首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A new Penicillium ulaiense strain showed carboxymethylcellulase, pectinase, protease on skim milk and naringinase activities, but no xylanase, cellulase, lipase, amylase, protease on gelatin, and ligninase activities. Studies in liquid medium showed low quantities of pectinases. No mycotoxins were detected.  相似文献   

2.
Penicillium ulaiense exhibited carboxymethylcellulase, pectinase, protease, amylase and phenolase activities, while no xylanase, cellulase, lipase or ligninase activities were found. Pectinolytic action was studied in liquid medium, showing low levels of pectinesterase and pectinase production. No mycotoxins were detected by thin-layer-chromatography.The authors are with INIQUI, Universidad Nacional de Salta, Buenos Aires 177, 4400 Salta, Argentina  相似文献   

3.
This study on the lignocellulases in broth cultures of the basidiomycete Panus tigrinus indicates that laccase and xylanase enzymes are constitutive and cellulase is inducible. In stationary culture at 28°C, the greatest laccase and xylanase activity was observed after growth for approximately nine days. Laccase production was dependent on the presence, and the particular brand, of malt extract in the growth medium. While production of laccase was enhanced by growth at 37°C and 42°C, xylanase was not. Raising the pH of the growth medium from pH 5.6 to pH 7.0 did not affect xylanase production, but laccase production was reduced at the higher pH. In shake culture, growth was pelleted and biomass lower than in stationary culture, and synthesis of both enzymes was strongly inhibited. Cultures of P. tigrinus decolourised Poly R-478 and the toxic triphenyl methane dye, crystal violet. It was also shown to degrade a natural lignocellulosic waste, sawdust.  相似文献   

4.
Leucoagaricus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens, produces polysaccharidases that degrade leaf components by generating nutrients believed to be essential for ant nutrition. We evaluated pectinase, amylase, xylanase, and cellulase production by L. gongylophorus in laboratory cultures and found that polysaccharidases are produced during fungal growth on pectin, starch, cellulose, xylan, or glucose but not cellulase, whose production is inhibited during fungal growth on xylan. Pectin was the carbon source that best stimulated the production of enzymes, which showed that pectinase had the highest production activity of all of the carbon sources tested, indicating that the presence of pectin and the production of pectinase are key features for symbiotic nutrition on plant material. During growth on starch and cellulose, polysaccharidase production level was intermediate, although during growth on xylan and glucose, enzyme production was very low. We propose a possible profile of polysaccharide degradation inside the nest, where the fungus is cultured on the foliar substrate.  相似文献   

5.
Abstract

The present work was aimed at studying the production of lignocellulolytic enzymes, namely cellulase, xylanase, pectinase, mannanase, and laccase by a newly isolated bacterium Sphingobacterium sp. ksn-11, utilizing various agro-residues as a substrate under submerged conditions. The production of lignocellulolytic enzymes was found to be maximum at the loading of 10%(w/v) agro-residues. The enzyme secretion was enhanced by two-fold at 2?mM CaCO3, optimum pH 7, and temperature 40°. The Field Emission Gun-Scanning Electron Microscope (FEG-SEM) results have shown the degradative effect of lignocellulases; cellulase, xylanase, mannanase, pectinase, and laccase on corn husk with 3.55?U/ml, 79.22?U/ml, 12.43?U/ml, 64.66?U/ml, and 21.12?U/ml of activity, respectively. The hydrolyzed corn husk found to be good adsorbent for polyphenols released during hydrolysis of corn husk providing suitable conditions for stability of lignocellulases. Sphingobacterium sp. ksn is proved to be a promising candidate for lignocellulolytic enzymes in view of demand for enzymes in the biofuel industry.  相似文献   

6.
Several enzymes were assayed in extracts from mycelium-colonised compost during growth and fruiting of Agaricus bisporus (Lange) Imbach. Comparison of changes of enzyme levels in axenic and nonaxenic cultures and in cultures of non-fruiting strains indicated that they were associated directly with the fungal mycelium. Large changes were found in the amounts of laccase and cellulase which were correlated with fruit body development. Laccase concentration increased during mycelial growth and then declined rapidly at the start of fruiting. Cellulase activity could be detected throughout growth but increased at fruiting. No such changes were observed in xylanase, alkaline protease, laminarinase and acid and alkaline phosphatases. Activities of laccase and cellulase were measured in axenic cultures arrested at various stages of fruiting development. Such cultures showed that the changes in concentration of laccase and cellulase were associated with the enlargement of fruit bodies.  相似文献   

