首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence is presented for the uptake of radioactive-labeled isolated Chinese hamster chromosomes following incubation with Chinese hamster cells. Metaphases were found which contained radioactive labeled chromosomes in a very low frequency, and in some of the labeled chromosomes only one chromatid was labeled. Incubation of hypoxanthine phosphoribosyltransferas (HPRT)-deficient Chinese hamster cells with chromosomes isolated from HPRT+ Chinese hamster or human cells resulted in the appearance of HPRT+ cells. Clones derived from these cells were isolated in HAT medium. Cells in mitosis during incubation with the chromosomes yielded thr-e times more HPRT+ clones than did cells in interphase. The intraspecies combination involving recipient cells and chromosomes from Chinese hamster origin yielded significantly higher numbers of HPRT+ clones than did the interspecies system using human chromsomes and Chinese hamster recipient cells (5 X 10(-5) and 6 X 10(-6) respectively). Electrophoresis of HPRT from Chinese hamster cells treated with human chromosomes revealed the pattern of the human enzyme.  相似文献   

2.
Spontaneous phenotypic revertants of hypoxanthine phosphoribosyl-transferase (HPRT) temperature-sensitive V79 Chinese hamster cells were selected by plating a temperature-sensitive mutant in HAT medium at 39 degrees C. The incidence of such revertants was approximately 2 X 10(-4) per cell. The majority of the revertants examined had increases of between three- and tenfold in their specific activity of the enzyme, and they were able to grow continuously in the presence of HAT medium at 39 degrees C. When the revertants were cultivated in the absence of HAT, they recovered their HAT-sensitive phenotype and their lowered level of HPRT. Three of the revertants were examined for their temperature inactivation profiles, and all were found to have profiles identical to the ts parent, and quite different from the V79 wild type. The kinetic properties of the cell lines were studied: the Km for both PRPP and hypoxanthine was significantly different in the temperature-sensitive cells but was not significantly altered in the revertants with respect to the ts mutants. A specific antibody to Chinese hamster brain HPRT was employed in immunoprecipitation experiments. By measuring the point at which the immunoprecipitation of the antibody to HPRT was overcome by increasing concentrations of cell supernatant, it was possible to estimate the relative amount of enzyme molecules in the cell lines. From these data, it could be concluded that the revertants overproduced an enzyme with the same immunological properties as the ts line. Southern blots of the Hind III restricted DNA from the ts mutant and two revertant cell lines were examined with an HPRT cDNA probe. This established that the HPRT gene was amplified twofold in one of the revertants, and threefold in the other. However, if the revertants were reintroduced into nonselective medium, the gene copy number declined to one. Finally, northern blots of RNA extracted from the various cell lines demonstrated that the HPRT mRNA was augmented 1.5-fold in one revertant and 1.4-fold in the other. Reintroduction into non-selective medium resulted in a decline in mRNA level for the second mutant, whereas the first mutant appeared to be stabilized. We conclude that gene amplification and concomitant amplification of messenger RNA and enzyme levels are mechanisms of phenotypic reversion at the HPRT locus in Chinese hamster cells.  相似文献   

3.
Electron microscopic evidence suggests that sperm can be spontaneously incorporated by cultured cells but cytogenetic and biochemical evidence indicate that sperm do not introduce new genes into such cells with detectable frequency. Sperm suspensions from mouse or Chinese hamster epididymis or human semen were added to cultures of RAG, a mouse cell line which dies in HAT medium because of HPRT deficiency. In EMs, sperm appeared to be readily phagocytized and degraded by the cells. When sperm-treated cultures were transferred to HAT medium resistant clones arose at a frequency of about 10−6, or at least 25× the reversion rate of RAG. Most HAT-resistant clones had HPRT activity which migrated electrophoretically like HPRT of the sperm donor species, though one was apparently a spontaneous RAG revertant. Most HAT-resistant clones had some chromosomes of the sperm donor species. In human sperm× RAG clones, the array of human chromosomes suggested that the human parent had been diploid rather than haploid; some cells contained both homologues of a polymorphic pair and some contained both X and Y. Furthermore, some sperm suspensions plated alone into flasks generated colonies, thus revealing the presence of low numbers of viable somatic cells. Presence of contaminating somatic cells in a sperm suspension was correlated with ability to induce HAT-resistant colonies when the suspension was added to RAG cells. Taken together, the data suggest that correction of the HPRT deficiency of RAG by sperm suspensions occurs at very low frequency and is probably due to efficient spontaneous fusion of low numbers of contaminating somatic cells with RAG cells.  相似文献   

