首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The family Cyprinidae is widely distributed in East Asia, and has the important phylogenetic signifi- cance in the fish evolution. In this study, the 5′ end partial sequences (containing exon 1, exon 2 and indel 1) of S6K1 gene were obtained from 30 representative species in Cyprinidae and outgroup using PCR amplification and sequencing. The phylogenetic relationships of Cyprinidae were reconstructed with neighbor joining (NJ), maximum parsimony (MP), maximum likelihood (ML), and Bayesian meth- ods. Myxocyprinus asiaticus (Catostomidae) was assigned to the outgroup taxon. Similar phylogenetic relationships within the family Cyprinidae were achieved with the four analyses. Leuciscini and Barbini were monophyletic lineages respectively with the high nodal supports. Leuciscini comprises Hy- pophthalmichthyinae, Xenocyprinae, Cultrinae, Gobioninae, Acheilognathinae and East Asian species of Leuciscinae and Danioninae. Monophyly of East Asian clade was supported with high nodal support. Barbini comprises Schizothoracinae, Barbinae, Cyprininae and Labeoninae. The monophyletic lineage consisting of Danio rerio, D. myersi, and Rasbora trilineata was basal in the tree. In addition, the large fragment indels in intron 1 were analyzed to improve the understanding of Cyprinidae relationships. The results showed that the large fragment indels were correlated with the relations among species. Some conserved regions in intron 1 were thought to be involved in the functional regulation. However, no correlation was found between sequence variations and species characteristic size.  相似文献   

2.
The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages.  相似文献   

3.
The family Cyprinidae is one of the largest families of fishes in the world and a well-known component of the East Asian freshwater fish fauna. However, the phylogenetic relationships among cyprinids are still poorly understood despite much effort paid on the cyprinid molecular phylogenetics. Original nucleotide sequence data of the nuclear recombination activating gene 2 were collected from 109 cyprinid species and four non-cyprinid cypriniform outgroup taxa and used to infer the cyprinid phylogenetic relationships and to estimate node divergence times. Phylogenetic reconstructions using maximum parsimony, maximum likelihood, and Bayesian analysis retrieved the same clades, only branching order within these clades varied slightly between trees. Although the morphological diversity is remarkable, the endemic cyprinid taxa in East Asia emerged as a monophyletic clade referred to as Xenocypridini. The monophyly for the subfamilies including Cyprininae and Leuciscinae, as well as the tribes including Labeonini, Gobionini, Acheilognathini, and Leuciscini, was also well resolved with high nodal support. Analysis of the RAG2 gene supported the following cyprinid molecular phylogeny: the Danioninae is the most basal subfamily within the family Cyprinidae and the Cyprininae is the sister group of the Leuciscinae. The divergence times were estimated for the nodes corresponding to the principal clades within the Cyprinidae. The family Cyprinidae appears to have originated in the mid-Eocene in Asia, with the cladogenic event of the key basal group Danioninae occurring in the early Oligocene (about 31-30 MYA), and the origins of the two subfamilies, Cyprininae and Leuciscinae, occurring in the mid-Oligocene (around 26 MYA).  相似文献   

4.
Complete mitochondrial cytochrome b sequences of 54 species, including 18 newly sequenced, were analyzed to infer the phylogenetic relationships within the family Cyprinidae in East Asia. Phylogenetic trees were generated using various tree-building methods, including Neighbor-joining (NJ), Maximum Parsimony (MP) and Maximum Likelihood (ML) methods, with Myxocyprinus asiaticus (family Catostomidae) as the designated outgroup. The results from NJ and ML methods were mostly similar, supporting some existing subfamilies within Cyprinidae as monophyletic, such as Cultrinae, Xenocyprinae and Gobioninae (including Gobiobotinae). However, genera within the subfamily “Danioninae” did not form a monophyletic group. The subfamily Leuciscinae was divided into two unrelated groups: the “Leuciscinae” in East Asia forming as a monophyletic group together with Cultrinae and Xenocyprinae, while the Leuciscinae in Europe, Siberia, and North America as another monophyletic group. The monophyly of subfamily Cyprininae sensu Howes was supported by NJ and ML trees and is basal in the tree. The position of Acheilognathinae, a widely accepted monophyletic group represented by Rhodeus sericeus, was not resolved.  相似文献   

