首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Simultaneous and stepwise deprotection of the fully benzylated D-glucosyl esters of 1-benzyl N-benzyloxycarbonyl- and N-tert-butyloxycarbonyl-L-glutamic acid (1 and 5, respectively) have been examined. Catalytic hydrogenation of 1 led to intramolecular aminolysis to give pyroglutamic acid and D-glucose, but similar treatment in the presence of trifluoroacetic acid afforded both anomers of 1-O-(L-gamma-glutamyl)-D-glucopyranose, which were characterized as trifluoroacetates (2alpha and 2beta) and converted into 2,3,4,6-tetra-O-acetyl-1-O-[1-methyl N-(acetyl)-L-glutam-5-oyl]-D-glucopyranose (4) which was also prepared by a definitive method. Hydrogenolysis of 5 gave both anomers of 1-O-[N-(tert-butyloxycarbonyl)-L-gamma-glutamyl]-D-glucopyranose (6), which, upon treatment with trifluoroacetic acid at - 10 degrees, afforded 2alpha and 2beta, respectively. The structure of 6beta was established by its conversion into 2,3,4,6-tetra-O-acetyl-1-O-[1-methyl N-(tert-butyloxycarbonyl)-L-glutam-5-oyl]-beta-D-glucopyranose (7beta), whereas similar treatment of 6alpha gave a mixture of 1,3,4,6-tetra-O-acetyl-2-O-[1-methyl N-(tert-butyloxycarbonyl)-L-glutam-5-oyl]-alpha-D-glucopyranose (9) and 7alpha. A 1 leads to 2 acyl migration occurred during esterification of the aglycon carboxyl group of 6alpha with diazomethane to give 2-O-[1-methyl N-(tert-butyloxycarbonyl)-L-glutam-5-oyl]-alpha-D-glucopyranose (8).  相似文献   

2.
The attachment of poly(ribitol phosphate) to lipoteichoic acid carrier   总被引:1,自引:0,他引:1  
2-Acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-1-oyl-(L-leucyl-L-threonyl-N2-tosyl-L-lysine p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine (21) and 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-1-oyl-(L-leucyl-L-threonyl-N2-tosyl-L-lysine p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine (22), 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-1-oyl-(glycine ethyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine, and 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-1-oyl-(phenylalanine methyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine were synthesized by condensation of 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine with the appropriate protected amino acids and tri- and tetra-peptides. The amino acid sequences of 21 and 22 correspond to the protected amino acid sequences 34–37 and 34–38 of ribonuclease B that are adjacent to the carbohydrate-protein linkage.  相似文献   

3.
N-(Benzyloxycarbonyl)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O-acetyl-beta-D - galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-O-(2-acetamido-4-O-acetyl-2- deoxy-alpha-D- galactopyranosyl)-(1----3)-L-serine benzyl ester was synthesized by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5- di-deoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)onate]- (2----3)-O-(2,4,6- tri-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha- and -beta-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the alpha- and beta-glycosides in the ratio of 2:5.  相似文献   

4.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

5.
Glycopeptides corresponding to sequences 27--28, 48--49, and 58--59 of human plasma alpha1-acid glycoproteins have been synthesized by sequential elongation of the peptide chain at the terminal amino group. 2-Acetamido-3,4,6-tri-O-acetyl-1-N-(L-aspart-4-oyl)-2-deoxy-beta-D-glucopyranosylamine was condensed with the p-nitrophenyl esters of protected amino acids to give the corresponding protected glycodipeptides having the sequences Gly-(GlcNAc-4-)Asn, Pro-(GlcNAc-4-)Asn, Val-(GlcNAc-4-)Asn, Leu-(GlcNAc-4-)Asn, Glu-(GlcNAc-4-)Asn, Tyr-(GlcNAc-4-)Asn, Ser-(GlcNAc-4-)Asn, and Cys-(GlcNAc-4-)Asn. Deprotection of the carbohydrate and of the peptide residues of these compounds was achieved, except for those having N-tert-butyloxycarbonyl protective groups, to give the corresponding free glycopeptides. The glycotripeptide 2-acetamido-1-N-(2-N-[N-(tert-butyloxycarbonyl)-L-glutam-1-oyl-L-tyrosyl]-L-aspart-4-oxy)-2-deoxy-beta-D-glucopyranosylamine, having the amino acid sequence 10--12 of human plasma alpha1-acid glycoprotein, was prepared by condensation of 2-acetamido 3,4,6-tri-O-acetyl-2-deoxy-1-N-[2-N-(L-tyrosyl)-L-aspart-4-oyl[-beta-D-glucopyranosylamine with 5-benzyl 1-p-nitrophenyl N-(tert-butyloxycarbonyl)-L-glutamate, followed by removal of the ester groups.  相似文献   

