首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the north-west Atlantic Ocean, stock assessments conducted for some commercially harvested coastal sharks indicate declines from 64 to 80% with respect to virgin population levels. While the status of commercially important species is available, abundance trend information for other coastal shark species in the north-west Atlantic Ocean are unavailable. Using a generalized linear modelling (GLM) approach, a relative abundance index was derived from 1994 to 2009 using observer data collected in a commercial bottom longline fishery. Trends in abundance and average size were estimated for bull shark Carcharhinus leucas, spinner shark Carcharhinus brevipinna, tiger shark Galeocerdo cuvier and lemon shark Negaprion brevirostris. Increases in relative abundance for all shark species ranged from 14% for C. brevipinna, 12% for C. leucas, 6% for N. brevirostris and 3% for G. cuvier. There was no significant change in the size at capture over the time period considered for all species. While the status of shark populations should not be based exclusively on abundance trend information, but ultimately on stock assessment models, results from this study provide some cause for optimism on the status of these coastal shark species.  相似文献   

2.
Great white sharks are protected by national legislation in several countries, making this species the most widely protected elasmobranch in the world. Although the market demand for shark fins in general has continued to grow, the value and extent of utilization of white shark fins in trade has been controversial. We combine law enforcement with genetic profiling to demonstrate that illegal trade in fins of this species is occurring in the contemporary international market. Furthermore, we document the presence of fins from very young white sharks in the trade, suggesting a multiple-use market (food to trophies) exists for fins of this species. The presence of small fins in the trade contradicts the view that white shark fins have market value only as large display trophies, and not as food. Our findings indicate that effective conservation of protected shark species will require international management regimes that include monitoring of the shark fishery and trade on a species-specific basis.  相似文献   

3.
Synopsis Protective gillnets (shark nets) have been successful in reducing the frequency of shark attacks on the coast of Natal, South Africa. This is achieved primarily through a reduction in numbers of large sharks. The nets also take a by catch of dolphins, sea turtles, batoids and teleosts. Concern has been expressed over the direct effect of mortalities on the various stocks and also the broader, indirect effects on the inshore system. Catch rates of most shark species declined initially but have shown no trend since the mid-1970s. A first estimate of the reduction in total shark numbers is provided, and factors such as stock identity and net avoidance are discussed. Turtle and teleost stocks do not appear to be threatened by net mortalities but marine mammalogists are investigating the sustainability of catches of two dolphin species. Certain batoids may have declined despite a high release rate, but more data are needed. A published contention that shark netting has resulted in a proliferation of small sharks through reduced predation is re-examined and considered to be exaggerated. Reduced predation on dolphins, as a result of shark netting, is estimated.  相似文献   

4.
Sharks present a critical conservation challenge, but little is known about their spatial distribution and vulnerability, particularly in complex seascapes such as Australia’s Great Barrier Reef Marine Park (GBRMP). We review (1) the distribution of shark species among the primary habitats of the GBRMP (coral reefs, inshore/shelf, pelagic and deep-water habitats) (2) the relative exploitation of each species by fisheries, and (3) how current catch rates interact with their vulnerability and trophic index. Excluding rays and chimaeras, we identify a total of 82 shark species in the GBRMP. We find that shark research in the GBRMP has yielded little quantitative information on most species. Reef sharks are largely site-fidelic, but can move large distances and some regularly use non-reef habitats. Inshore and shelf sharks use coastal habitats either exclusively or during specific times in their life cycle (e.g. as nurseries). Virtually nothing is known about the distribution and habitat use of the GBRMP’s pelagic and deep-water sharks. At least 46 species (53.5 %) are caught in one or more fisheries, but stock assessments are lacking for most. At least 17 of the sharks caught are considered highly vulnerable to exploitation. We argue that users of shark resources should be responsible for demonstrating that a fishery is sustainable before exploitation is allowed to commence or continue. This fundamental change in management principle will safeguard against stock collapses that have characterised many shark fisheries.  相似文献   