5.
The ability of the program POY, implementing optimization alignment, to deal with major indels is explored and discussed in connection with a phylogenetic analysis of the genus Secale based on partial Adh1 sequences. The Adh1 sequences used span exon 2-4. Nearly all variation is found in intron 2 and intron 3, which form the basis for the phylogenetic analyses. Both in some ingroup and outgroup taxa intron 3 has a major duplication. Previous phylogenetic analyses have repeatedly confirmed monophyly of both Secale and Hordeum, the latter being part of the outgroup. However, optimization alignment only recovers both genera as monophyletic when knowledge of the duplication is incorporated in the analysis. The phylogenetic relationships within Secale are not clearly resolved. Subspecific taxa of Secale strictum have identical sequences and they are confined to a monophyletic group. However, the two subspecific taxa of Secale cereale do not form a monophyletic group, and the position of Secale sylvestre is uncertain.  相似文献   

6.
The phylogenetic relationships of two cavefish, Phreatichthys andruzzii and Garra barreimiae, belonging to the family Cyprinidae, were investigated by sequencing the mitochondrial cytochrome b gene. These cavefish species are native to Somalia (eastern Africa) and Oman (southeastern Arabian peninsula), respectively, and so far no molecular support to their taxonomy and phylogenetic position was ever provided. The analysis of cytochrome b sequences showed that the species are monophyletic taxa, closely related to each other and to other species of the genus Garra. Molecular clock calculations allowed to date the origin of these hypogaean species back to the Plio-Pleistocene and support the hypothesis that African cyprinids originated from Miocenic immigrations of Asian ancestors.  相似文献   

7.
The Botiinae have traditionally represented a subfamily of the Cobitidae. At present, the classification and phylogenetic relationships of the Botiinae are controversial. To address systematic and phylogenetic questions concerning this group, we sequenced the complete cytochrome b gene from 34 samples, of which 24 represented 13 species of the East Asian botiine fishes, while the other 10 were non-botiine loach species. For the 1140 bp sequences determined, 494 sites were variable ones, of which 424 were parsimony informative. With Myxocyprinus asiaticus as an outgroup, molecular phylogenetic trees were constructed using the neighbor-joining, maximum parsimony, maximum likelihood and Bayesian methods. All molecular phylogenetic trees revealed that botiine fishes form a monophyletic group and are distantly related to other loaches, suggesting that the Botiinae should be placed in their own family. Within the Botiinae, there are three genera; Botia, Parabotia, andLeptobotia, each genus forming a monophyletic group, with the genus Botia as the most ancestral split. Our molecular results are in agreement with morphological analyses of botiines, suggesting that Botia is the ancestral genus, while Leptobotia and Parabotia were resolved as more derived sister groups.  相似文献   

8.
9.
For the first time, the b/c intron of the nad1 gene was characterized in 13 species of Fagopyrum and the applicability of the intron was demonstrated for identification of buckwheat species. The length of the b/c intron of the nad1 gene varied from 1217 bp in F. tataricum and F. cymosum to 1239 bp in F. capillatum. Species-specific SNPs and indels were identified. The genus phylogeny that was determined with the molecular approach correlated with phylogenetic data that are based on morphological characteristics. The NJ and MP dendrograms revealed distinct division of the analyzed species into two main groups, cymosum and urophyllum. The species of the urophyllum group were characterized by the presence of several synapomorphic substitutions and indels, including the insertion of 11 nucleotides, which is flanked by direct repeats.  相似文献   

10.
Cyprinidae, the largest fish family, comprises ap-proximately 210 recognized genera and 2010 species that are distributed widely in Eurasia, East Indian Is-land, Africa, and North America[1]. Species richness of this family is the greatest in East Asia, for example, China has 122 genera and more than 600 species. It is difficult to build a comprehensive phylogeny of Cy-prinidae due to the large number of genera and species. The classification of this family has been subject to revisions an…  相似文献   