6.
The reaction of 2,3,4,6-tetra-O-benzyl-1-O-(p-nitrobenzoyl)-alpha-D-glucopyranose with (E)-penta-2,4-dienyltrimethylsilane and boron trifluoride etherate in acetonitrile afforded stereoselectively (E)-5-(tetra-O-benzyl-alpha-D-glucopyranosyl)-1,3-pentadiene in good yield. The readily available penta-O-benzoyl-alpha-D-glucopyranose reacted with allyltrimethylsilane in the presence of boron trifluoride etherate in acetonitrile to give 3-(tetra-O-benzoyl-alpha-D-glucopyranosyl)-1-propene and its beta anomer in yields of 60% and 2.3%, respectively. Diels-Alder cycloaddition of maleic anhydride to diene 1 afforded the adduct cis,cis-3-(tetra-O-benzyl-alpha-D-glucopyranosylmethyl)cyclohex -4-ene- 1,2-dicarboxylic anhydride in high yield.  相似文献   

7.
4-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzoyl-4-O-(2,3,6-tri-O-benzoyl-beta-D-galactopyranosyl)-beta- D-glucopyranoside with ethyl 2,3,4,6-tetra-O-benzyl- and ethyl 3-O-acetyl-2,4,6-tri-O-benzyl-1-thio-alpha-D-galactopyranoside in the presence of methyl trifluoromethanesulfonate led to trisaccharide 2-azidoethyl (2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-(1-->4)- (2,3,6-tri-O-benzoyl-beta-D-galactopyranosyl)-(1-->4)2,3,6-tri-O- benzoyl-beta-D-glucopyranoside and its 3"-O-acetylated analogue, 2-azidoethyl (3-O-acetyl-2,4,6-tri-O-benzyl- alpha-D-galactopyranosyl)-(1-->4)-(2,3,6-tri-O-benzoyl-beta-D- galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzoyl-beta-D-glucopyranoside, in yields of 85 and 83%, respectively. Deacetylation of the latter compound and subsequent glycosylation with 4-trichloroacetamidophenyl 3,4,6-tri-O-acetyl-2-deoxy-1-thio-2-trichloroacetamido-beta-D- galactopyranoside and 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O- acetyl-beta-D-galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D- galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in the corresponding selectively protected derivatives of tetrasaccharide GalNAc(beta 1-->3)Gal(alpha 1-->4)Gal(beta 1-->4)Glc beta-OCH2CH2N3 and pentasaccharide Gal(beta 1-->3)GalNAc(beta 1-->3)Gal(alpha 1-->4)Gal(beta 1-->4)Glc beta-OCH2CH2N3 in 88 and 73% yields, respectively. Removal of O-protecting groups, substitution of acetyl group for N-trichloroacetyl group, and reduction of the aglycone azide group resulted in the target 2-aminoethyl globo-tri-, -tetra-, and -pentasaccharide, respectively.  相似文献   

8.
The synthesis is described of the glycotripeptide derivatives 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L--seryl-L-nitroarginyl-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine, 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-seryl-L-nitroarginyl-L-aspart-1-oyl-(1-p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine, and 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-nitroarginyl-L-aspart-1-oyl-(L-leucine methyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine, and of the glycopentapeptide and glycohexapeptide derivatives 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-nitroarginyl-L-aspart-1-oyl-(L-leucyl-L-threonyl-threonyl-Nε-tosyl-L-lysine-(p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glycopyranosylamine and 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-nitroarginyl-L-aspart-1-oyl-(L-leucyl-L-threonyl-Nε-tosyl-L-lysyl-L-aspartic 1,4-di-p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine.  相似文献   

