首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Recognition of virus infections by pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation associated gene 5 (MDA5), activates signaling pathways, leading to the induction of inflammatory cytokines that limit viral replication. To determine the effects of PRR-mediated innate immune response on hepatitis B virus (HBV) replication, a 1.3mer HBV genome was cotransfected into HepG2 or Huh7 cells with plasmid expressing TLR adaptors, myeloid differentiation primary response gene 88 (MyD88), and TIR-domain-containing adaptor-inducing beta interferon (TRIF), or RIG-I/MDA5 adaptor, interferon promoter stimulator 1 (IPS-1). The results showed that expressing each of the three adaptors dramatically reduced the levels of HBV mRNA and DNA in both HepG2 and Huh7 cells. However, HBV replication was not significantly affected by treatment of HBV genome-transfected cells with culture media harvested from cells transfected with each of the three adaptors, indicating that the adaptor-induced antiviral response was predominantly mediated by intracellular factors rather than by secreted cytokines. Analyses of involved signaling pathways revealed that activation of NF-κB is required for all three adaptors to elicit antiviral response in both HepG2 and Huh7 cells. However, activation of interferon regulatory factor 3 is only essential for induction of antiviral response by IPS-1 in Huh7 cells, but not in HepG2 cells. Furthermore, our results suggest that besides NF-κB, additional signaling pathway(s) are required for TRIF to induce a maximum antiviral response against HBV. Knowing the molecular mechanisms by which PRR-mediated innate defense responses control HBV infections could potentially lead to the development of novel therapeutics that evoke the host cellular innate antiviral response to control HBV infections.  相似文献   

3.
Guanylate binding protein-1(GBP-1)is an interferon-induced protein.To observe its antiviral effect against Hepatitis B virus(HBV)and Coxsackie virus B3(CVB3),we constructed an eukaryotic expression vector of human GBP-1(hGBP-1).Full-length encoding sequence of hGBP-1 was amplified by long chain RT-PCR and inserted into a pCR2.1 vector,then subcloned into a pCDNA3.1(-)vector.Recombinant hGBP-1 plasmids and pHBV1.3 carrying 1.3-fold genome of HBV were contransfected into HepG2 cells,and inhibition effect of hGBP-1 against HBV replication was observed.Hela cells transfected with recombinant hGBP-1 plasmids were challenged with CVB3,and viral yield in cultures were detected.The results indicated that recombinant eukaryotic expression plasmid of hGBP-1 was constructed successfully and the hGBP-1 gene carried in this plasmid could be efficiently expressed in HepG2 cells and Hela cells.hGBP-1 inhibit CVB3 but not HBV replication in vitro.These results demonstrate that hGBP-1 mediates an antiviral effect against CVB3 but not HBV and perhaps plays an important role in the interferon-mediated antiviral response against CVB3.  相似文献   

4.
Guanylate binding protein-1(GBP-1) is an interferon-induced protein. To observe its antiviral effect against Hepatitis B virus (HBV) and Coxsackie virus B3 (CVB3), we constructed an eukaryotic expression vector of human GBP-1(hGBP-1). Full-length encoding sequence of hGBP-1 was amplified by long chain RT-PCR and inserted into a pCR2.1 vector, then subcloned into a pCDNA3.1(-) vector. Recombinant hGBP-1 plasmids and pHBV1.3 carrying 1.3-fold genome of HBV were contransfected into HepG2 cells, and inhibition effect of hGBP-1 against HBV replication was observed. Hela cells transfected with recombinant hGBP-1 plasmids were challenged with CVB3, and viral yield in cultures were detected. The results indicated that recombinant eukaryotic expression plasmid of hGBP-1 was constructed successfully and the hGBP-1 gene carried in this plasmid could be efficiently expressed in HepG2 cells and Hela cells. hGBP-1 inhibit CVB3 but not HBV replication in vitro. These results demonstrate that hGBP-1 mediates an antiviral effect against CVB3 but not HBV and perhaps plays an important role in the interferon-mediated antiviral response against CVB3.  相似文献   