11.
The extant sinipercids are a group of freshwater percoid fishes endemic to East Asia. A recent mitochondrial cytochrome b phylogeny of sinipercids has challenged some aspects for their traditional taxonomy and molecular phylogeny, especially for the monophyly of Sinipercidae. In this study, we analyzed mitochondrial cytochrome b and nuclear encoded S7 ribosomal protein gene intron 1 for 10 sinipercid species and 11 related species to compare the phylogenetic signal and nucleotide substitution properties of these two gene sequences. The length of S7 intron 1 ranged from 461 to 719 bp, but alignment was not difficult, and the indels, the proportion of which in the total nucleotides ranged from 3.76 to 45.83%, were phylogenetically informative. Our results indicate that: (1) the relative rate presented by cyt b is five times that of S7 intron 1; (2) the proportion of phylogenetic information is higher in S7 than in cyt b; (3) S7 intron 1 has more base composition bias, but more uniform nucleotide substitution properties; (4) the overall ratio between transitions and transversions in S7 intron 1 is lower than in cyt b. Maximum parsimony and Bayesian analyses of aligned S7 intron 1 and the combined S7 and cyt b dataset resulted in phylogenies that contained the previously identified genera Siniperca and Coreoperca, whereas the monophyly of Coreoperca cannot be corroborated by separate cyt b analysis. The monophyly of Sinipercidae is not supported in separate and combined dataset analyses, although the alternative hypothesis cannot be significantly rejected based on approximately unbiased tests and Shimodaira–Hasegawa tests. Overall, maximum parsimony analyses result in trees with a lack of phylogenetic resolution in deep nodes, and the signal from S7 intron 1 conflicts the cyt b signal in the combined dataset analyses. The reasons for the poor performance of cyt b to S7 intron 1 in the phylogeny are discussed.  相似文献   

12.
Until now, phylogenetic studies of the mongooses (Carnivora, Herpestidae) have not included an exhaustive sampling of the Asian members of this family. In this study, we used mitochondrial (Cytochrome b and ND2), nuclear (β-fibrinogen intron 7 and Transthyretin intron 1) sequences from almost all of the recognized mongoose species to produce a well-resolved phylogeny of the Herpestidae. We also performed molecular dating analyses to infer divergence dates of the different lineages within the Herpestidae. Our results confirmed the paraphyly of the Herpestes genus and other phylogenetic relationships, which previously had only been moderately supported. The Asian herpestid species were found to form a monophyletic group within the Herpestidae. Within the Asian species, a cyto-nuclear conflict was discovered between the small Indian mongoose (Herpestes auropunctatus), the Indian gray mongoose (Herpestes edwardsii) and the Javan mongoose (Herpestes javanicus), which may have occurred through interspecific hybridization. This study inferred an Early Miocene origin for the Herpestidae and a Middle Miocene origin for the Asian mongooses.  相似文献   

13.
使用分子生物学的方法对Dan亚科鱼类的单系性进行了探讨。通过PCR方法,获得了13种鲤科鱼类S7核糖体蛋白基因第1内含子序列,其中包括6种Dan亚科鱼类。使用MEGA软件中的Neighbor-Joining法和Most-Parsimony法分别构建分支系统图。研究结果显示目前所确认的Dan亚科鱼类实际上没有形成单系类群。其中Dan属、波鱼属和低线Lie属位于系统树基部,显示出原始性,而由细鲫属、马口鱼属和Lie属构成的类群相对于Dan亚科中的原始种类起源较晚,可能和较晚起源的东亚鲤科类群之间有更为密切的关系。  相似文献   