9.
A series of octyl glycosides di- to tetrasaccharides related to the GPI anchor of Trypanosoma brucei was prepared. Treatment of octyl 2-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3 -diyl)-alpha-D-mannopyranoside with ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-galactopyranoside under activation with bromine and silver trifluoromethanesulfonate afforded the alpha-linked disaccharide octyl 2-O-benzoyl-3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-4,6-O- (1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)-alpha -D-mannospyranoside, the siloxane ring of which was regioselectively opened with a HF-pyridine complex to give the disaccharide acceptor octyl 3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-2-O-benzoyl-4-O-(3 -fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl)-alpha-D- mannopyranoside (4). Mannosylation of 4 with benzobromomannose (7), followed by fluoride catalyzed desilylation gave the trisaccharide octyl 2-O-benzoyl-6-O-(2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl)-3-O-(2, 3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-alpha-D-mannospyranosi de, which was deblocked via the deacylated intermediate octyl 3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-6-O-(alpha-D-manno pyranosyl)-alpha-D-mannospyranoside to afford the octyl glycoside trisaccharide octyl 3-O-(alpha-D-galactopyranosyl)-6-O-(alpha-D-mannopyranosyl)-alpha-D-m annospyranoside. Glycosylation of 4 with 3,4,6-tri-O-acetyl-2-O-(2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl)- alpha-D-mannopyranosyl trichloroacetimidate resulted in the tetrasaccharide octyl 2-O-benzoyl-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane -3-yl)-3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-6-O-[2-O -(2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl)-3,4,6-tri-O-acetyl-alp ha-D-mannopyranosyl]-alpha-D-mannospyranoside, sequential desilylation, deacylation and debenzylation, respectively, of which via the intermediate octyl 2-O-benzoyl-3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-6-O-[2 -O-(2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl)-3,4,6-tri-O-acetyl-a lpha-D-mannopyranosyl]-alpha-D-mannospyranoside afforded the octyl glycoside tetrasaccharide octyl 3-O-(alpha-D-galactopyranosyl)-6-O-[2-O-(alpha-D-mannopyranosyl)-alpha-D -mannopyranosyl]-alpha-D-mannospyranoside.  相似文献   

10.
O-(5-Acetamido-3,5-dideoxy-D-glycero-alpha-D-galacto-2- nonulopyranoxylonic acid)-(2----6)-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3) -L-serine, a structural unit occurring in various submaxillary mucins, was synthesized for the first time by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D- galacto-2-nonulopyranosyl)onate]-(2----6)-3,4-di-O-acetyl-2- azido-2-deoxy-D- galactopyranosyl trichloroacetimidate (13) and N-(benzyloxycarbonyl)-L-serine benzyl ester as the key intermediates. The trichloroacetimidate 13 was prepared by starting from two monosaccharide synthons, namely, allyl 2-azido-2-deoxy-beta-D-galactopyranoside and methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-beta-D- galacto-2-nonulopyranosyl chloride)onate, which were coupled in the presence of silver triflate in tetrahydrofuran to give the desired alpha-(2----6)-linked disaccharide in moderate selectivity.  相似文献   

