首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
The output of neocortical layer 5 pyramidal cells (L5PCs) is expressed by a train of single spikes with intermittent bursts of multiple spikes at high frequencies. The bursts are the result of nonlinear dendritic properties, including Na+, Ca2+, and NMDA spikes, that interact with the ~10,000 synapses impinging on the neuron’s dendrites. Output spike bursts are thought to implement key dendritic computations, such as coincidence detection of bottom-up inputs (arriving mostly at the basal tree) and top-down inputs (arriving mostly at the apical tree). In this study we used a detailed nonlinear model of L5PC receiving excitatory and inhibitory synaptic inputs to explore the conditions for generating bursts and for modulating their properties. We established the excitatory input conditions on the basal versus the apical tree that favor burst and show that there are two distinct types of bursts. Bursts consisting of 3 or more spikes firing at < 200 Hz, which are generated by stronger excitatory input to the basal versus the apical tree, and bursts of ~2-spikes at ~250 Hz, generated by prominent apical tuft excitation. Localized and well-timed dendritic inhibition on the apical tree differentially modulates Na+, Ca2+, and NMDA spikes and, consequently, finely controls the burst output. Finally, we explored the implications of different burst classes and respective dendritic inhibition for regulating synaptic plasticity.  相似文献   

2.
The relationship between electrical activity and spike-induced Ca2+ increases in dendrites was investigated in the identified wind-sensitive giant interneurons in the cricket. We applied a high-speed Ca2+ imaging technique to the giant interneurons, and succeeded in recording the transient Ca2+ increases (Ca2+ transients) induced by a single action potential, which was evoked by presynaptic stimulus to the sensory neurons. The dendritic Ca2+ transients evoked by a pair of action potentials accumulated when spike intervals were shorter than 100 ms. The amplitude of the Ca2+ transients induced by a train of spikes depended on the number of action potentials. When stimulation pulses evoking the same numbers of action potentials were separately applied to the ipsi- or contra-lateral cercal sensory nerves, the dendritic Ca2+ transients induced by these presynaptic stimuli were different in their amplitude. Furthermore, the side of presynaptic stimulation that evoked larger Ca2+ transients depended on the location of the recorded dendritic regions. This result means that the spike-triggered Ca2+ transients in dendrites depend on postsynaptic activity. It is proposed that Ca2+ entry through voltage-dependent Ca2+ channels activated by the action potentials will be enhanced by excitatory synaptic inputs at the dendrites in the cricket giant interneurons.  相似文献   

3.
Many neurons possess dendrites enriched with sodium channels and are capable of generating action potentials. However, the role of dendritic sodium spikes remain unclear. Here, we study computational models of neurons to investigate the functional effects of dendritic spikes. In agreement with previous studies, we found that point neurons or neurons with passive dendrites increase their somatic firing rate in response to the correlation of synaptic bombardment for a wide range of input conditions, i.e. input firing rates, synaptic conductances, or refractory periods. However, neurons with active dendrites show the opposite behavior: for a wide range of conditions the firing rate decreases as a function of correlation. We found this property in three types of models of dendritic excitability: a Hodgkin-Huxley model of dendritic spikes, a model with integrate and fire dendrites, and a discrete-state dendritic model. We conclude that fast dendritic spikes confer much broader computational properties to neurons, sometimes opposite to that of point neurons.  相似文献   

4.

Background

Substantia gelatinosa (SG, lamina II) is a spinal cord region where most unmyelinated primary afferents terminate and the central nociceptive processing begins. The glutamatergic excitatory interneurons (EINs) form the majority of the SG neuron population, but little is known about the mechanisms of signal processing in their synapses.

Methodology

To describe the functional organization and properties of excitatory synapses formed by SG EINs, we did non-invasive recordings from 183 pairs of monosynaptically connected neurons. An intact presynaptic SG EIN was specifically stimulated through the cell-attached pipette while the evoked EPSCs/EPSPs were recorded through perforated-patch from a postsynaptic neuron (laminae I-III).