14.
The genus Prunus contains the subgenus Prunus incorporating the European plums (section Prunus), the North American plums (section Prunocerasus) and the apricots (section Armeniaca). In section Prunus, there are approximately 20 species, which occur in three levels of ploidy, diploid ( 2n = 2x = 16 ) \left( {2n = 2x = 16} \right) , tetraploid ( 2n = 4x = 32 ) \left( {2n = 4x = 32} \right) and hexaploid ( 2n = 6x = 48 ) \left( {2n = 6x = 48} \right) . Despite a clear distinction between section Prunus and the other sections, phylogenetic relationships between species within the section are unclear. We performed a phylogenetic analysis on members of the section Prunus and three outgroup species using sequence data from four single-copy phylogenetically informative chloroplast DNA regions (atpB-rbcL, matK, rpl16, and trnL-trnF). After alignment, the analysed regions totalled 4,696 bp of sequence, containing 68 parsimony-informative sites and 14 parsimony-informative indels. Data were analysed using both maximum parsimony and Bayesian likelihood and phylogenetic trees were reconstructed. The analyses recovered trees with congruent topologies and similar levels of statistical support for relationships between taxa. They confirmed that species belonging to section Prunus form a monophyletic clade within Prunus. The section is resolved into four well-supported clades, which correspond to the geographical distribution of the species. The hexaploid species could not be resolved into distinct species clades but formed a well-supported group separate from the tetraploid species, highlighting the distinct evolutionary origins of the different polyploid groups. The close relationship between the hexaploids and Prunus divaricata, Prunus cerasifera and Prunus ursina indicates the former may have derived from an ancestor of P. cerasifera and its allies.  相似文献   

15.
In evolutionary biology appropriate marker selection for the reconstruction of solid phylogenetic hypotheses is fundamental. One of the most challenging tasks addresses the appropriate choice of genomic regions in studies of closely related species. Robust phylogenetic frameworks are central to studies dealing with questions ranging from evolutionary and conservation biology, biogeography to plant breeding. Phylogenetic informativeness profiles provide a quantitative measure of the phylogenetic signal in markers and therefore a method for locus prioritization. The present work profiles phylogenetic informativeness of mostly non-coding chloroplast regions in an angiosperm lineage of closely related species: the popular ornamental tribe Hydrangeeae (Hydrangeaceae, Cornales, Asterids). A recent phylogenetic study denoted a case of resolution contrast between the two strongly supported clades within tribe Hydrangeeae. We evaluate the phylogenetic signal of 13 highly variable plastid markers for estimating relationships within and among the currently recognized monophyletic groups of this tribe. A selection of combined loci based on their phylogenetic informativeness retrieved more robust phylogenetic hypotheses than simply combining individual markers performing best with respect to resolution, nodal support and accuracy or those presenting the highest number of parsimony informative characters. We propose the rpl32–ndhF intergenic spacer (IGS), trnVndhC IGS, trnLrpl32 IGS, psbTpetB region and ndhA intron as the best candidates for future phylogenetic studies in Hydrangeeae and potentially in other Asterids. We also contrasted the phylogenetic informativeness of coded indels against substitutions concluding that, despite their low phylogenetic informativeness, coded indels provide additional phylogenetic signal that is nearly free of noise. Phylogenetic relationships obtained from our total combined analyses showed improved resolution and nodal support with respect to recently published results.  相似文献   

16.
Rhus gall aphids (Fordinae : Melaphidini) have a disjunct distribution in East Asia and North America and have specific host plant relationships. Some of them are of economic importance and all species form sealed galls which show great variation in shape, size, structure, and galling‐site. We present a phylogeny incorporating ten species and four subspecies of Rhus gall aphids based on 1694 base pairs of nuclear elongation factor‐1α (EF1α) and mitochondrial cytochrome oxidase subunit II (COII) DNA sequence data. The results suggest that Melaphidini is monophyletic and at the genus level, Schlechtendalia, Nurudea, and Floraphis were each monophyletic. Kaburagia and Meitanaphis were not monophyletic and therefore inconsistent with the current classification. The North American sumac gall aphid, Melaphis rhois, was most closely related to the East Asian Floraphis species, although this was poorly supported. The conservation of gall morphology with respect to aphid phylogeny rather than their host plants suggests that gall morphology is largely determined by the aphids. While there is no evidence of strict co‐speciation between the aphids and their primary host plants, switching between recently diverged host plants may be involved in the speciation process in Melaphidini.  相似文献   