4.
Immunochemical methods were used to identify the genetic origin of hypoxanthine phosphoribosyltransferase (HPRT) expressed in heteroploid, HPRT-deficient mouse (A9) cells and Chinese hamster ovary (K627) cells, after these cells were fused with chick embryo erythrocytes and selected for resistance to hypoxanthine-aminopterin-thymidine (HAT) medium. All of the HAT-selected clones produced HPRT activity which was immunoprecipitable by an antiserum specific for chick HPRT, but not by an antiserum specific for mouse and hamster HPRT. Furthermore, the HPRT activity in these clones was electrophoretically indistinguishable from chick liver HPRT and clearly different from mouse liver HPRT. These data provide evidence that the HPRT activity expressed in cell hybrids produced by the fusion of HPRT-negative mammalian cells and chick erythrocytes containing genetically inactive nuclei is indeed coded by the chick HPRT gene and that an avian gene can be stably incorporated and correctly expressed in a mammalian cells.  相似文献   

5.
The purpose of this study was to use DNA transfection and microcell chromosome transfer techniques to engineer a human chromosome containing multiple biochemical markers for which selectable growth conditions exist. The starting chromosome was a t(X;3)(3pter----3p12::Xq26----Xpter) chromosome from a reciprocal translocation in the normal human fibroblast cell line GM0439. This chromosome was transferred to a HPRT (hypoxanthine phosphoribosyltransferase)-deficient mouse A9 cell line by microcell fusion and selected under growth conditions (HAT medium) for the HPRT gene on the human t(X;3) chromosome. A resultant HAT-resistant cell line (A9(GM0439)-1) contained a single human t(X;3) chromosome. In order to introduce a second selectable genetic marker to the t(X;3) chromosome, A9(GM0439)-1 cells were transfected with pcDneo plasmid DNA. Colonies resistant to both G418 and HAT medium (G418r/HATr) were selected. To obtain A9 cells that contained a t(X;3) chromosome with an integrated neo gene, the microcell transfer step was repeated and doubly resistant cells were selected. G418r/HATr colonies arose at a frequently of 0.09 to 0.23 x 10(-6) per recipient cell. Of seven primary microcell hybrid clones, four yielded G418r/HATr clones at a detectable frequency (0.09 to 3.4 x 10(-6)) after a second round of microcell transfer. Doubly resistant cells were not observed after microcell chromosome transfers from three clones, presumably because the markers were on different chromosomes. The secondary G418r/HATr microcell hybrids contained at least one copy of the human t(X;3) chromosome and in situ hybridization with one of these clones confirmed the presence of a neo-tagged t(X;3) human chromosome. These results demonstrate that microcell chromosome transfer can be used to select chromosomes containing multiple markers.  相似文献   

6.
Evidence is presented for the uptake of the human X chromosome by human-Chinese hamster cell hybrids which lack H P R T activity, following incubation with isolated human HeLa S3 chromosomes. Sixteen independent clonal cell lines were isolated in H A T medium, all of which contained a human X chromosome as determined by trypsin-Giemsa staining. The frequency of H A T-resistant clones was 32 x 10(-6) when 10(7) cells were incubated with 10(8) HeLa chromosomes. Potential reversion of the hybrid cells in H A T medium was less than 5 x 10(-7). The 16 isolated cell lines all contained activity of the human X-linked marker enzymes H P R T, P G K,alpha-Gal A, and G6PD, as determined by electrophoresis. The phenotype of G6PD was G6PD A, corresponding to G6PD A in HeLa cells. The human parental cells used in the fusion to form the hybrids had the G6PD B phenotype. The recipient cells gave no evidence of containing human X chromosomes. These results indicate that incorporation and expression of HeLa X chromosomes is accomplished in human-Chinese hamster hybrids which lack a human X chromosome.  相似文献   

