apoptosis pathway involved in the Expi overexpression, we examined the gene expression profile by using apoptosis gene array containing 243 genes. The subsequent confirmation of the altered gene expression by northern analysis demonstrated that overexpression of the Expi gene induced expression of several genes, which included B cell activating factor (BAFF), Bax, cytochrome c, caspase-9, caspase-3, caspase-6, and CIDE-A. From this study, we first demonstrate that BAFF is involved in mammary apoptosis. Furthermore, we have found that the Expi-accelerated apoptosis is mediated via BAFF receptor among three known BAFF receptors: BAFF receptor, tumor necrosis factor (TNF) receptor homologue TACI (transmembrane activator and CAML-interactor), and BCMA (another TNFR homologue, B cell maturation antigen). Our studies also demonstrate that the use of apoptosis array provides an efficient tool to identify apoptosis pathway involved in gene transfection.  相似文献   

19.
Background aimsBone marrow (BM)-derived progenitor cells are under investigation for cardiovascular repair but may be altered by disease. Our aim was to identify differences in gene expression in CD133+ cells of patients with coronary artery disease (CAD) and healthy controls, and determine whether exercise modifies gene expression.MethodsCD133+ cells were flow-sorted from 10 CAD patients and four controls, and total RNA was isolated for microarray-based gene expression profiling. Genes that were found to be differentially regulated in patients were analyzed further to investigate whether exercise had any normalizing effect on CD133+ cells in CAD patients following 3 months of an exercise program.ResultsImprovement in effort tolerance and increases in the number of CD133+ cells were observed in CAD patients after 3 months of exercise. Gene expression analysis of the CD133+ cells identified 82 differentially expressed genes (2-fold cut-off, 25% false-discovery rate and % present calls) in patients compared with controls, of which 59 were found to be up-regulated and 23 down-regulated. These genes were found to be involved in carbohydrate metabolism, cell cycle, cellular development and signaling, and molecular transport. Following completion of the exercise program, gene expression patterns resembled those of controls in seven of 10 patients.ConclusionsAlterations in gene expression of BM-derived CD133+ progenitor cells were found in CAD patients, which in part may be normalized by exercise.  相似文献   

20.
Classical (M1) and alternative (M2) polarization of mononuclear cells (MNCs) such as monocyte and macrophages is known to occur in response to challenges within a microenvironment, like the encounter of a pathogen. LPS, also known as endotoxin, is a potent inducer of inflammation and M1 polarization. LPS can also generate an effect in MNCs known as endotoxin tolerance, defined as the reduced capacity of a cell to respond to LPS activation after an initial exposure to this stimulus. Using systems biology approaches in PBMCs, monocytes, and monocyte-derived macrophages involving microarrays and advanced bioinformatic analysis, we determined that gene responses during endotoxin tolerance were similar to those found during M2 polarization, featuring gene and protein expression critical for the development of key M2 MNC functions, including reduced production of proinflammatory mediators, expression of genes involved in phagocytosis, as well as tissue remodeling. Moreover, expression of different metallothionein gene isoforms, known for their role in the control of oxidative stress and in immunomodulation, were also found to be consistently upregulated during endotoxin tolerance. These results demonstrate that after an initial inflammatory stimulus, human MNCs undergo an M2 polarization probably to control hyperinflammation and heal the affected tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号