首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantifying shark distribution patterns and species-specific habitat associations in response to geographic and environmental drivers is critical to assessing risk of exposure to fishing, habitat degradation, and the effects of climate change. The present study examined shark distribution patterns, species-habitat associations, and marine reserve use with baited remote underwater video stations (BRUVS) along the entire Great Barrier Reef Marine Park (GBRMP) over a ten year period. Overall, 21 species of sharks from five families and two orders were recorded. Grey reef Carcharhinus amblyrhynchos, silvertip C. albimarginatus, tiger Galeocerdo cuvier, and sliteye Loxodon macrorhinus sharks were the most abundant species (>64% of shark abundances). Multivariate regression trees showed that hard coral cover produced the primary split separating shark assemblages. Four indicator species had consistently higher abundances and contributed to explaining most of the differences in shark assemblages: C. amblyrhynchos, C. albimarginatus, G. cuvier, and whitetip reef Triaenodon obesus sharks. Relative distance along the GBRMP had the greatest influence on shark occurrence and species richness, which increased at both ends of the sampling range (southern and northern sites) relative to intermediate latitudes. Hard coral cover and distance across the shelf were also important predictors of shark distribution. The relative abundance of sharks was significantly higher in non-fished sites, highlighting the conservation value and benefits of the GBRMP zoning. However, our results also showed that hard coral cover had a large effect on the abundance of reef-associated shark species, indicating that coral reef health may be important for the success of marine protected areas. Therefore, understanding shark distribution patterns, species-habitat associations, and the drivers responsible for those patterns is essential for developing sound management and conservation approaches.  相似文献   

2.
An Integrated Risk Assessment for Climate Change (IRACC) is developed and applied to assess the vulnerability of sharks and rays on Australia's Great Barrier Reef (GBR) to climate change. The IRACC merges a traditional climate change vulnerability framework with approaches from fisheries ecological risk assessments. This semi‐quantitative assessment accommodates uncertainty and can be applied at different spatial and temporal scales to identify exposure factors, at‐risk species and their key biological and ecological attributes, critical habitats a`nd ecological processes, and major knowledge gaps. Consequently, the IRACC can provide a foundation upon which to develop climate change response strategies. Here, we describe the assessment process, demonstrate its application to GBR shark and ray species, and explore the issues affecting their vulnerability to climate change. The assessment indicates that for the GBR, freshwater/estuarine and reef associated sharks and rays are most vulnerable to climate change, and that vulnerability is driven by case‐specific interactions of multiple factors and species attributes. Changes in temperature, freshwater input and ocean circulation will have the most widespread effects on these species. Although relatively few GBR sharks and rays were assessed as highly vulnerable, their vulnerability increases when synergies with other factors are considered. This is especially true for freshwater/estuarine and coastal/inshore sharks and rays. Reducing the impacts of climate change on the GBR's sharks and rays requires a range of approaches including mitigating climate change and addressing habitat degradation and sustainability issues. Species‐specific conservation actions may be required for higher risk species (e.g. the freshwater whipray, porcupine ray, speartooth shark and sawfishes) including reducing mortality, preserving coastal catchments and estuarine habitats, and addressing fisheries sustainability. The assessment identified many knowledge gaps concerning GBR habitats and processes, and highlights the need for improved understanding of the biology and ecology of the sharks and rays of the GBR.  相似文献   

3.
The Portuguese dogfish Centroscymnus coelolepis is a wide-ranging deep-water shark and a common by-catch component of the catches of several mid- to deep-water fisheries. In the present study, two new records from the south-western Atlantic Ocean are reported based on specimens caught by bottom-longline fishing vessels operating in the Argentinean–Uruguayan Common Fishing Zone. Species identification based on morphology and detailed morphometrics, as well as molecular data are presented for one of the specimens. The distribution of the species over the south-western Atlantic is discussed on the basis of the available bibliography and a thorough revision of museum collections. The records presented here expand the species' previously acknowledged distribution southwards, from around 21° S to at least 38° S, suggesting it occurs continuously along the shelf break of eastern South America. However, given the limited access to specimens of deep-water sharks in the region, the abundance and real extent of C. coelolepis distribution in the south-western Atlantic as well as its interaction with deep-water fisheries remain to be fully assessed.  相似文献   