17.
18.
The Old World bat family Miniopteridae comprises only the genus Miniopterus, which includes 20 currently recognized species from the Afrotropical realm and 15 species from Eurasia and Australasia. Since 2003, the number of recognized Miniopterus species has grown from 19 to 35, with most newly described species endemic to Madagascar and the Comoros Archipelago. We investigated genetic variation, phylogenetic relationships and clade membership in Miniopterus focusing on Afrotropical taxa. We generated mitochondrial cytochrome-b (cyt-b) and nuclear intron data (five genes) from 352 vouchered individuals collected at 78 georeferenced localities. Including 99 additional mitochondrial sequences from GenBank, we analysed a total of 25 recognized species. Mitochondrial genetic distances among cyt-b-supported clades averaged 9.3%, representing as many as five undescribed species. Multilocus coalescent delimitation strongly supported the genetic isolation of eight of nine tested unnamed clades. A large number of sampled clades in sub-Saharan Africa are distributed wholly or partly in East Africa (nine of 13 clades), suggesting that Miniopterus diversity has been grossly underestimated. Although 25 of 27 cyt-b and 23 of 25 nuclear gene tree lineages from the Afrotropics were strongly supported as monophyletic, a majority of deep nodes were poorly resolved in phylogenetic analyses. Long terminal branches subtending short backbone internodes in the phylogenetic analyses suggest a rapid radiation model of diversification. This hypothesis needs to be tested using more phylogenetically informative data.  相似文献   

19.
Yu L  Zhang YP 《Genetica》2006,127(1-3):65-79
The monophyletic group Caniformia in the order Carnivora currently comprises seven families whose relationships remain contentious. The phylogenetic positions of the two panda species within the Caniformia have also been evolutionary puzzles over the past decades, especially for Ailurus fulgens (the red panda). Here, new nuclear sequences from two introns of the β-fibrinogen gene (β-fibrinogen introns 4 and 7) and a complete mitochondrial (mt) gene (ND2) from 17 caniform representatives were explored for their utilities in resolving higher-level relationships in the Caniformia. In addition, two previously available nuclear (IRBP exon 1 and TTR intron 1) data sets were also combined and analyzed simultaneously with the newly obtained sequence data in this study. Combined analyses of four nuclear and one mt genes (4417 bp) recover a branching order in which almost all nodes were strongly supported. The present analyses provide evidence in favor of Ailurus fulgens as the closest taxon to the procyonid-mustelid (i.e., Musteloidea sensu stricto) clade, followed by pinnipeds (i.e., Otariidae and Phocidae), Ursidae (including Ailuropoda melanoleuca), and Canidae, the most basal lineage in the Caniformia. The potential utilities of different genes in the context of caniform phylogeny were also evaluated, with special attention to the previously unexplored β-fibrinogen intron 4 and 7 genes.  相似文献   

20.
Phylogenetic relationships withinChusquea,a diverse genus of neotropical woody bamboos, and among selected members of the Bambusoideae were explored usingrpl16intron sequence data from the chloroplast genome. Mechanisms of mutation, including slipped-strand mispairing, secondary structure, minute inversions, and base substitutions, were examined within therpl16intron, and their effects on sequence alignment and phylogenetic analysis were investigated. Thirty-five bamboo sequences were generated and two separate matrices were analyzed using maximum parsimony. In the first, 23 sequences fromChusquea,1 ofNeurolepis,and 3 outgroups were included.Neurolepiswas supported as sister toChusquea, Chusqueawas strongly supported as a monophyletic lineage, and three species ofChusqueasubg.Rettbergiawere resolved as the most basal clade within the genus. In the second analysis, 15 sequences, 14 from across the subfamily and 1 outgroup, were included. A Bambusoideae clade was recovered with the Olyreae/Parianeae (herbaceous bamboos) and the Bambuseae (woody bamboos) each supported as monophyletic. Two clades corresponding to temperate and tropical woody bamboos were derived within the Bambuseae and the tropical taxa were further split into New World and Old World clades. Therpl16intron in bamboos was found to be susceptible to frequent length mutations of multiple origins, nonindependent character evolution, and regions of high mutability, all of which created difficulties in alignment and phylogenetic analysis; nonetheless therpl16intron is phylogenetically informative at the inter- and intrageneric levels in bamboos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号