Principal Findings

We found that the axon of an SG EIN forms multiple functional synapses on the dendrites of a postsynaptic neuron. In many cases, EPSPs evoked by stimulating an SG EIN were sufficient to elicit spikes in a postsynaptic neuron. EPSCs were carried through both Ca2+-permeable (CP) and Ca2+-impermeable (CI) AMPA receptors (AMPARs) and showed diverse forms of functional plasticity. The synaptic efficacy could be enhanced through both activation of silent synapses and strengthening of already active synapses. We have also found that a high input resistance (RIN, >0.5 GΩ) of the postsynaptic neuron is necessary for resolving distal dendritic EPSCs/EPSPs and correct estimation of their efficacy.

Conclusions/Significance

We conclude that the multiple synapses formed by an SG EIN on a postsynaptic neuron increase synaptic excitation and provide basis for diverse forms of plasticity. This functional organization can be important for sensory, i.e. nociceptive, processing in the spinal cord.  相似文献   

5.
  1. GABA, ACh, and other agents were applied by pressure ejection to the neuropil of the third abdominal ganglion in the isolated nerve cord of Manduca sexta. Intersegmental muscle motor neurons with dendritic arborizations in the same hemiganglion were inhibited by GABA (Fig. 2) and excited by ACh (Fig. 5).
  2. Picrotoxin was a potent antagonist of GABA (Fig. 4A). Bicuculline reduced GABA responses in some motor neurons (Fig. 4C), but had no effect on many other motor neurons. Curare reduced ACh responses (Fig. 6A). Bicuculline was an effective ACh antagonist in most motor neurons tested (Fig. 6B).
  3. Motor neurons with dendrites across the ganglion from the ejection pipette exhibited different responses to GABA and ACh. Contralateral motor neurons often showed smaller, delayed hyperpolarizing GABA responses (Fig. 7). On two occasions, contralateral motor neurons had excitatory responses (Fig. 8). Contralateral motor neurons were hyperpolarized by ACh (Fig. 9). The inhibitory responses had only slightly longer latencies than ipsilateral excitatory ACh responses (Fig. 10A). The contralateral inhibitory ACh responses, but not the ipsilateral excitatory ACh responses, were eliminated by TTX (Fig. 10B).
  4. A model, which includes inhibitory interneurons that cross the ganglionic midline to inhibit their contralateral homologs and motor neurons (Fig. 11), is proposed to account for contralateral responses to GABA and ACh and antagonistic patterns of activity of motor neurons during mechanosensory reflex responses.
  相似文献   

6.
A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100μm of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are inter-connected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study.  相似文献   

7.
The relationship between electrical activity and spike‐induced Ca2+ increases in dendrites was investigated in the identified wind‐sensitive giant interneurons in the cricket. We applied a high‐speed Ca2+ imaging technique to the giant interneurons, and succeeded in recording the transient Ca2+ increases (Ca2+ transients) induced by a single action potential, which was evoked by presynaptic stimulus to the sensory neurons. The dendritic Ca2+ transients evoked by a pair of action potentials accumulated when spike intervals were shorter than 100 ms. The amplitude of the Ca2+ transients induced by a train of spikes depended on the number of action potentials. When stimulation pulses evoking the same numbers of action potentials were separately applied to the ipsi‐ or contra‐lateral cercal sensory nerves, the dendritic Ca2+ transients induced by these presynaptic stimuli were different in their amplitude. Furthermore, the side of presynaptic stimulation that evoked larger Ca2+ transients depended on the location of the recorded dendritic regions. This result means that the spike‐triggered Ca2+ transients in dendrites depend on postsynaptic activity. It is proposed that Ca2+ entry through voltage‐dependent Ca2+ channels activated by the action potentials will be enhanced by excitatory synaptic inputs at the dendrites in the cricket giant interneurons. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 234–244, 2002; DOI 10.1002/neu.10032  相似文献   

8.
Zilberter Y  Kaiser KM  Sakmann B 《Neuron》1999,24(4):979-988
GABAergic, somatostatin-containing bitufted interneurons in layer 2/3 of rat neocortex are excited via glutamatergic excitatory postsynaptic potentials (EPSPs) by pyramidal neurons located in the same cortical layer. Pair recordings showed that short bursts of backpropagating dendritic action potentials (APs) reduced the amplitude of unitary EPSPs. EPSP depression was dependent on a rise in dendritic [Ca2+]. The effect was blocked by the GABA(B) receptor (GABA(B)-R) antagonist CGP55845A and was mimicked by the GABA(B)-R agonist baclofen. As presynaptic GABA(B)-Rs were activated neither by somatostatin nor by GABA released from axon collaterals of the bitufted cell, we conclude that GABA(B)-Rs were activated by a retrograde messenger, most likely GABA, released from the dendrite. Because synaptic depression was prevented by loading bitufted neurons with GDP-beta-S, it is likely to be caused by exocytotic GABA release from dendrites.  相似文献   