4.
The large size, high trophic level and wide distribution of Hexanchiformes (cow and frilled sharks) should position this order as important apex predators in coastal and deep-water ecosystems. This review synthesizes available information on Hexanchiformes, including information not yet published, with the purpose of evaluating their conservation status and assessing their ecological roles in the dynamics of marine ecosystems. Comprising six species, this group has a wide global distribution, with members occurring from shallow coastal areas to depths of c. 2500 m. The limited information available on their reproductive biology suggests that they could be vulnerable to overexploitation (e.g. small litter sizes for most species and suspected long gestation periods). Most of the fishing pressure exerted on Hexanchiformes is in the form of commercial by-catch or recreational fishing. Comprehensive stock and impact assessments are unavailable for most species in most regions due to limited information on life history and catch and abundance time series. When hexanchiform species have been commercially harvested, however, they have been unable to sustain targeted fisheries for long periods. The potentially high vulnerability to intense fishing pressure warrants a conservative exploitation of this order until thorough quantitative assessments are conducted. At least some species have been shown to be significant apex predators in the systems they inhabit. Should Hexanchiformes be removed from coastal and deep-water systems, the lack of sympatric shark species that share the same resources suggests no other species would be capable of fulfilling their apex predator role in the short term. This has potential ecosystem consequences such as meso-predator release or trophic cascades. This review proposes some hypotheses on the ecology of Hexanchiformes and their role in ecosystem dynamics, highlighting the areas where critical information is required to stimulate research directions.  相似文献   

5.
Life-stage-based management of marine fishes requires information on juvenile habitat preferences to ensure sustainable population demographics. This is especially important in the Arctic region given very little is known about the life histories of many native species, yet exploitation by developing commercial and artisanal fisheries is increasing as the ice extent decreases. Through scientific surveys and bycatch data from gillnet fisheries, we document captures of rarely reported juvenile Greenland sharks (Somniosus microcephalus; ≤200 cm total length [TL]) during the ice-free period in the Canadian Arctic. A total of 22 juvenile animals (42 % of total catch; n = 54), including the smallest reliably measured individual of 117 cm TL, were caught on scientific longlines and bottom trawls in Scott Inlet and Sam Ford Trough over three consecutive years. Molecular genetic nuclear markers confirmed species identity for 44 of these sharks sampled; however, two sharks including a juvenile of 150 cm TL were identified as carrying a Pacific sleeper shark (Somniosus pacificus) mitochondrial cytochrome b (cyt b) haplotype. This represents the first record of a Pacific sleeper shark genetic signature in Greenland sharks in Eastern Arctic waters. Juvenile sharks caught as bycatch in gillnet fisheries were only observed offshore in Baffin Bay surrounding a fishery closure area, while larger subadult and mature Greenland sharks (>200 cm TL) were caught in all fishing locations, including areas where juveniles were observed. The repeatable occurrence of juvenile Greenland sharks in a fjord and their presence at two offshore sites indicates that these smaller animals either reside in nurseries or have defined home ranges in both coastal and offshore regions or undertake large-scale inshore–offshore movements.  相似文献   

6.
The increased exploitation of pelagic sharks by longline fisheries raised questions about changes in the food webs that include sharks as apex predators. We used a version of Ecopath/Ecosim models to evaluate changes in trophic interactions due to shark exploitation in the Central North Pacific. Fisheries targeted on blue sharks tend to produce compensatory responses that favor other shark species and billfishes, but they have only modest effects on the majority of food web components. Modest levels of intraguild predation (adult sharks that eat juvenile sharks) produce strong, nonlinear responses in shark populations. In general, analysis of the Central North Pacific model reveals that sharks are not keystone predators, but that increases in longline fisheries can have profound effects on the food webs that support sharks. Received 19 April 2001; accepted 2 October 2001.  相似文献   

7.
Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (~14 km away) and one grey reef shark completed a round trip of ~250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef.  相似文献   