11.
Catalytic hydrogenation of the tetrabenzyl ethers of 1-O-acetamidoacyl- and 1-O-tert-butyloxycarbonylaminoacyl-α- and -β-D-glucopyranoses (1–6) afforded the corresponding 1-O-acylaminoacyl-D-glucopyranoses 8–13 which were fully characterised by physical methods and by conversion into the peracetylated derivatives 14–19. The α anomers of 1-O-tert-butyloxycarbonylaminoacyl-D-glucopyranoses underwent 1→2 acyl migration, and, in order to characterize the rearrangement product of 1-O-(tert-butyloxycarbonyl-L-alanyl)-α-D-glucopyranose (12α), 1,3,4,6-tetra-O-acetyl-2-O-(tert-butyloxycarbonyl-L-alanyl)-α- and -β-D-glucopyranoses (22 and 23) were synthesized by definitive methods. Initial studies of the simultaneous deprotection of the amino and hydroxyl functions were performed with D-glucose-amino acid 6-esters; catalytic hydrogenation of methyl 2,3,4-tri-O-benzyl-6-O-(N-benzyloxycarbonylglycyl)-β-D-glucopyranose (24) gave methyl 6-O-glycyl-β-D-glucopyranose (25) as the stable hydrochloride. Hydrogenolysis of the β anomer of 2,3,4,6-tetra-O-benzyl-1-O-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-D-glucopyranose (7) afforded 1-O-(L-β-aspartyl)-β-D-glucopyranose (27). The rates of hydrolysis of the unprotected D-glucose-amino acid 1-ester 27 in water and in 0.1M hydrochloric acid were compared with those of the D-glucose-amino acid 6-ester 25.  相似文献   

12.
The synthesis is reported of methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D- glucopyranosyl)-alpha-L-rhamnopyranoside (1), methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D-glucopyranosyl-beta-D- galactopyranoside (3), methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D-glucopyranosyl)-alpha-L- rhamnopyranoside 3"-(sn-glycer-3-yl sodium phosphate) (2), and methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D- glucopyranosyl-beta-D-galactopyranoside 3-(sn-glycer-3-yl sodium phosphate) (4), which are trisaccharide methyl glycosides related to fragments of the capsular polysaccharide of Streptococcus pneumoniae type 18C ([----4)-beta-D- Glcp-(1----4)-[alpha-D-Glcp-(1----2)]-[Glycerol-(1-P----3)]-beta-D-Galp - (1----4)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-(1----]n). Ethyl 4-O-acetyl-2,3,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside (10) was coupled with benzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside (6). Deacetylation of the product, followed by condensation with 2,4,6-tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (18), gave benzyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O- benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-allyl-beta-D-galactopyranosyl)-alpha- D- glucopyranosyl]-alpha-L-rhamnopyranoside (19). Acetolysis of 19, followed by methylation, deallylation (----22), and further deprotection afforded 1. Condensation of methyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O-benzyl-4-O-(2,4,6-tri- O-acetyl-beta-D-galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L- rhamnopyranoside (22) with 1,2-di-O-benzyl-sn-glycerol 3-(triethyl-ammonium phosphonate) (24), followed by oxidation and deprotection, yielded 2. Condensation of ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside (27) with methyl 3-O-allyl-4,6-O-benzylidene-beta-D-galactopyranoside (28), selective benzylidene ring-opening of the product, coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (31), and deallylation afforded methyl 6-O-benzyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-2-O- (2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl)-beta-D-galactopyranoside (33). Deprotection of 33 gave 3, and condensation of 33 with 24, followed by oxidation and deprotection, gave 4.  相似文献   

13.
Condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-1-O-(N-methyl)acetimidoyl-β-D-glucopyranose gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside which was catalytically hydrogenolysed to crystalline 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranose (N-acetylmaltosamine). In an alternative route, the aforementioned imidate was condensed with 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose, and the resulting disaccharide was catalytically hydrogenolysed, acetylated, and acetolysed to give 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-glucopyranose Deacetylation gave N-acetylmaltosamine. The synthesis of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose involved condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of mercuric bromide, followed by deacetylation and catalytic hydrogenolysis of the condensation product.  相似文献   

14.
从栓皮栎(Quercus variabilisBl.)虫瘿中分离了2对平衡互变异构体和4个单体化合物,通过光谱数据和化学方法鉴定:G-1为1-O(3′-没食子酰基)没食子酰基-β-D-葡萄吡喃糖和1-O-(4′-没食子酰基)没食子酰基-β-D-葡萄吡喃糖的平衡互变异构体,G-2为3-O-没食子酰基-没食子酸和4-O-没食子酰基--没食子酸的平衡互变异构体,-3O一1,6-二-O没食子酰基-β-D-葡萄吡喃糖,G-4为1,2,3,6-四-O-没食子酰基-β-D-葡萄吡喃糖,G-5为1-O-没食子酰基-β-D-葡萄吡喃糖,G-6为没食子酸甲酯。对G-1、G-3和G-4进行初步的抗肿瘤、抗脂质过氧化和抗血小板聚集活性实验。  相似文献   