5.
Guanylate binding protein-1(GBP-1) is an interferon-induced protein. To observe its antiviral effect against Hepatitis B virus (HBV) and Coxsackie virus B3 (CVB3), we constructed an eukaryotic expression vector of human GBP-1(hGBP-1). Full-length encoding sequence of hGBP-1 was amplified by long chain RT-PCR and inserted into a pCR2.1 vector, then subcloned into a pCDNA3.1(−) vector. Recombinant hGBP-1 plasmids and pHBV1.3 carrying 1.3-fold genome of HBV were contransfected into HepG2 cells, and inhibition effect of hGBP-1 against HBV replication was observed. Hela cells transfected with recombinant hGBP-1 plasmids were challenged with CVB3, and viral yield in cultures were detected. The results indicated that recombinant eukaryotic expression plasmid of hGBP-1 was constructed successfully and the hGBP-1 gene carried in this plasmid could be efficiently expressed in HepG2 cells and Hela cells. hGBP-1 inhibit CVB3 but not HBV replication in vitro. These results demonstrate that hGBP-1 mediates an antiviral effect against CVB3 but not HBV and perhaps plays an important role in the interferon-mediated antiviral response against CVB3. Foundation item: National Natural Science Foundation (No.30271170, No.30170889).  相似文献   

6.
为了研究乙型肝炎病毒(hepatitis B virus, HBV)DNA环化结构与HBV线性结构的表达质粒在体外复制表达水平的差异,采用3种含有HBV全长DNA的表达质粒与自连环化的HBV DNA分别转染Huh7细胞. 5 d后收集转染处理过的Huh7细胞和细胞上清,从感染细胞中抽提纯化HBV复制中间体进行Southern印迹分析,并将细胞培养上清进行ELISA分析.结果显示,HBV DNA通过环化后转染Huh7细胞,可高效地进行转录和复制表达,且优于质粒转染的效果.证明在细胞中,HBV DNA环状结构的复制表达能力优于HBV线性结构的表达质粒.  相似文献   

7.
8.
The chemokine CXCL-8 (interleukin-8) is induced by many viruses, including hepatitis C virus (HCV). In the current study, we examined CXCL-8 levels in the context of acute and chronic HCV replication in vitro. Two different small interfering RNAs were used to silence CXCL-8 mRNA and protein expression in Huh7 and BB7 replicon cells. HCV RNA synthesis in BB7 cells was inhibited by CXCL-8 knockdown. Furthermore, antibody neutralization of endogenous CXCL-8 activity inhibited HCV replication, while addition of recombinant human CXCL-8 stimulated NS5A protein expression. Moreover, CXCL-8 protein levels correlated positively with HCV RNA levels in four independent subgenomic and genomic replicon lines (R = 0.41, P = 0.0013). However, CXCL-8 mRNA levels correlated inversely with CXCL-8 protein and HCV RNA levels in all replicon lines and in Huh7 cells. Transient replication assays with strongly permissive and weakly permissive Huh7 cells and three independent subgenomic replicons with various replicative capacities revealed that CXCL-8 protein levels were higher in weakly than in strongly permissive cells. The JFH-1 subgenomic replicon, which replicated to high levels in both strongly and weakly permissive Huh7 cells, induced CXCL-8 protein to high levels in both cell types. The data indicate that in the replicon system, CXCL-8 protein levels are positively associated with chronic HCV replication and that CXCL-8 removal inhibits HCV replication. During acute HCV replication, CXCL-8 production may be inhibitory to viruses with low replicative capacity. The data underscore the complex regulation of CXCL-8 mRNA and protein expression and further suggest that in addition to contributing to HCV pathology via proinflammatory actions, CXCL-8 may have opposing antiviral and proviral effects depending on the level of HCV replication, the cellular context, and whether the infection is acute or chronic.  相似文献   