5.
Many commercially exploited carcharhinid sharks are difficult to identify to species owing to extensive morphological similarities. This problem is severely exacerbated when it comes to identifying detached shark fins, and the finless and headless shark carasses typically sold in markets. To assist in the acquisition of urgently needed conservation and management data on shark catch and trade, we have developed a highly streamlined approach based on multiplex polymerase chain reaction (PCR) that uses species-specific primers derived from nuclear ribosomal ITS2 sequences to achieve rapid species identification of shark body parts. Here we demonstrate the utility of this approach for identifying fins and flesh from two globally distributed, morphologically very similar carcharhinid sharks (Carcharhinus obscurus and Carcharhinus plumbeus) intensively targeted in fisheries worldwide, and often confused for each other even as whole animals. The assay is conducted in a 4-primer multiplex format that is structured to simultaneously achieve the following efficiency and cost-reduction objectives: it requires only a single-tube amplification reaction for species diagnosis, it incorporates an internal positive control to allow detection of false-negative results, and it is novel in that it allows species identification even when DNAs from two species are combined in the same tube during the PCR reaction. The latter innovation reduces the required effort for screening a set of unknown samples by 50%. The streamlined approach illustrated here should be amenable for use in a shark conservation and management context where large numbers of samples typically need to be screened; the approach shown may also provide a model for a rapid diagnostic method applicable to species identification in general. Received September 15, 2000; accepted December 15, 2000  相似文献   

6.
Empirical data on the abundance and habitat preferences of coral reef top predators are needed to evaluate their ecological impacts and guide management decisions. We used longline surveys to quantify the shark assemblage at French Frigate Shoals (FFS) atoll from May to August 2009. Fishing effort consisted of 189 longline sets totaling 6,862 hook hours of soak time. A total of 221 sharks from 7 species were captured, among which Galapagos (Carcharhinus galapagensis, 36.2%), gray reef (Carcharhinus amblyrhynchos, 25.8%) and tiger (Galeocerdo cuvier, 20.4%) sharks were numerically dominant. A lack of blacktip reef sharks (Carcharhinus melanopterus) distinguished the FFS shark assemblage from those at many other atolls in the Indo-Pacific. Compared to prior underwater visual survey estimates, longline methods more accurately represented species abundance and composition for the majority of shark species. Sharks were significantly less abundant in the shallow lagoon than adjacent habitats. Recaptures of Galapagos sharks provided the first empirical estimate of population size for any Galapagos shark population. The overall recapture rate was 5.4%. Multiple closed population models were evaluated, with Chao M(h) ranking best in model performance and yielding a population estimate of 668 sharks with 95% confidence intervals ranging from 289-1720. Low shark abundance in the shallow lagoon habitats suggests removal of a small number of sharks from the immediate vicinity of lagoonal islets may reduce short-term predation on endangered monk seal (Monachus schauinslandi) pups, but considerable fishing effort would be required to catch even a small number of sharks. Additional data on long-term movements and habitat use of sharks at FFS are required to better assess the likely ecological impacts of shark culling.  相似文献   

7.
Obtaining accurate species-specific landings data is an essential step toward achieving sustainable shark fisheries. Globally distributed sharpnose sharks (genus Rhizoprionodon) exhibit life-history characteristics (rapid growth, early maturity, annual reproduction) that suggests that they could be fished in a sustainable manner assuming an investment in monitoring, assessment and careful management. However, obtaining species-specific landings data for sharpnose sharks is problematic because they are morphologically very similar to one another. Moreover, sharpnose sharks may also be confused with other small sharks (either small species or juveniles of large species) once they are processed (i.e., the head and fins are removed). Here we present a highly streamlined molecular genetics approach based on seven species-specific PCR primers in a multiplex format that can simultaneously discriminate body parts from the seven described sharpnose shark species commonly occurring in coastal fisheries worldwide. The species-specific primers are based on nucleotide sequence differences among species in the nuclear ribosomal internal transcribed spacer 2 locus (ITS2). This approach also distinguishes sharpnose sharks from a wide range of other sharks (52 species) and can therefore assist in the regulation of coastal shark fisheries around the world.  相似文献   