15.
Sequential reaction of 2,3,4,6-tetra-O-benzyl-D-glucopyranose (7) with butyllithium and 2-[2,3,5-tri-O-benzyl-4-O-(tert-butyldiphenylsilyl)-D- arabinonoyl]thio-3-nitropyridine (6) at -78 degrees gave 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl 2,3,5-tri-O-benzyl-4-O-(tert-butyldiphenylsilyl)-D-arabinonate+ ++ (8; 71%, alpha:beta greater than 50:1). Ester carbonyl methylenylation, desilylation, and iodoetherification in the presence of silica gave 3,4,6-tri-O-benzyl-1-deoxy-1-iodo-(2,3,4,6-tetra-O-benzyl-alpha-D- glucopyranosyl)-beta-D-fructofuranoside (15; 44%, alpha:beta greater than 50:1). This neopentylic iodide 15 was converted into sucrose (1;80%) by free-radical substitution using TEMPO (24) followed by sodium-ammonia reduction, acetylation, and Zemplén methanolysis.  相似文献   

16.
An efficiently stereocontrolled total synthesis of GM3 alpha-D-Neup5Ac-(2----3)-beta-D-Galp-(1----4)-beta-D-Glcp-(1----1) -Cer was achieved by employing both methyl 5-acetamido-4,7,8,9-tetra-O-benzyl-2-bromo-2,3,5-trideoxy-3- phenylthio-D-erythro-beta-L-gluco-2-nonulopyranosonate for the key sialylation step, and O-[methyl(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha -D-galacto-2-nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O- acetyl-beta-D-galactopyranosyl-(1----4)-3,6-di-O-acetyl-2-O-pivaloyl- alpha-D-glucopyranosyl trichloroacetimidate and fluoride for the key coupling step with a ceramide derivative. These two steps were significantly altered and improved in comparison with our previous synthesis that had been executed without use of stereocontrolling auxiliaries. GM3 was obtained in 4.5% overall yield in 19 steps starting from allyl O-(2,6-di-O-acetyl-3,4-O-isopropylidene-beta-D-galactopyranosyl)-(1----4 )-2,3,6-tri-O-acetyl-beta-D-glucopyranoside.  相似文献   

17.
The disaccharide donor O-[2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido - alpha,beta-D-glucopyranosyl] trichloroacetimidate (7) was prepared by reacting O-(2,3,4,6-tetra-O-acetyl- alpha-D-galactopyranosyl) trichloroacetimidate with tert-butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2- dimethylmaleoylamido-glucopyranoside to give the corresponding disaccharide 5. Deprotection of the anomeric center and then reaction with trichloroacetonitrile afforded 7. Reaction of 7 with 3'-O-unprotected benzyl (2,4,6-tri-O-benzyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside (8) as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->4)-(3,6-di-O- benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl)-(1-->3)- (2,4,6- tri-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside. Replacement of the N-dimethylmaleoyl group by the acetyl group, O-debenzylation and finally O-deacetylation gave lacto-N-neotetraose. Similarly, reaction of O-[(2,3,4,6-tetra-O-acetyl-beta- D-galactopyranosyl)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-dimethylmalei mido- alpha,beta-D-glycopyranosyl] trichloroacetimidate as donor with 8 as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->3)-(4,6-benzylidene-2-deoxy-2-dimethylmaleimid o- beta-D-glucopyranosyl)-(1-->3)-(2,4,6-tri-O-benzyl-beta-D-galactopyranos yl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside. Removal of the benzylidene group, replacement of the N-dimethylmaleoyl group by the acetyl group and then O-acetylation afforded tetrasaccharide intermediate 15, which carries only O-benzyl and O-acetyl protective groups. O-Debenzylation and O-deacetylation gave lacto-N-tetraose (1). Additionally, known tertbutyldimethylsilyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)-4,6-O-benzylide ne- 2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was transformed into O-[2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-4,6-di-O-acetyl-2-deoxy-2-dimethylmaleimido-alpha,beta-D- glucopyranosyl] trichloroacetimidate as glycosyl donor, to afford with 8 as acceptor the corresponding tetrasaccharide 22, which is transformed into 15, thus giving an alternative approach to 1.  相似文献   