9.
10.
Recently, cell-based replicon systems for hepatitis C virus (HCV), in which the nonstructural proteins stably replicate subgenomic viral RNA in Huh7 cells, were developed. To date, one limitation of using these replicon systems to advance drug discovery is the inability of other genotypic derivatives, beyond those of two distinct strains of genotype 1b (HCV-N and Con1), to stably replicate in Huh7 cells. In this report, we evaluated a series of replicon genotype 1a-1b chimeras, as well as a complete genotype 1a replicon clone. A subgenomic replicon construct containing only type 1a sequences failed to generate stable colonies in Huh7 cells even after repeated attempts. Furthermore, addition of an NS5A adaptive mutation (S2204I) which enhances type 1b replicon efficiency was insufficient to confer replication to the wild-type 1a replicon. This subgenomic replicon was subsequently found to be inefficiently translated in Huh7 cells compared to a type 1b replicon, and the attenuation of translation mapped to the N-terminal region of NS3. Therefore, to ensure efficient translation and thereby support replication of the 1a genome, the coding sequence for first 75 residues from type 1a were replaced with the type 1b (strain Con 1) NS3 coding sequence. Although nonstructural proteins were expressed at lower levels with this replicon than with type 1b and although the amount of viral RNA was also severalfold lower (150 copies of positive-strand RNA per cell), the replicon stably replicated in Huh7 cells. Notwithstanding this difference, the ratio of positive- to negative-strand RNA of 26 was similar to that found with the type 1b replicon. Similar results were found for a 1b replicon expressing the type 1a RNA-dependent RNA polymerase. These 1a hybrid replicons maintained sensitivity to alpha interferon (IFN-alpha), albeit with an eightfold-higher 50% inhibitory concentration than type 1b replicons. Evidence is provided herein to confirm that this differential response to IFN-alpha may be attributed directly to the type 1a polymerase.  相似文献   

11.
Progress toward development of better therapies for the treatment of hepatitis C virus (HCV) infection has been hampered by poor understanding of HCV biology and the lack of biological assays suitable for drug screening. Here we describe a powerful HCV replication system that employs HCV replicons expressing the beta-lactamase reporter (bla replicons) and subpopulations of Huh7 cells that are more permissive (or "enhanced") to HCV replication than na?ve Huh7 cells. Enhanced cells represent a small fraction of permissive cells present among na?ve Huh7 cells that is enriched during selection with replicons expressing the neomycin phosphotransferase gene (neo replicons). The level of permissiveness of cell lines harboring neo replicons can vary greatly, and the enhanced phenotype is usually revealed upon removal of the neo replicon with inhibitors of HCV replication. Replicon removal is responsible for increased permissiveness, since this effect could be reproduced either with alpha interferon or with an HCV NS5B inhibitor. Moreover, adaptive mutations present in the replicon genome used during selection do not influence the permissiveness of the resulting enhanced-cell population, suggesting that the mechanisms governing the permissiveness of enhanced cells are independent from viral adaptation. Because the beta-lactamase reporter allows simultaneous quantitation of replicon-harboring cells and reporter activity, it was possible to investigate the relationship between genome replication activity and the frequency with which transfected genomes can establish persistent replication. Our study demonstrates that differences in the replication potential of the viral genome are manifested primarily in the frequency with which persistent replication is established but modestly affect the number of replicons observed per replicon-harboring cell. Replicon copy number was found to vary over a narrow range that may be defined by a minimal number required for persistent maintenance and a maximum that is limited by the availability of essential host factors.  相似文献   

12.
Sumpter R  Wang C  Foy E  Loo YM  Gale M 《Journal of virology》2004,78(21):11591-11604
Hepatitis C virus (HCV) replicates through an error-prone process that may support the evolution of genetic variants resistant to the host cell antiviral response and interferon (IFN)-based therapy. We evaluated HCV-IFN interactions within a long-term culture system of Huh7 cell lines harboring different variants of an HCV type 1b subgenomic RNA replicon that differed at only two sites within the NS5A-encoding region. A replicon with a K insertion at HCV codon 2040 replicated efficiently and exhibited sequence stability in the absence of host antiviral pressure. In contrast, a replicon with an L2198S point mutation replicated poorly and triggered a cellular response characterized by IFN-beta production and low-level IFN-stimulated gene (ISG) expression. When maintained in long term-culture, the L2198S RNA evolved into a stable high-passage (HP) variant with six additional point mutations throughout the HCV protein-encoding region that enhanced viral replication. The HP RNA transduced Huh7 cells with more than 1,000-fold greater efficiency than its L2198S progenitor or the K2040 sequence. Replication of the HP RNA resisted suppression by IFN-alpha treatment and was associated with virus-directed reduction in host cell expression of ISG56, an antagonist of HCV RNA translation. Accordingly, the HP RNA was retained within polyribosome complexes in vivo that were refractory to IFN-induced disassembly. These results identify ISG56 as a translational control effector of the host response to HCV and provide direct evidence to link this response to viral sequence evolution, ISG regulation, and selection of the IFN-resistant viral phenotype.  相似文献   