7.
The mouse embryonal carcinoma cell line MC12 carries two X chromosomes, one of which replicates late in S phase and shares properties with the normal inactive X chromosome and, therefore, is considered to be inactivated. Since the hypoxanthine phosphoribosyl transferase (HPRT) gene on the active X chromosome is mutated (HPRT(NDASH;)), MC12 cells lack HPRT activity. After subjecting MC12 cells to selection in HAT medium, however, a number of HAT-resistant clones (HAT(R)) appeared. The high frequency of HAT resistance (3.18 x 10(-4)) suggested reactivation of HPRT(PLUS;) on the inactive X chromosome rather than reversion of HPRT(NDASH;). Consistent with this view, cytological analyses showed that the reactivation occurred over the length of the inactive X chromosome in 11 of 20 HAT(R) clones isolated. The remaining nine clones retained a normal heterochromatic inactive X chromosome. The spontaneous reactivation rate of the HPRT(PLUS;) on the inactive X chromosome was relatively high (1.34 x 10(-6)) and comparable to that observed for XIST-deleted somatic cells (Csankovszki et al., 2001), suggesting that the inactivated state is poorly maintained in MC12 cells.  相似文献   

8.
Summary A mutant human lymphoblastoid cell line, Raji-TG, resistant to 10g 6-thioguanine (TG)/ml was produced from wild-type cells after exposure to ethylmethane sulfonate. The Raji-TG cells showed their failure to incorporate 3H-hypoxanthine, only 2% as much hypoxanthine guanine phosphoribosyl transferase (HPRT) activity as wild-type cells, and no revertant in HAT selective medium containing hypoxanthine, aminopterin, and thymidine. Raji-TG cells, which were maintained routinely in regular medium lacking TG for as long as 2 years, still retained resistance to the drug and inability to grow in HAT medium. A fusion of Raji-TG cells and mouse cells resistant to 5-bromodeoxyuridine and lacking thymidine kinase formed hybrids, and the resulting hybrid colonies proliferated in HAT medium. These observations strongly supported the hypothesis that Raji-TG line cells might be originated from a mutational event with deficiency of HPRT. Both parental and the mutant have a modal chromosome number of 49 with a remarkably stable karyotype. Excess chromosome materials are found in chromosomes 1, 5, 7, 14, and 16. Chromosome 8 is completely missing, but is represented by two respective isochromosomes of the short and long arms of No. 8. Five different marker chromosomes could be distinguished, and most of their origin has been determined. Isolation of Raji-TG X mouse hybrid clones which contained one of each marker chromosome is of considerable value in mapping human genes on regions within particular chromosomes.  相似文献   

9.
Spontaneous and X-ray-induced mutants at the hypoxanthine phosphoribosyl transferase (HPRT) locus have been isolated from V79 Chinese hamster cells and characterized at the biochemical and cytogenetic levels. Fourteen spontaneous and 24 X-ray-induced clones were azaguanine and thioguanine resistant, did not grow in HAT medium (AZRTGRHATS) and failed to incorporate significant levels of [14C]hypoxyanthine. Cytogenetic analysis of two spontaneous and eight X-ray-induced mutants revealed no major X chromosome rearrangements. In two induced mutants, one of which was hypotetraploid (mode 35-39) with 2 X chromosomes, the short arm of the chromosome (Xp) was slightly shorter than normal. A third mutant was hyperdiploid (mode 22-23) compared with the parental clone (mode 21). When compared with wild-type clones, no other cytogenetic changes were evident in the remaining mutants. Analysis at the DNA level using a Chinese hamster HPRT cDNA probe showed major deletion of HPRT sequences in two and partial deletion in another two induced mutants. In two of the mutants with deletions of HPRT sequences there was a visible shortening of the Xp arm. In the other six mutants two spontaneous and four induced) no karyotypic changes or alterations in restriction fragment patterns were detected suggesting that they carry small deletions or point mutations at the HPRT locus.  相似文献   