9.
Dendrites of cortical neurons possess active conductances, which contribute to the nonlinear processing of synaptic information. Recently it has been shown that basal dendrites can generate highly localized spikes mediated by NMDA receptor channels. These spikes may serve as a powerful mechanism to detect and amplify synchronously activated spatially clustered excitatory synaptic inputs in individual dendritic segments, and may enable parallel processing in several integrative dendritic subunits.  相似文献   

10.

Background

Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer''s disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear.

Methodology and Principal Findings

We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)—a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity.

Conclusions and Significance

Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD.  相似文献   

11.
Contralateral cerebellectomy can induce hypertrophy of olivary neurons in cat. In the present study we examined the ultrastructure of the cat hypertrophic inferior olive following GABA-, dopamine- and serotonin-immunocytochemistry, anterograde tracing from the mesodiencephalic junction, and intracellular labeling with HRP. Compared to normal olivary neurons the hypertrophic cells showed larger cell bodies, more and longer somatic spines which were linked by gap junctions, and longer distal dendrites with relatively few spines. The hypertrophic olivary neurons received less GABAergic boutons on their dendrites but an equal percentage was apposed to their somata as compared to normal cells. Relatively many mesodiencephalic terminals, a similar serotoninergic, and a slightly increased dopaminergic input were found. The axon of one intracellularly labeled hypertrophic cell gave off recurrent collaterals bearing varicosities filled with vesicles. These results indicated that 1) hypertrophic olivary cells are affected by trophic factors not only at the cell body but also at the level of the somatic spines, dendrites, and axon, 2) the ratio of excitatory to inhibitory terminals is increased in the hypertrophic neuropil, whereas the monoaminergic input remains stationary, and 3) the electronic coupling between hypertrophic olivary neurons has shifted from a dendritic to a more somatic location due to a relatively high number of gap junctions between the somatic spines.  相似文献   

12.
Inhibitory pathways are an essential component in the function of the neocortical microcircuitry. Despite the relatively small fraction of inhibitory neurons in the neocortex, these neurons are strongly activated due to their high connectivity rate and the intricate manner in which they interconnect with pyramidal cells (PCs). One prominent pathway is the frequency-dependent disynaptic inhibition (FDDI) formed between layer 5 PCs and mediated by Martinotti cells (MCs). Here, we show that simultaneous short bursts in four PCs are sufficient to exert FDDI in all neighboring PCs within the dimensions of a cortical column. This powerful inhibition is mediated by few interneurons, leading to strongly correlated membrane fluctuations and synchronous spiking between PCs simultaneously receiving FDDI. Somatic integration of such inhibition is independent and electrically isolated from monosynaptic excitation formed between the same PCs. FDDI is strongly shaped by I(h) in PC dendrites, which determines the effective integration time window for inhibitory and excitatory inputs. We propose a key disynaptic mechanism by which brief bursts generated by a few PCs can synchronize the activity in the pyramidal network.  相似文献   

13.
Jo J  Kang H  Choi MY  Koh DS 《Biophysical journal》2005,89(3):1534-1542
Unlike isolated beta-cells, which usually produce continuous spikes or fast and irregular bursts, electrically coupled beta-cells are apt to exhibit robust bursting action potentials. We consider the noise induced by thermal fluctuations as well as that by channel-gating stochasticity and examine its effects on the action potential behavior of the beta-cell model. It is observed numerically that such noise in general helps single cells to produce a variety of electrical activities. In addition, we also probe coupling via gap junctions between neighboring cells, with heterogeneity induced by noise, to find that it enhances regular bursts.  相似文献   