8.
The past decade has seen a considerable rise in international concern regarding the conservation status of sharks and rays. The demand for highly prized shark commodities continues to fuel the international trade and gives fisheries incentive to use these resources, which have a low intrinsic capability to recover. Recognising the urgency for regulation, many countries voted to include more shark and ray species in the Appendices of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). However, the identification of fins in fisheries landings before they enter international trade is a major limitation for CITES compliance. This study reports the current performance of the iSharkFin system, a machine learning technology which aims to allow users to identify the species of a wet shark dorsal fin from its image. Photographs of 1147 wet dorsal fins from 39 shark species, collected in 12 countries, were used to train the algorithm over a four-year period. As new cohorts of images were used to test the performance of the learning algorithm, the accuracy of species assignments of known specimens was variable but did increase, reaching 85.3% and 59.1% at genus and species level respectively. The accuracy in predicting CITES-listed sharks versus unlisted sharks was 94.0% based on the 39 species currently represented in the baseline. Our results suggest that if supplied with high data inputs for specific fisheries assemblages and accompanied by user training, iSharkFin has promise for site-specific development as a rapid field identification tool in fisheries monitoring, and as a screening tool alongside traditional field morphology to detect potential CITES specimens for fisheries compliance and enforcement.  相似文献   

9.
Dramatic population declines among species of pelagic shark as a result of overfishing have been reported, with some species now at a fraction of their historical biomass. Advanced telemetry techniques enable tracking of spatial dynamics and behaviour, providing fundamental information on habitat preferences of threatened species to aid conservation. We tracked movements of the highest pelagic fisheries by-catch species, the blue shark Prionace glauca, in the North-east Atlantic using pop-off satellite-linked archival tags to determine the degree of space use linked to habitat and to examine vertical niche. Overall, blue sharks moved south-west of tagging sites (English Channel; southern Portugal), exhibiting pronounced site fidelity correlated with localized productive frontal areas, with estimated space-use patterns being significantly different from that of random walks. Tracked female sharks displayed behavioural variability in diel depth preferences, both within and between individuals. Diel depth use ranged from normal DVM (nDVM; dawn descent, dusk ascent), to reverse DVM (rDVM; dawn ascent, dusk descent), to behavioural patterns where no diel differences were apparent. Results showed that blue sharks occupy some of the most productive marine zones for extended periods and structure diel activity patterns across multiple spatio-temporal scales in response to particular habitat types. In so doing, sharks occupied an extraordinarily broad vertical depth range for their size (1.0-2.0 m fork length), from the surface into the bathypelagic realm (max. dive depth, 1160 m). The space-use patterns of blue sharks indicated they spend much of the time in areas where pelagic longlining activities are often highest, and in depth zones where these fisheries particularly target other species, which could account for the rapid declines recently reported for blue sharks in many parts of the world's oceans. Our results provide habitat targets for blue shark conservation that may also be relevant to other pelagic species.  相似文献   

10.
Identifying critical habitat for highly mobile species such as sharks is difficult, but essential for effective management and conservation. In regions where baseline data are lacking, non‐traditional data sources have the potential to increase observational capacity for species distribution and habitat studies. In this study, a research and education organization conducted a 5‐year (2013–2018) survey of shark populations in the coastal waters of west‐central Florida, an area where a diverse shark assemblage has been observed but no formal population analyses have been conducted. The objectives of this study were to use boosted regression tree (BRT) modeling to quantify environmental factors impacting the distribution of the shark assemblage, create species distribution maps from the model outputs, and identify spatially explicit hot spots of high shark abundance. A total of 1036 sharks were captured, encompassing eleven species. Abundance hot spots for four species and for immature sharks (collectively) were most often located in areas designated as “No Internal Combustion Engine” zones and seagrass bottom cover, suggesting these environments may be fostering more diverse and abundant populations. The BRT models were fitted for immature sharks and five species where n > 100: the nurse shark (Ginglymostoma cirratum), blacktip shark (Carcharhinus limbatus), blacknose shark (C. acronotus), Atlantic sharpnose shark (Rhizoprionodon terraenovae), and bonnethead (Sphyrna tiburo). Capture data were paired with environmental variables: depth (m), sea surface temperature (°C), surface, middle, and bottom salinity (psu), dissolved oxygen (mg/L), and bottom type (seagrass, artificial reef, or sand). Depth, temperature, and bottom type were most frequently identified as predictors with the greatest marginal effect on shark distribution, underscoring the importance of nearshore seagrass and barrier island habitats to the shark assemblage in this region. This approach demonstrates the potential contribution of unconventional science to effective management and conservation of coastal sharks.  相似文献   