13.
Hepatitis C virus (HCV) infection causes chronic liver disease and is a worldwide health problem. Despite ever-increasing demand for knowledge on viral replication and pathogenesis, detailed analysis has been hampered by a lack of efficient viral culture systems. We isolated HCV genotype 2a strain JFH-1 from a patient with fulminant hepatitis. This strain replicates efficiently in Huh7 cells. Efficient replication and secretion of recombinant viral particles can be obtained in cell culture by transfection of in vitro-transcribed full-length JFH-1 RNA into Huh7 cells. JFH-1 virus generated in cell culture is infectious for both naive Huh7 cells and chimpanzees. The efficiency of viral production and infectivity of generated virus is substantially improved with permissive cell lines. This protocol describes how to use this system, which provides a powerful tool for studying viral life cycle and for the construction of antiviral strategies and the development of effective vaccines. Viral particles can be obtained in 12 days with this protocol.  相似文献   

14.
Hepatitis C virus (HCV) RNA synthesis takes place on a detergent resistant membrane (DRM) structure. To identify potential cellular proteins related to HCV replication complexes (RC), we purified DRMs from HCV subgenomic replicon cells and its parental Huh7 cells. The proteins of DRM fractions were separated by two-dimensional gel electrophoresis and identified by mass spectrometry. Comparing with parental Huh7 cells, 60 proteins were up-regulated while 14 proteins were down-regulated in HCV replicon cells. Ras-GTPase-activating protein binding protein 1 (G3BP1), one of the elevated proteins, was found to be associated with HCV NS5B and knockdown of G3BP1 by siRNA in HCV replicon cells significantly reduced HCV replication, which may indicate it a potential component of HCV RC. These results suggest that HCV viral gene and proteins may regulate the presence of host cellular proteins in DRM, ensure appropriate concentrations of replication components, and hence control the rates or efficiencies of HCV replication.  相似文献   

15.
Alpha interferon (IFN-α) is an approved medication for chronic hepatitis B. Gamma interferon (IFN-γ) is a key mediator of host innate and adaptive antiviral immunity against hepatitis B virus (HBV) infection in vivo. In an effort to elucidate the antiviral mechanism of these cytokines, 37 IFN-stimulated genes (ISGs), which are highly inducible in hepatocytes, were tested for their ability to inhibit HBV replication upon overexpression in human hepatoma cells. One ISG candidate, indoleamine 2,3-dioxygenase (IDO), an IFN-γ-induced enzyme catalyzing tryptophan degradation, efficiently reduced the level of intracellular HBV DNA without altering the steady-state level of viral RNA. Furthermore, expression of an enzymatically inactive IDO mutant did not inhibit HBV replication, and tryptophan supplementation in culture completely restored HBV replication in IDO-expressing cells, indicating that the antiviral effect elicited by IDO is mediated by tryptophan deprivation. Interestingly, IDO-mediated tryptophan deprivation preferentially inhibited viral protein translation and genome replication but did not significantly alter global cellular protein synthesis. Finally, tryptophan supplementation was able to completely restore HBV replication in IFN-γ- but not IFN-α-treated cells, which strongly argues that IDO is the primary mediator of IFN-γ-elicited antiviral response against HBV in human hepatocyte-derived cells.  相似文献   

16.
17.
Lambda interferon inhibits hepatitis B and C virus replication   总被引:11,自引:0,他引:11       下载免费PDF全文
Lambda interferon (IFN-lambda) induces an intracellular IFN-alpha/beta-like antiviral response through a receptor complex distinct from the IFN-alpha/beta receptor. We therefore determined the ability of IFN-lambda to inhibit hepatitis B virus (HBV) and hepatitis C virus (HCV) replication. IFN-lambda inhibits HBV replication in a differentiated murine hepatocyte cell line with kinetics and efficiency similar to IFN-alpha/beta and does not require the expression of IFN-alpha/beta or IFN-gamma. Furthermore, IFN-lambda blocked the replication of a subgenomic and a full-length genomic HCV replicon in human hepatocyte Huh7 cells. These results suggest the possibility that IFN-lambda may be therapeutically useful in the treatment of chronic HBV or HCV infection.  相似文献   