14.
Thin basal dendrites can strongly influence neuronal output via generation of dendritic spikes. It was recently postulated that glial processes actively support dendritic spikes by either ceasing glutamate uptake or by actively releasing glutamate and adenosine triphosphate (ATP). We used calcium imaging to study the role of NR2C/D-containing N-methyl-d-aspartate (NMDA) receptors and adenosine A1 receptors in the generation of dendritic NMDA spikes and plateau potentials in basal dendrites of layer 5 pyramidal neurons in the mouse prefrontal cortex. We found that NR2C/D glutamate receptor subunits contribute to the amplitude of synaptically evoked NMDA spikes. Dendritic calcium signals associated with glutamate-evoked dendritic plateau potentials were significantly shortened upon application of the NR2C/D receptor antagonist PPDA, suggesting that NR2C/D receptors prolong the duration of calcium influx during dendritic spiking. In contrast to NR2C/D receptors, adenosine A1 receptors act to abbreviate dendritic and somatic signals via the activation of dendritic K+ current. This current is characterized as a slow-activating outward-rectifying voltage- and adenosine-gated current, insensitive to 4-aminopyridine but sensitive to TEA. Our data support the hypothesis that the release of glutamate and ATP from neurons or glia contribute to initiation, maintenance and termination of local dendritic glutamate-mediated regenerative potentials.  相似文献   

15.
1.  Coordinated movements of the wings during flight in the locust result from coordinated activity of flight neurons in the thoracic ganglia. Many flight interneurons and motoneurons fire synchronous bursts of action potentials during the expression of the flight motor pattern. The mechanisms which underlie this synchronous firing were investigated in a deafferented preparation of Locusta migratoria.
2.  Simultaneous intracellular recordings were taken from flight neurons in the mesothoracic ganglion using glass microelectrodes filled with fluorescent dye.
3.  Three levels of synchronous activity between synergistic motoneurons and between the right and left partners of bilaterally symmetrical pairs of interneurons were observed: bursting which was loosely in phase but which showed little correlation between the temporal parameters of individual bursts in the two neurons; bursting which showed synchrony of the beginning and end of bursts; and bursts which showed highly synchronous spike-for-spike activity.
4.  Direct interactions between the neurons had little or no part to play in maintaining any of the levels of synchrony, even in instances of very close synchrony (spikes in different neurons occurring within 1 ms of each other). Highly synchronous firing was a consequence of common synaptic input impinging on neurons with similar morphological and physiological properties.
  相似文献   

16.
Gap junctions have been found infrequently between two dendrites or a dendrite and a cell soma in the deep layers of both the motor and somatic sensory cortices of the primate. At these junctions the outer leaflets of the plasma membranes of both profiles are intimately apposed with a gap of 2 nm between them which shows a structure of hexagonal subunits in tangential sections. These gap junctions occur mainly between the dendrites or dendrites and somata of large stellate cells but are also associated in some examples with a dendro-dendritic synapse and thus occur between large stellate dendrites and presynaptic dendrites; a desmosome may also occur in association with a gap junction and dendro-dendritic synapse. Gap junctions have been identified as sites of electrical transmission between cells in a number of sites and it is therefore suggested that some neurons in the sensori-motor cortex are electrotonically couples.  相似文献   

17.
The roles of amino acid neurotransmitters in determining the processing characteristics of the electrosensory lateral line lobe (ELL) in Apteronotus leptorhynchus were investigated by studying the responses of ELL output neurons to pressure ejection of various neurotransmitter agonists and antagonists alone and in combination with simple electrosensory stimuli.
  1. Pressure ejection of L-glutamate into the ELL dorsal molecular layer caused either excitation or inhibition of ELL efferent neurons (pyramidal cells). The sign of these responses reversed with changes in the position of the pressure pipette. Histological verification of drug ejection sites relative to recorded cells and diffusion estimates indicate that excitatory and inhibitory responses result from glutamate activation of pyramidal cells and of inhibitory interneurons, respectively.
  2. ELL output cells respond to both NMDA and non-NMDA glutamate agonists and the responses are attenuated by co-ejection of specific antagonists indicating that both AMPA/kainate and NMDA receptors exist on pyramidal cell apical dendrites.
  3. Gamma-aminobutyric acid inhibits basilar and nonbasilar pyramidal cells when ejected near their apical dendrites and disinhibits them when ejected near surrounding inhibitory interneurons confirming the presence of GABA receptors on these cell types.
  4. An NMDA antagonist did not alter pyramidal cell responses to electrosensory stimuli but a non-NMDA antagonist altered both responses to the stimuli and firing frequency shortly following stimulus cessation.
  相似文献   