8.
Coastal and estuarine systems provide critical shark habitats due to their relatively high productivity and shallow, protected waters. The young (neonates, young‐of‐the‐year, and juveniles) of many coastal shark species occupy a diverse range of habitats and areas where they experience environmental variability, including acute and seasonal shifts in local salinities and temperatures. Although the location and functioning of essential shark habitats has been a focus in recent shark research, there is a paucity of data from the South Pacific. In this study, we document the temporal and spatial distribution, age class composition, and environmental parameters of young bull sharks (Carcharhinus leucas) in the Rewa, Sigatoka, and Navua Rivers, Fiji's three largest riverine systems. One hundred and seventy‐two young bull sharks were captured in fisheries‐independent surveys from January 2016 to April 2018. The vast majority of the captures were neonates. Seasonality in patterns of occurrence of neonate individuals suggests a defined parturition period during summer. Environmental parameters between the Rewa and the Sigatoka River differed significantly, as did the recorded young bull sharks abundance. According to the surveys, young bull sharks occur in all three rivers with the Rewa River likely representing essential habitat for newly born bull sharks. These results enhance the understanding of bull shark ecology in Fiji and provide a scientific basis for the implementation of local conservation strategies that contribute to the protection of critical habitats.  相似文献   

9.
Reef shark species have undergone sharp declines in recent decades, as they inhabit coastal areas, making them an easy target in fisheries (i.e., sharks are exploited globally for their fins, meat, and liver oil) and exposing them to other threats (e.g., being part of by-catch, pollution, and climate change). Reef sharks play a critical role in coral reef ecosystems, where they control populations of smaller predators and herbivorous fishes either directly via predation or indirectly via behavior, thus protecting biodiversity and preventing potential overgrazing of corals. The urgent need to conserve reef shark populations necessitates a multifaceted approach to policy at local, federal, and global levels. However, monitoring programmes to evaluate the efficiency of such policies are lacking due to the difficulty in repeatedly sampling free-ranging, wild shark populations. Over nine consecutive years, we monitored juveniles of the blacktip reef shark (Carcharhinus melanopterus) population around Moorea, French Polynesia, and within the largest shark sanctuary globally, to date. We investigated the roles of spatial (i.e., sampling sites) and temporal variables (i.e., sampling year, season, and month), water temperature, and interspecific competition on shark density across 10 coastal nursery areas. Juvenile C. melanopterus density was found to be stable over 9 years, which may highlight the effectiveness of local and likely federal policies. Two of the 10 nursery areas exhibited higher juvenile shark densities over time, which may have been related to changes in female reproductive behavior or changes in habitat type and resources. Water temperatures did not affect juvenile shark density over time as extreme temperatures proven lethal (i.e., 33°C) in juvenile C. melanopterus might have been tempered by daily variation. The proven efficiency of time-series datasets for reef sharks to identify critical habitats (having the highest juvenile shark densities over time) should be extended to other populations to significantly contribute to the conservation of reef shark species.  相似文献   

10.
Understanding the ecological factors that regulate elasmobranch abundance in nearshore waters is essential to effectively manage coastal ecosystems and promote conservation. However, little is known about elasmobranch populations in the western South Atlantic Ocean. An 8-year, standardized longline and drumline survey conducted in nearshore waters off Recife, northeastern Brazil, allowed us to describe the shark assemblage and to monitor abundance dynamics using zero-inflated generalized additive models. This region is mostly used by several carcharhinids and one ginglymostomid, but sphyrnids are also present. Blacknose sharks, Carcharhinus acronotus, were mostly mature individuals and declined in abundance throughout the survey, contrasting with nurse sharks, Ginglymostoma cirratum, which proliferated possibly due to this species being prohibited from all harvest since 2004 in this region. Tiger sharks, Galeocerdo cuvier, were mostly juveniles smaller than 200 cm and seem to use nearshore waters off Recife between January and September. No long-term trend in tiger shark abundance was discernible. Spatial distribution was similar in true coastal species (i.e. blacknose and nurse sharks) whereas tiger sharks were most abundant at the middle continental shelf. The sea surface temperature, tidal amplitude, wind direction, water turbidity, and pluviosity were all selected to predict shark abundance off Recife. Interspecific variability in abundance dynamics across spatiotemporal and environmental gradients suggest that the ecological processes regulating shark abundance are generally independent between species, which could add complexity to multi-species fisheries management frameworks. Yet, further research is warranted to ascertain trends at population levels in the South Atlantic Ocean.  相似文献   