10.
We have investigated the genetic activation of the hprt (hypoxanthine-guanine phosphoribosyltransferase) gene located on the inactive X chromosome in primary and transformed female diploid Chinese hamster cells after treatment with the DNA methylation inhibitor 5-azacytidine (5azaCR). Mutants deficient in HPRT were first selected by growth in 6-thioguanine from two primary fibroblast cell lines and from transformed lines derived from them. These HPRT- mutants were then treated with 5azaCR and plated in HAT (hypoxanthine-methotrexate-thymidine) medium to select for cells that had reexpressed the hprt gene on the inactive X chromosome. Contrary to previous results with primary human cells, 5azaCR was effective in activating the hprt gene in primary Chinese hamster fibroblasts at a low but reproducible frequency of 2 x 10(-6) to 7 x 10(-6). In comparison, the frequency in independently derived transformed lines varied from 1 x 10(-5) to 5 x 10(-3), consistently higher than in the nontransformed cells. This increase remained significant when the difference in growth rates between the primary and transformed lines was taken into account. Treatment with 5azaCR was also found to induce transformation in the primary cell lines but at a low frequency of 4 x 10(-7) to 8 x 10(-7), inconsistent with a two-step model of transformation followed by gene activation to explain the derepression of hprt in primary cells. Thus, these results indicate that upon transformation, the hprt gene on the inactive Chinese hamster X chromosome is rendered more susceptible to action by 5azaCR, consistent with a generalized DNA demethylation associated with the transformation event or with an increase in the instability of an underlying primary mechanism of X inactivation.  相似文献   

11.
HPRT mutant clones of V79 Chinese hamster cells, isolated after 6-thioguanine (6TG) selection, normally exhibit sensitivity to growth in medium containing the folic acid inhibitor aminopterin or the glutamine analogue L-azaserine (e.g., HAT or HAsT medium). However, it has been shown that some HPRT- clones are resistant to both HAT and HAsT medium. The present study was undertaken to investigate whether any common structural gene alteration exists for such 6TGr-HATr-HAsTr clones. Four clones were studied, 1 of spontaneous origin, 2 induced by a low dose of MNU and 1 EMS-induced. In contrast to wild-type cells and a mutant clone carrying a complete deletion of the HPRT gene, these 4 investigated 6TGr-HATr-HAsTr clones all showed an enhanced incorporation of exogenous 3H-hypoxanthine in the presence of aminopterin and L-azaserine suggesting that these clones carry mutations in the structural part of the HPRT gene. Sequence analysis of PCR-amplified HPRT cDNA from these mutants showed that the spontaneous and the 2 MNU-induced mutant clones lacked exon 4, while the EMS-induced mutant had a GC to AT transition in exon 6. Southern blot analysis of genomic DNA after digestion with BglII, EcoRI and PstI showed no changes in fragment patterns as compared to the wild type. Further sequence analysis of PCR-amplified genomic DNA using exon 4-specific primers showed that all these 3 mutants had an AT to GC or GC to AT transition in exon 4, but had no alterations in the splice sites of exon 4. Based on their characteristics of hypoxanthine incorporation, the present mutant clones fit the model for the proposed functional domains of the HPRT protein.  相似文献   

12.
Two different single nucleotide transitions of hypoxanthine-guanine phosphoribosyltransferase (HPRT) were identified in a Japanese patient with Lesch-Nyhan syndrome (LNS) and a patient with hereditary gout. HPRT enzyme activities in the two patients were severely deficient, but the size and amount of mRNA were normal according to Northern analysis. Entire coding regions of HPRT cDNAs were amplified by PCR and sequenced. A G-to-A substitution at base 208 in exon 3, which predicted glycine 70 to arginine, was detected in the LNS patient (identical mutation with HPRTUtrecht). A C-to-A substitution at base 73 in exon 2, which predicted proline 25 to threonine, was detected in the gout patient (designated HPRTYonago). We transfected normal HPRT cDNA, mutant cDNA with HRPTUtrecht or mutant cDNA with HPRTYonago, respectively, to HPRT-deficient mouse cells and isolated permanent expression cell lines. The HPRT-deficient mouse cells had no detectable HPRT activity and a very low amount of HPRT mRNA. When the HPRT-deficient mouse cells were transfected with normal human cDNA, HPRT enzyme activity increased to 21.8% that of normal mouse cells. The mouse cells transfected with HPRTUtrecht showed no increase in HPRT activity; however, when the mouse cells were transfected with HPRTYonago, the activity increased to 2.4% that of normal activity. The proliferative phenotypes of these cells in HAT medium and in medium containing 6-thioguanine were similar to those of skin fibroblasts from the patients. This series of studies confirmed that each of the two point mutations was responsible for the decreases in HPRT enzyme activity, and the proliferative phenotypes in HAT medium and medium containing 6-thioguanine.  相似文献   