11.
Understanding the ecological factors that regulate elasmobranch abundance in nearshore waters is essential to effectively manage coastal ecosystems and promote conservation. However, little is known about elasmobranch populations in the western South Atlantic Ocean. An 8-year, standardized longline and drumline survey conducted in nearshore waters off Recife, northeastern Brazil, allowed us to describe the shark assemblage and to monitor abundance dynamics using zero-inflated generalized additive models. This region is mostly used by several carcharhinids and one ginglymostomid, but sphyrnids are also present. Blacknose sharks, Carcharhinus acronotus, were mostly mature individuals and declined in abundance throughout the survey, contrasting with nurse sharks, Ginglymostoma cirratum, which proliferated possibly due to this species being prohibited from all harvest since 2004 in this region. Tiger sharks, Galeocerdo cuvier, were mostly juveniles smaller than 200 cm and seem to use nearshore waters off Recife between January and September. No long-term trend in tiger shark abundance was discernible. Spatial distribution was similar in true coastal species (i.e. blacknose and nurse sharks) whereas tiger sharks were most abundant at the middle continental shelf. The sea surface temperature, tidal amplitude, wind direction, water turbidity, and pluviosity were all selected to predict shark abundance off Recife. Interspecific variability in abundance dynamics across spatiotemporal and environmental gradients suggest that the ecological processes regulating shark abundance are generally independent between species, which could add complexity to multi-species fisheries management frameworks. Yet, further research is warranted to ascertain trends at population levels in the South Atlantic Ocean.  相似文献   

12.
Shark fins have become a highly valued commodity with the major Asian fin‐trade centres supplied from global sources, including Chile. With growing concerns about the resilience of shark populations to heavy fishing pressure, there is a need for better information on shark landings to aid management efforts. In the widespread absence of shark landing records especially by species, monitoring the fin trade has been proposed as a way to assess species exploitation levels. Here, the first species assessment of the Chilean shark‐fin trade was provided. The goals of this study were to (1) determine the species composition and relative species proportion of sharks utilized in the fin trade, (2) determine the relationship between fin trader market names and species and (3) assess trader accuracy in identifying shark fin species based on fin photographs. Fins were analysed from two different fin drying facilities (n = 654) (secaderos) and two fin‐storage warehouses (n = 251). In contrast to official government landing records that only document four species in the landings, molecular species identification of the fins demonstrated that at least 10 pelagic shark species are present in the north‐central Chilean shark fin trade: Alopias superciliosus, Alopias vulpinus, Carcharhinus obscurus, Galeorhinus galeus, Isurus oxyrinchus, Isurus paucus, Lamna nasus, Prionace glauca, Sphyrna lewini, Sphyrna zygaena. The species composition of the fins from the secaderos was P. glauca (83·9%), I. oxyrinchus (13·6%), L. nasus (1·7%) and A. superciliosus (0·2%). There was generally good agreement between market names and single shark species for the trade categories ‘Azulejo’, ‘Tiburon’, ‘Tintorera’, ‘Cola de zorro’ and ‘Martillo’. In contrast, the market category ‘Carcharhinus’ consisted of a mixture of at least five species. The molecular results also identified two species (S. lewini and I. paucus) not previously recorded in Chilean waters. The fin identification survey given to nine regional traders demonstrated that they were highly accurate in recognizing pictures of fins from P. glauca and I. oxyrinchus. The overall strong concordance between market categories and fins from single species and the trader accuracy in survey fin identification suggests that monitoring the Chilean fin trade by market names will provide a reasonably accurate picture of the volume of sharks landed by species.  相似文献   