11.
Shark take, driven by vast demand for meat and fins, is increasing. We set out to gain insights into the impact of small‐scale longline fisheries in Peru. Onboard observers were used to document catch from 145 longline fishing trips (1668 fishing days) originating from Ilo, southern Peru. Fishing effort is divided into two seasons: targeting dolphinfish (Coryphaena hippurus; December to February) and sharks (March to November). A total of 16,610 sharks were observed caught, with 11,166 identified to species level. Of these, 70.6% were blue sharks (Prionace glauca), 28.4% short‐fin mako sharks (Isurus oxyrinchus), and 1% were other species (including thresher (Alopias vulpinus), hammerhead (Sphyrna zygaena), porbeagle (Lamnus nasus), and other Carcharhinidae species (Carcharhinus brachyurus, Carcharhinus falciformis, Galeorhinus galeus). Mean ± SD catch per unit effort of 33.6 ± 10.9 sharks per 1000 hooks was calculated for the shark season and 1.9 ± 3.1 sharks per 1000 hooks were caught in the dolphinfish season. An average of 83.7% of sharks caught (74.7% blue sharks; 93.3% mako sharks) were deemed sexually immature and under the legal minimum landing size, which for species exhibiting k‐selected life history traits can result in susceptibility to over exploitation. As these growing fisheries operate along the entire Peruvian coast and may catch millions of sharks per annum, we conclude that their continued expansion, along with ineffective legislative approaches resulting in removal of immature individuals, has the potential to threaten the sustainability of the fishery, its target species, and ecosystem. There is a need for additional monitoring and research to inform novel management strategies for sharks while maintaining fisher livelihoods.  相似文献   

12.
Angel sharks (Squatina spp.) are distributed in warm temperate to tropical waters around the world. Many species occur in shelf seas and exhibit seasonal inshore–offshore migrations, moving inshore to give birth. Consequently, there can be high spatial overlap of angel shark populations with fisheries and other human activities. Their dorso-ventrally flattened body shape, large size (most species attain >100 cm total length, LT) and demersal nature means that they may be taken in a variety of demersal fishing gears from birth. Available data indicate that angel sharks typically have a biennial reproductive cycle, with litter sizes generally <20 and the young born at c. 20–30 cm. The biological characteristics of angel sharks render them susceptible to overexploitation, as exemplified by the decline of Squatina squatina from many parts of its former range in the north-east Atlantic and Mediterranean Sea. Currently, half of the 22 recognized extant species of angel shark are classed as Threatened on the International Union for Conservation of Nature (IUCN) Red List (with a further three classified as Data Deficient). Given the biological vulnerability of angel sharks, and that many species are data-limited, the current paper provides a review of available biological information and fisheries data pertaining to this family.  相似文献   

13.
We compared life-history traits and extinction risk of chondrichthyans (sharks, rays and chimaeras), a group of high conservation concern, from the three major marine habitats (continental shelves, open ocean and deep sea), controlling for phylogenetic correlation. Deep-water chondrichthyans had a higher age at maturity and longevity, and a lower growth completion rate than shallow-water species. The average fishing mortality needed to drive a deep-water chondrichthyan species to extinction (Fextinct) was 38-58% of that estimated for oceanic and continental shelf species, respectively. Mean values of Fextinct were 0.149, 0.250 and 0.368 for deep-water, oceanic and continental shelf species, respectively. Reproductive mode was an important determinant of extinction risk, while body size had a weak effect on extinction risk. As extinction risk was highly correlated with phylogeny, the loss of species will be accompanied by a loss of phylogenetic diversity. Conservation priority should not be restricted to large species, as is usually suggested, since many small species, like those inhabiting the deep ocean, are also highly vulnerable to extinction. Fishing mortality of deep-water chondrichthyans already exploited should be minimized, and new deep-water fisheries affecting chondrichthyans should be prevented.  相似文献   