13.
Hybrids between Chinese hamster cells were isolated and maintained in media that were selective or nonselective for markers present in the parent cells (HGPRT and TK deficiencies, respectively). Segregation frequencies for resistance to azaguanine (AZG), thioguanine (THG), or bromodeoxyuridine (BrdU) could be enhanced for some groups of hybrids if the stock cells were maintained under nonselective conditions rather than in HAT medium. In these populations the expression of resistance was dominant or codominant even though marker patterns were recessive for the same cells in HAT. Clonal analysis showed that enhancement took place by adaptive shifts rather than by variation and selection. Segregation frequencies in hybrids were also found to differ significantly between clones isolated by replicate fusions of any two parental cell types. The basis for this heterogeneity is unknown and deserves further study.  相似文献   

14.
Transfer of genetic information from isolated hamster chromosomes to mouse cells is described. Metaphase chromosomes isolated from Chinese hamster diploid cells were incubated with mouse Cl. 1-d cells deficient in thymidine kinase activity. Two viable colonies appeared from the treated mouse cells after HAT selection with a frequency of about 10−8. The first colony isolated (Cl. 1) failed to grow, however. The second colony isolated (Cl. 2) grew well in HAT medium and was subcultured for more than 70 generations. Cl. 2 cells possessed an elevated tetrahydrofolate dehydrogenase activity of molecular species resembling that of Chinese hamster cells, as shown by disc electrophoresis. The cell line also expressed surface antigen(s) specific to hamster species, as shown by mixed hemadsorption test and immune cell electrophoresis. This latter phenotype disappeared after prolonged cultivation (59 generations) of the cells in non-selective medium. The karyotype of Cl. 2 cells corresponded to that of the mouse species and was quite different from that of hamster cells. Hamster chromosomes could not be identified in any of the cell clones by detailed analysis by the banding method (Q- and C-band). Not one revertant cell was obtained among 4.2×108 Cl. 1-d cells in the control.  相似文献   

15.
Somatic cell hybridization techniques were applied to gene linkage analysis in the laboratory mouse. Cells of an established line of Chinese hamster lung fibroblasts were fused with mouse embryo fibroblasts and with mouse peritoneal macrophages obtained from different inbred strains. From 3 hybridization experiments, 123 primary and secondary clones were isolated in HAT selective medium and 24 were back-selected in 8-azaguanine. Hybrid clones were characterized for the expression of 16 murine isozymes by starch, acrylamide, and Cellogel electrophoresis, and on the basis of segregation data, 3 syntenic associations could be made. Malate oxidoreductase decarboxylating (MOD) and mannose phosphate isomerase (MPI) segregated concordantly, confirming an established linkage relationship; adenine phosphoribosyltransferase (APRT) segregated concordantly with glutathione reductase (GR) which is known to be on chromosome 8; alpha-galactosidase was observed to be syntenic with hypoxanthine phosphoribosyltransferase (HPRT), and X-linked enzyme. All other isozymes examined segregated independently of one another.  相似文献   

16.
R G Fenwick  C T Caskey 《Cell》1975,5(2):115-122
By selecting variants of Chinese hamster cells that were resistant to 6-thioguanine at 39 degrees C, but which would continue to grow in HAT medium at 33 degrees C, we have isolated cell lines with thermosensitive phenotypes. These clones form colonies in HAT medium and incorporate 14-C-hypoxanthine much more efficiently at 33 degrees C than at 39 degrees C. The specific activity of hypoxanthine-guanine phosphoribo-syltransferase is at least 10 times higher in variant cells grown at 33 degrees C than in those grown in 39 degrees C, and the enzymes from the variant clones are inactivated in vitro at 39 degrees C 7-9 times more rapidly than is the enzyme from wild-type cells. The results are consistent with the conclusion that the selected clones have missense mutations in the structural gene for the enzyme.  相似文献   