13.
An Integrated Risk Assessment for Climate Change (IRACC) is developed and applied to assess the vulnerability of sharks and rays on Australia's Great Barrier Reef (GBR) to climate change. The IRACC merges a traditional climate change vulnerability framework with approaches from fisheries ecological risk assessments. This semi‐quantitative assessment accommodates uncertainty and can be applied at different spatial and temporal scales to identify exposure factors, at‐risk species and their key biological and ecological attributes, critical habitats a`nd ecological processes, and major knowledge gaps. Consequently, the IRACC can provide a foundation upon which to develop climate change response strategies. Here, we describe the assessment process, demonstrate its application to GBR shark and ray species, and explore the issues affecting their vulnerability to climate change. The assessment indicates that for the GBR, freshwater/estuarine and reef associated sharks and rays are most vulnerable to climate change, and that vulnerability is driven by case‐specific interactions of multiple factors and species attributes. Changes in temperature, freshwater input and ocean circulation will have the most widespread effects on these species. Although relatively few GBR sharks and rays were assessed as highly vulnerable, their vulnerability increases when synergies with other factors are considered. This is especially true for freshwater/estuarine and coastal/inshore sharks and rays. Reducing the impacts of climate change on the GBR's sharks and rays requires a range of approaches including mitigating climate change and addressing habitat degradation and sustainability issues. Species‐specific conservation actions may be required for higher risk species (e.g. the freshwater whipray, porcupine ray, speartooth shark and sawfishes) including reducing mortality, preserving coastal catchments and estuarine habitats, and addressing fisheries sustainability. The assessment identified many knowledge gaps concerning GBR habitats and processes, and highlights the need for improved understanding of the biology and ecology of the sharks and rays of the GBR.  相似文献   

14.
Brazil is one of the leading exporters of ornamental fishes, mostly freshwater; however, monitoring of the trade is nearly non-existent in the country. This paper provides an initial assessment of a new venture, the marine aquarium fish trade at Ceará State, northeast Brazil, aiming to document the species traded, to provide preliminary estimates of numbers of specimens traded, and to identify priorities in data collection and monitoring. A total of 143 species and 199 304 fishes were traded. From the total, 109 species were native and represented 84% of the fishes traded. Thirty-four exotic species figured on the permits and amounted to nearly 16% of the exports; however, most of them consist of misidentified native species. Nearly 90% of the fish trade was directed to the international market. Official figures represent an underestimation of the total number of captured specimens.  相似文献   

15.
The broadnose sevengill shark (Notorynchus cepedianus) is a high-order marine predator distributed worldwide in shallow coastal waters of temperate seas. Recent reports have suggested it may be a prevalent component of Pacific Northwest coastal estuarine communities, although biological characteristics of the shark population remain undocumented despite growing interest in recreational harvest of the species. Longline sampling was conducted in Willapa Bay and Grays Harbor, Washington, USA seasonally during 2003–2006 to collect sevengill shark size, maturity, and sex ratio data, and establish some baseline catch rate information. Sevengill sharks were collected on 65% of longline sets and catches were composed of subadult and mature individuals (122–283 cm TL) of both sexes. Most male sevengill sharks were large sexually mature adults, based on external clasper calcification levels, whereas most comparably sized females were considered subadults, based on literature-based size-at–maturity estimates. Neonates and young sharks <120 cm were not collected, nor have they been reported in other historic estuary sampling efforts. Sex ratios were skewed toward males in Willapa Bay and suggest some degree of sexual segregation for the species, as has been shown for populations elsewhere. We suggest sevengill sharks are a largely ignored but potentially important predator in Pacific Northwest estuaries. This study therefore provides some of the first, basic information for guiding management decisions associated with a late-maturing, slow-growing shark species in these coastal habitats.  相似文献   

16.
Over-exploitation of wildlife is a significant threat to global biodiversity, but addressing the sustainability of harvests can be difficult when trade is conducted illegally. The wildlife trade is driven chiefly by consumer demand, largely in developed nations (but increasingly in Asia), and more species are traded to meet international demand for pets than for any other purpose. We surveyed traders of amphibians and reptiles in the Indonesian provinces of Maluku, West Papua and Papua between September 2010 and April 2011. We recorded 5,370 individuals representing 52 species collected solely for the pet trade. At least 44?% were either fully protected or had not been allocated a harvest quota, making their harvest and trade illegal. Approximately half were listed within the Convention on International Trade in Endangered Species of Wild Fauna and Flora. Trade operates via a complex chain, with hunters receiving little income compared to middlemen and exporters. Examination of Indonesian harvest quotas for amphibians and reptiles suggests limited knowledge of species distributions, with quotas often set for species in provinces where they do not occur. Illegal trade is due, partly, to an inadequate understanding of the species being traded and is facilitated by poor monitoring and enforcement at key trade hubs. As a first step to combatting illegal trade, and to better understand the effects of harvest on wild populations, we recommend the need for increased monitoring and enforcement, improving the knowledge base of species traded and educating consumers about the effects their demand for pets has on these species.  相似文献   