14.
Knowledge of the habitat use and migration patterns of large sharks is important for assessing the effectiveness of large predator Marine Protected Areas (MPAs), vulnerability to fisheries and environmental influences, and management of shark–human interactions. Here we compare movement, reef-fidelity, and ocean migration for tiger sharks, Galeocerdo cuvier, across the Coral Sea, with an emphasis on New Caledonia. Thirty-three tiger sharks (1.54 to 3.9 m total length) were tagged with passive acoustic transmitters and their localised movements monitored on receiver arrays in New Caledonia, the Chesterfield and Lord Howe Islands in the Coral Sea, and the east coast of Queensland, Australia. Satellite tags were also used to determine habitat use and movements among habitats across the Coral Sea. Sub-adults and one male adult tiger shark displayed year-round residency in the Chesterfields with two females tagged in the Chesterfields and detected on the Great Barrier Reef, Australia, after 591 and 842 days respectively. In coastal barrier reefs, tiger sharks were transient at acoustic arrays and each individual demonstrated a unique pattern of occurrence. From 2009 to 2013, fourteen sharks with satellite and acoustic tags undertook wide-ranging movements up to 1114 km across the Coral Sea with eight detected back on acoustic arrays up to 405 days after being tagged. Tiger sharks dove 1136 m and utilised three-dimensional activity spaces averaged at 2360 km3. The Chesterfield Islands appear to be important habitat for sub-adults and adult male tiger sharks. Management strategies need to consider the wide-ranging movements of large (sub-adult and adult) male and female tiger sharks at the individual level, whereas fidelity to specific coastal reefs may be consistent across groups of individuals. Coastal barrier reef MPAs, however, only afford brief protection for large tiger sharks, therefore determining the importance of other oceanic Coral Sea reefs should be a priority for future research.  相似文献   

15.

Background

Accessing folk knowledge from small-scale fishers is an affordable and reliable approach to understand the dynamic and diversity of shark species worldwide, especially of those eventually caught. In this context, ethnotaxonomy (folk identification and classification) may represent an alternative to support sharks fisheries management, especially in data-poor places. This study aimed to investigate fishing and ethnotaxonomy of the main shark species caught by small-scale fisheries from the coastal waters of the Brazilian Northeast.

Methods

Semi-structured and structured interviews were conducted with fishers targeting general aspects of fishing activities and specific topics regarding ethnotaxonomy, capture, and commercialization of sharks. For species identification, an ethnobiological systematic perspective was used to analyze the folk nomenclature and classification criteria. Non-parametric statistical tests were used to verify associations between species caught, fishing gear, and harvest period.

Results

Fishers mentioned 73 binomial names, 21 main folk species, and eight synonymies. Some species belonging to the same scientific genus are often named and grouped by the same folk name, with no distinction between species by fishers. Sharks are most landed as bycatch and correspond to less than 5% of the total commercial fisheries in the communities, with socioeconomic value for subsistence consumption and local commercialization. Sharks were said to be mainly caught with hand line and surface long line during the rainy season, while gillnet captures were associated to the dry season. At least three of the species most mentioned by fishers are currently classified as vulnerable and endangered worldwide.

Conclusions

Even though landed sharks account for a small proportion of the fishing catches, their biological and life history features place sharks among the most vulnerable organisms globally. Such an ethnobiological approach towards shark identification may contribute to generate basic information on species caught, their frequency in the landings, and how different species belonging to the same genus can be landed and sold together. This type of information can generate subsidies to the development of conservation and management plans for these fishing resources, where knowledge is scarce.
  相似文献   