18.
2-Acetamino-3,4,6-tri-O-acetly-1-N-[N-(benzyloxycarbonly-l-seryl)-l-aspart-1-oyl-(p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-d-glucopyranosylamine,2-acetamido-3,4,6-tri,O-acetyl-1-N-[N-(benzyloxycarbonyl-l-seryl)-l-aspart-1-oyl-(l-alanine methyl ester)-4-oyl]-2-deoxy-β-d-glucopyranosylamine, and 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-benzyloxycarbonyl)-l-aspart-1-oyl-(l-alanyl-l-threonyl-l-leucyl-l-alanyl-l-serine p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-d-glucopyranosylamine (7), which span the amino acid sequence 17-23 of bovine pancreatic deoxyribonuclease A and contain a 2-acetamido-2-deoxy-d-glucose residue, were synthesized. On treatment with lithium hydroxide, the blocked glycohexapeptide 7 gave 2-acetamido-1-N-[N-(benzyloxycarbonyl)-l-aspart-1-oyl-(l-alanyl-l-threonyl-l-leucyl-l-alanyl-l-serine)-4-oyl]-2 deoxy-β-d-glucopyranosylamine.  相似文献   

19.
Protected sialo-containing trisaccharides, fragments of oligosaccharide chains of mucin glycoproteins, were synthesized. Regioselective sialylation of the primary hydroxyl group of (3-fluoroacetamidopropyl)-2-azido-2-deoxy-3-O-(2,3,4,6-tetra-O-ben zyl)-alpha -D-galactopyranosyl)-alpha-D-galactopyranoside with methyl ester of peracetyl-beta-ethylthioglycoside of N-acetylneuraminic acid in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid (or its trimethylsilyl ester) yielded 39 and 25% of alpha- and beta-sialyl-(2-->6)biosides, respectively. Catalytic hydrogenolysis of the azide and benzyl groups of the alpha-anomer followed by N- and O-acetylation gave target trifluoroacetamidopropyl glycoside, Neu5Ac(alpha 2-->6)[Gal(alpha 1-->3)]GalNAc alpha-OSp, as a peracetate. An analogous coupling of the sialyl donor with (3-fluoroacetamidopropyl)-2-acetamido-2-deoxy-3-O- (2,3,4,6-tetra-O-acetyl)-beta-D-galactopyranosyl)-alpha-D-galactopyranos ide affords acetylated trifluoroacetamidopropyl glycoside Neu5Ac(alpha 2-->6)[Gal(beta 1-->3)]GalNAc alpha-OSp in a yield of 15% and the corresponding Neu5Ac(beta 2-->6)-anomer in a yield of 12%. After O-deacetylation and N-detrifluoroacetylation, these sialylbiosides can be used as ligands in preparing neoglycoconjugates.  相似文献   

20.
Condensation of known benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,6-tri-O-benzyl-beta-D- galactopyranosyl)-alpha-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl chloride in dichloromethane in the presence of 2,4,6-trimethylpyridine, silver triflate, and molecular sieve 4A gave benzyl O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-(1 leads to 4)-O-(2,3,6-tri-O-benzyl-beta-D-galactopyranosyl)-(1 leads to 4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-alpha-D-glucopyranoside. Catalytic hydrogenolysis gave crystalline O-alpha-D-galactopyranosyl-(1 leads to 4)-O-beta-D-galactopyranosyl-(1 leads to 4)-2-acetamido-2-deoxy-alpha -D-glucopyranose, the human blood-group P1-antigenic determinant. A similar sequence of reactions was performed starting from allyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside, in order to prepare a derivative of this determinant suitable for linkage to carrier molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号