17.
This study documented the parasite faunas of the spiral valves of blue sharks Prionace glauca (L. 1758) and common thresher sharks Alopias vulpinus (Bonnaterre, 1788) caught in the California Current Large Marine Ecosystem (CCLME) north of the Mexican border. The spiral valves of 18 blue and 19 thresher sharks caught in the CCLME from 2009 to 2013 were examined for parasites. Seven parasite taxa were found in blue sharks and nine in threshers. The tetraphyllidean cestode Anthobothrium sp. (78% prevalence) was the most common parasite in blue sharks, and the phyllobothriid cestode Paraorygmatobothrium sp. (90% prevalence) was the most common in threshers. An adult nematode of the genus Piscicapillaria was found in threshers for the first time and may be a new species. Adult individuals of Hysterothylacium sp. were found in both shark species. The adult acanthocephalan Rhadinorhynchus cololabis and remains of the parasitic copepod Pennella sp. – both parasites of Pacific saury, Cololabis saira – were found in the intestines of threshers, indicating recent feeding on saury. This study paves the way for a more comprehensive examination, including more samples and a wider variety of shark species, to provide a greater understanding of shark feeding behaviour and possibly provide information on shark population biology.  相似文献   

18.
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation.We created a database of 53,345 shark images covering 219 species of sharks, and packaged object-detection and image classification models into a Shark Detector bundle. The Shark Detector recognizes and classifies sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: collecting occurrence records from photographs taken by the public or citizen scientists, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity.The Shark Detector can classify 47 species pertaining to 26 genera. It sorted heterogeneous datasets of images sourced from Instagram with 91% accuracy and classified species with 70% accuracy. It located sharks in baited remote footage and YouTube videos with 89% accuracy, and classified located subjects to the species level with 69% accuracy. All data-generation methods were processed without manual interaction.As media-based remote monitoring appears to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.  相似文献   

19.
Here we describe the application of new and existing multiplex PCR methodologies for shark species molecular identification. Four multiplex systems (group ID, thresher sharks, hammerhead sharks and miscellaneous shark) were employed with primers previously described and some designed in this study, which allow for species identification after running PCR products through an agarose gel. This system was implemented for samples (bodies and fins) collected from unidentified sharks landed in the port of Buenaventura and from confiscated tissues obtained from illegal fishing around the Malpelo Island Marine Protected Area, Pacific Coast of Colombia. This method has allowed reliable identification, to date, of 407 samples to the genus and/or species levels, most of them (380) identified as the pelagic thresher shark (Alopias pelagicus). Another seven samples were identified as scalloped hammerhead sharks (Sphyrna lewini). This is an easy-to-implement and reliable identification method that could even be used locally to monitor shark captures in the main fishing ports of developed and developing countries.  相似文献   

20.

Background

An increasing awareness of the vulnerability of sharks to exploitation by shark finning has contributed to a growing concern about an unsustainable shark fishery. Taiwan’s fleet has the 4th largest shark catch in the world, accounting for almost 6% of the global figures. Revealing the diversity of sharks consumed by Taiwanese is important in designing conservation plans. However, fins make up less than 5% of the total body weight of a shark, and their bodies are sold as filets in the market, making it difficult or impossible to identify species using morphological traits.

Methods

In the present study, we adopted a DNA barcoding technique using a 391-bp fragment of the mitochondrial cytochrome oxidase I (COI) gene to examine the diversity of shark filets and fins collected from markets and restaurants island-wide in Taiwan.

Results

Amongst the 548 tissue samples collected and sequenced, 20 major clusters were apparent by phylogenetic analyses, each of them containing individuals belonging to the same species (most with more than 95% bootstrap values), corresponding to 20 species of sharks. Additionally, Alopias pelagicus, Carcharhinus falciformis, Isurus oxyrinchus, and Prionace glauca consisted of 80% of the samples we collected, indicating that these species might be heavily consumed in Taiwan. Approximately 5% of the tissue samples used in this study were identified as species listed in CITES Appendix II, including two species of Sphyrna, C. longimanus and Carcharodon carcharias.

Conclusion

DNA barcoding provides an alternative method for understanding shark species composition when species-specific data is unavailable. Considering the global population decline, stock assessments of Appendix II species and highly consumed species are needed to accomplish the ultimate goal of shark conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号