16.
Shifting baselines and the decline of pelagic sharks in the Gulf of Mexico   总被引:8,自引:1,他引:7  
Historical abundances of many large marine vertebrates were tremendously greater than today. However, while pelagic sharks are known to have declined rapidly in the northwest Atlantic in recent years, there, as elsewhere, little is known about the former natural abundances of these species. Here, we compare initial (1950s) and recent (late‐1990s) standardized catch rates of pelagic sharks in the Gulf of Mexico, the area where methods of exploitation between these two periods were most comparable. We estimate that oceanic whitetip and silky sharks, formerly the most commonly caught shark species, have declined by over 99 and 90%, respectively. That the former prevalence of oceanic whitetip sharks in this ecosystem is unrecognized today is clear evidence of shifting baselines. Our analysis provides the missing baseline for pelagic sharks in the Gulf of Mexico that is needed for the rational management and restoration of these species.  相似文献   

17.
Summary Despite the recent upsurge of interest in shark research, the current status of knowledge of the behavioural repertoire of most species is alarmingly incomplete. Clearly, from the steadily decreasing numbers of sharks caught by commercial and sport fishermen, sharks are highly vulnerable to human exploitation. Although education is making inroads, there is still steady opposition to the enforcement of catch limits and management strategies for most species. Accurate life history and behavioural information is required to enforce management policies. Wetherbee et al. (1990) cited a case in which commercial fishermen accused the spiny dogfish of stripping the commerical and recreational fisheries of their herring and salmon catch. A detailed study of the spiny dogfish diet disproved their claims.Sharks are clearly not mindless eating machines, as they have been labelled in the past. They are intelligent and have complex patterns of movement, space utilization, and social organization. Using a combination of remote and direct observational techniques, the scientific community is beginning to have a more complete understanding of these important apex predators in coral reef and oceanic ecosystems. More importantly, researchers who are interested in pursuing the fascinating field of shark behaviour still have a wide choice of direction.  相似文献   

18.
Despite being the second largest fish, basking sharks (Cetorhinus maximus) have been assumed to remain in discrete populations. Their known distribution encompasses temperate continental shelf areas, yet until now there has been no evidence for migration across oceans or between hemispheres. Here we present results on the tracks and behaviour of two basking sharks tagged off the British Isles, one of which released its tag off Newfoundland, Canada. During the shark's transit of the North Atlantic, she travelled a horizontal distance of 9589 km and reached a record depth of 1264 m. This result provides the first evidence for a link between European and American populations and indicates that basking sharks make use of deep-water habitats beyond the shelf edge.  相似文献   

19.
Obtaining accurate species-specific landings data is an essential step toward achieving sustainable shark fisheries. Globally distributed sharpnose sharks (genus Rhizoprionodon) exhibit life-history characteristics (rapid growth, early maturity, annual reproduction) that suggests that they could be fished in a sustainable manner assuming an investment in monitoring, assessment and careful management. However, obtaining species-specific landings data for sharpnose sharks is problematic because they are morphologically very similar to one another. Moreover, sharpnose sharks may also be confused with other small sharks (either small species or juveniles of large species) once they are processed (i.e., the head and fins are removed). Here we present a highly streamlined molecular genetics approach based on seven species-specific PCR primers in a multiplex format that can simultaneously discriminate body parts from the seven described sharpnose shark species commonly occurring in coastal fisheries worldwide. The species-specific primers are based on nucleotide sequence differences among species in the nuclear ribosomal internal transcribed spacer 2 locus (ITS2). This approach also distinguishes sharpnose sharks from a wide range of other sharks (52 species) and can therefore assist in the regulation of coastal shark fisheries around the world.  相似文献   

20.
Despite growing concerns about overexploitation of sharks, lack of accurate, species-specific harvest data often hampers quantitative stock assessment. In such cases, trade studies can provide insights into exploitation unavailable from traditional monitoring. We applied Bayesian statistical methods to trade data in combination with genetic identification to estimate by species, the annual number of globally traded shark fins, the most commercially valuable product from a group of species often unrecorded in harvest statistics. Our results provide the first fishery-independent estimate of the scale of shark catches worldwide and indicate that shark biomass in the fin trade is three to four times higher than shark catch figures reported in the only global data base. Comparison of our estimates to approximated stock assessment reference points for one of the most commonly traded species, blue shark, suggests that current trade volumes in numbers of sharks are close to or possibly exceeding the maximum sustainable yield levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号