18.
Previously, we reported that artificial zinc-finger proteins (AZPs) inhibited virus DNA replication in planta and in mammalian cells by blocking binding of a viral replication protein to its replication origin. However, the replication mechanisms of viruses of interest need to be disentangled for the application. To develop more widely applicable methods for antiviral therapy, we explored the feasibility of inhibition of HPV-18 replication as a model system by cleaving its viral genome. To this end, we fused the staphylococcal nuclease cleaving DNA as a monomer to an AZP that binds to the viral genome. The resulting hybrid nuclease (designated AZP–SNase) cleaved its target DNA plasmid efficiently and sequence-specifically in vitro. Then, we confirmed that transfection with a plasmid expressing AZP–SNase inhibited HPV-18 DNA replication in transient replication assays using mammalian cells. Linker-mediated PCR analysis revealed that the AZP–SNase cleaved an HPV-18 ori plasmid around its binding site. Finally, we demonstrated that the protein-delivered AZP–SNase inhibited HPV-18 DNA replication as well and did not show any significant cytotoxicity. Thus, both gene- and protein-delivered hybrid nucleases efficiently inhibited HPV-18 DNA replication, leading to development of a more universal antiviral therapy for human DNA viruses.  相似文献   

19.
Hydrodynamic injection (HI) with a replication competent hepatitis B virus (HBV) genome may lead to transient or prolonged HBV replication in mice. However, the prolonged HBV persistence after HI depends on the specific backbone of the vector carrying HBV genome and the genetic background of the mouse strain. We asked whether a genetically closely related hepadnavirus, woodchuck hepatitis virus (WHV), may maintain the gene expression and replication in the mouse liver after HI. Interestingly, we found that HI of pBS-WHV1.3 containing a 1.3 fold overlength WHV genome in BALB/c mouse led to the long presence of WHV DNA and WHV proteins expression in the mouse liver. Thus, we asked whether WHV genome carrying foreign DNA sequences could maintain the long term gene expression and persistence. For this purpose, the coding region of HBV surface antigen (HBsAg) was inserted into the WHV genome to replace the corresponding region. Three recombinant WHV-HBV genomes were constructed with the replacement with HBsAg a-determinant, major HBsAg, and middle HBsAg. Serum HBsAg, viral DNA, hepatic WHV protein expression, and viral replication intermediates were detected in mice after HI with recombinant genomes. Similarly, the recombinant genomes could persist for a prolonged period of time up to 45 weeks in mice. WHV and recombinant WHV-HBV genomes did not trigger effective antibody and T-cell responses to viral proteins. The ability of recombinant WHV constructs to persist in mice is an interesting aspect for the future investigation and may be explored for in vivo gene transfer.  相似文献   

20.
旨在探讨丙型肝炎病毒(hepatitis C virus, HCV)cured细胞株的易感机制。本研究将体外转录的HCV RNA电转入肝癌细胞系Huh 7细胞,建立HCV复制子细胞株,用 γ-干扰素(interferon,IFN)处理复制子细胞株,获得HCV cured Huh 7A和Huh 7B细胞株。用插入报告基因的HCV毒株Jc1-G感染上述细胞株,分别进行荧光素酶活性测定、蛋白质印迹法和荧光定量聚合酶链反应(polymerase chain reaction,PCR)检测以验证其易感性。收集Huh 7、Huh 7.5、Huh 7A和Huh 7B细胞并利用IFN-α处理,之后用蛋白质印迹法及荧光定量PCR进行检测,验证细胞株中IFN诱生信号通路中关键因子内源性表达及抗病毒活性ISGs的激活水平。结果显示,在Huh 7A和Huh 7B细胞中检测不到病毒RNA,与Huh 7细胞一致。病毒感染实验中,与Huh 7细胞相比,Huh 7A和Huh 7B细胞株中荧光素酶活性增高百倍,病毒蛋白表达和RNA水平亦显著上调,与Huh 7.5细胞株中的表达水平接近。IFN信号通路实验中,与Huh 7细胞相比,Huh 7A和Huh 7B细胞株中RIG-I/MDA5/MAVS内源性蛋白表达和mRNA水平无明显差异;IFN-α处理细胞后IFN刺激基因isg56,mx1,mx2,oax1,oax2,viperin,cxcl10,ifitm1和ifitm3激活水平亦无显著变化。结果提示,本研究制备的Huh 7A和Huh 7B细胞株可支持HCV高水平复制,将为研究病毒复制机制提供有力的支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号