18.
Spike timing dependent plasticity (STDP) is a synaptic learning rule where the relative timing between the presynaptic and postsynaptic action potentials determines the sign and strength of synaptic plasticity. In its basic form STDP has an asymmetric form which incorporates both persistent increases and persistent decreases in synaptic strength. The basic form of STDP, however, is not a fixed property and depends on the dendritic location. An asymmetric curve is observed in the distal dendrites, whereas a symmetrical one is observed in the proximal ones. A recent computational study has shown that the transition from the asymmetry to symmetry is due to inhibition under certain conditions. Synapses have also been observed to be unreliable at generating plasticity when excitatory postsynaptic potentials and single spikes are paired at low frequencies. Bursts of spikes, however, are reliably signaled because transmitter release is facilitated. This article presents a two-compartment model of the CA1 pyramidal cell. The model is neurophysiologically plausible with its dynamics resulting from the interplay of many ionic and synaptic currents. Plasticity is measured by a deterministic Ca2+ dynamics model which measures the instantaneous calcium level and its time course in the dendrite and change the strength of the synapse accordingly. The model is validated to match the asymmetrical form of STDP from the pairing of a presynaptic (dendritic) and postsynaptic (somatic) spikes as observed experimentally. With the parameter set unchanged the model investigates how pairing of bursts with single spikes and bursts in the presence or absence of inhibition shapes the STDP curve. The model predicts that inhibition strength and frequency are not the only factors of the asymmetry-to-symmetry switch of the STDP curve. Burst interspike interval is another factor. This study is an important first step towards understanding how STDP is affected under natural firing patterns in vivo.  相似文献   

19.
Although the neuronal circuits that generate leech movements have been studied for over 30 years, the list of interneurons (INs) in these circuits remains incomplete. Previous studies showed that some motor neurons (MNs) are electrically coupled to swim-related INs, e.g., rectifying junctions connect IN 28 to MN DI-1 (dorsal inhibitor), so we searched for additional neurons in these behavioral circuits by co-injecting Neurobiotin and Alexa Fluor 488 into segmental MNs DI–1, VI–2, DE–3 and VE–4. The high molecular weight Alexa dye is confined to the injected cell, whereas the smaller Neurobiotin molecules diffuse through gap junctions to reveal electrical coupling. We found that MNs were each dye-coupled to approximately 25 neurons, about half of which are likely to be INs. We also found that (1) dye-coupling was reliably correlated with physiologically confirmed electrical connections, (2) dye-coupling is unidirectional between MNs that are linked by rectifying connections, and (3) there are novel electrical connections between excitatory and inhibitory MNs, e.g. between excitatory MN VE-4 and inhibitory MN DI-1. The INs found in this study provide a pool of novel candidate neurons for future studies of behavioral circuits, including those underlying swimming, crawling, shortening, and bending movements.  相似文献   

20.
A model of the Renshaw spinal interneuron has been developed. The model consists of a nonhomogeneous cylinder divided into three compartments: dendrites, soma and axon initial segment (I.S). The soma and dendrites are represented as a cylindrical cable by the method of Rall (1962); anatomical data of Jankowska and Lindström (1971) from fluorescent dye injections were used to construct the cable. The soma and I.S. membranes are assumed to have Hodgkin-Huxley-like membrane activity. In comparison with our previous model of a tonic motorneuron (Traub, 1977), the Renshaw cell has a faster membrane time constant, faster Hodgkin-Huxley rate functions, h and h shifted to the right on the voltage axis, and no slow potassium conductance. With appropriate input conductances, the Renshaw cell model exhibits the following features: it develops very high frequency bursts (over 1000 impulses per s) which trail off over a period of 10–20 ms; the second spike has small amplitude and successive spikes develop progressively larger amplitudes. Comparisons are drawn with the experimental observations of Eccles et al. (1961) and Willis and Willis (`966). With this model, it is feasible to compute the steady firing rate for a large number of steady synaptic excitatory and inhibitory conductances by direct integration of the differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号