17.
In this study we investigated the expression of primate galactokinase in somatic cell hybrids between a thymidine kinase-deficient mouse cell line and two different primate cell lines, one of which was derived from African green monkey kidney cells and the other from chimpanzee fibroblasts. All the African green monkey-mouse hybrid clones, selected in HAT medium, expressed monkey galactokinase activity and contained a monkey chromosome similar to a human E-group chromosome. When these clones were backselected in medium containing 5-bromodeoxyuridine, both this chromosome and the monkey galactokinase activity were lost. All the hybrid clones between mouse and chimpanzee cells, which were selected in HAT medium, contained the chimpanzee chromosome 17 and expressed chimpanzee galactokinase activity. These results indicate that the linkage relationship between galactokinase and thymidine kinase has been maintained in 3 divergent primate species--man, chimpanzee, and Old World monkey.  相似文献   

18.

• Induction of gene mutations by SV40 was studied in aneuploid human and Chinese hamster cells. In Chinese hamster cells SV40-induced chromosome aberrations were also studied.

• SV40 penetrated into the cells of both lines and induced synthesis of the T antigen. The efficiency of infection in Chinese hamster cells was tested additionallby their ability to form colonies in medium lacking the serum growth factor. The maximal number of cells with growth factor independence was observed on the first day after infection. When hamster cells had been maintained in “factor-free medium” for the first two passages after infection a sub-line was isolated, which synthesized T antigen 60 days after exposure to SV40. This was considered to be an indirect proof of the integration of viral genome into host chromosome.

• A significant increase in the frequency of chromosomal aberrations was detected in SV40-infected Chinese hamster cells. It was observed on the first and second days after treatment. The most numerous were the chromosome and chromatid breaks, which were distributed randomly in 5 morphological groups according to the chromosome length.

• SV40-induced mutations of resistance to 8-AG and 6-MP in human and Chinese hamster cells respectively were detected, when cells were plated in selective medium one to five days after infection. Induction was detected in all the 4 experiments with human cells and in 9 out of 11 experiments with Chinese hamsters cells. Induction was highly significant according to the Wilcoxon test (P>0.99), when the results of all experiments carried out in human and Chinese hamster cells were summarized. Resistance was stable after prolonged cultivation of 13 isolated clones under non-selective conditions.

• It is suggested that viral genome integration, gene mutations and chromosomal aberrations may have common molecular mechanisms. The role of gene mutations in virus-induced carcinogenesis is discussed.

Abbreviations: 8-AG, 8-azaguanine; FFM, factor-free medium; 6-MP, mercaptopurine; HGRT, hypoxantine-guanine phosphoribosyltransferase  相似文献   


19.
Hybrid cells were isolated by fusing primary chicken myoblasts to HPRT-deficient rat L6 myoblasts and incubating the cells in medium containing HAT and ouabain. All hybrid clones contained both rat and chicken chromosomes and expressed a number of gene products characteristic of both species. Although all clones were capable of fusing spontaneously to form myofibers, immunofluorescence and isoenzyme analysis revealed only the rat forms of skeletal muscle myosin and MM-creatine kinase. No differentiated gene products of chicken origin were detected. Analysis of the expression of chicken HPRT revealed that some hybrid clones were capable of modulating this enzyme activity when switched from HAT medium into thioguanine medium and back into HAT, even though HPRT is normally a constitutively expressed enzyme. Parental control cells were incapable of this modulation phenomenon.  相似文献   

20.
Hybrid cells were isolated by fusing primary chicken myoblasts to HPRT-deficient rat L6 myoblasts and incubating the cells in medium containing HAT and ouabain. All hybrid clones contained both rat and chicken chromosomes and expressed a number of gene products characteristic of both species. Although all clones were capable of fusing spontaneously to form myofibers, immunofluorescence and isoenzyme analysis revealed only the rat forms of skeletal muscle myosin and MM-creatine kinase. No differentiated gene products of chicken origin were detected. Analysis of the expression of chicken HPRT revealed that some hybrid clones were capable of modulating this enzyme activity when switched from HAT medium into thioguanine medium and back into HAT, even though HPRT is normally a constitutively expressed enzyme. Parental control cells were incapable of this modulation phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号