7.
In the present paper the effect of adding veratryl alcohol and copper sulphate on laccase activity production by Trametes versicolor immobilized into alginate beads has been investigated. Employing copper sulphate as laccase inducer or supplementing the culture medium with veratryl alcohol, led to maximum values of laccase activity. However, the highest laccase activity (around 4,000 U l−1) was obtained in cultures simultaneously supplemented with copper sulphate (3 mM) and veratryl alcohol (20 mM). These values implied a considerable enhancement in relation to␣control cultures without any inducer (around 200 U l−1). The production of laccase by immobilized T. versicolor in a 2-l airlift bioreactor with the optimized inducer has been evaluated. Laccase activities around 1,500 U l−1 were attained. The bioreactor operated for 44 days without operational problems and the bioparticles (fungus grows in alginate beads) maintained their shape throughout the fermentation. Moreover, the extracellular liquid obtained was studied in terms of pH and temperature activity and stability. On the other hand, anthracene was added in two-repeated batches in order to determine the efficiency of this process to degrade pollutants. Near complete degradation was reached in both batches. Moreover, in vitro degradation of several polycyclic aromatic hydrocarbons by crude laccase was also performed.  相似文献   

8.
Three species of botryosphaeriaceous fungi,Botryosphaeria sp. isolate MAMB-5,Botryosphaeria ribis andLasiodiplodia theobromae, were compared for the production of pycnidia and laccases. Laccases were produced both intra- and extra-cellularly when the fungi were cultivated on basal medium in the presence and absence of veratryl alcohol, withBotryosphaeria sp. MAMB-5 showing the highest enzyme titres. Electrophoretic examination of intracellular marker proteins (esterases and phosphatases) and laccases indicated that the three species were genetically distinctly different, although the laccase zymograms for the three fungi showed similarity. The production of pycnidia occurred under continuous lighting at 28°C, but conditions differed among the three fungal species. Production could be induced on artificial media (potato-dextrose and oat agar) under stress-induced conditions where the mycelium was stimulated by physical abrasion, and in the case ofBotryosphaeria sp. isolate MAMB-5 on eucalypt woodchips. Evidence is presented that veratryl alcohol facillitated the secretion of intracellular-localised laccases into the extracellular medium.  相似文献   

9.
The relationship between conidial enzymes of Penicillium expansum and spore germination was examined. The activities of xylanase and pectinase, but not of cellulase and amylase, were detected in the conidia. The levels of xylanase and pectinase were greatly enhanced by xylan and pectin as respective carbon sources in the basal medium. No conidia germinated in the basal medium without a carbon source. The type of carbon source and the enzyme levels of the conidia did not affect the rate of germination. However, a relationship was found between the enzyme levels and the elongation of the germ tubes.  相似文献   

10.
The anaerobic fungus Anaeromyces mucronatus KF8 grown in batch culture on M10 medium with rumen fluid and microcrystalline cellulose as carbon source produced a broad range of enzymes requisite for degradation of plant structural and storage saccharides including cellulase, endoglucanase, xylanase, α-xylosidase, β-xylosidase, α-glucosidase, β-glucosidase, β-galactosidase, mannosidase, cellobiohydrolase, amylase, laminarinase, pectinase and pectate lyase. These enzymes were detected in both the intra- and extracellular fractions, but production into the medium was prevalent with the exception of intracellular β-xylosidase, chitinases, N-acetylglucosaminidase, and lipase. Xylanase activity was predominant among the polysaccharide hydrolases. Extracellular production of xylanase was stimulated by the presence of cellobiose and oat spelt xylan. Zymogram of xylanases of strain KF8 grown on different carbon sources revealed several isoforms of xylanases with approximate molar masses ranging from 26 to 130 kDa.  相似文献   

11.
Summary The effect of additional nitrogen sources on lignocellulolytic enzyme production by four species of white-rot fungi (Funalia trogii IBB 146, Lentinus edodes IBB 363, Pleurotus dryinus IBB 903, and P. tuberregium IBB 624) in solid-state fermentation (SSF) of wheat straw and beech tree leaves was strain- and substrate-dependent. In general, the yields of hydrolytic enzymes and laccase increased by supplementation of medium with an additional nitrogen source. This stimulating effect of additional nitrogen on enzyme accumulation was due to higher biomass production. Only xylanase specific activity of P. dryinus IBB 903 and laccase specific activity of L. edodes IBB 363 increased significantly (by 66% and 73%, respectively) in SSF of wheat straw by addition of nitrogen source to the control medium. Additional nitrogen (20 mM) repressed manganese peroxidase (MnP) production by all fungi tested. The study of the nitrogen concentration effect revealed that 10 mM peptone concentration was optimal for cellulase and xylanase accumulation by P. dryinus IBB 903. While variation of the peptone concentration did not cause the change in MnP yield, elevated concentrations of this nutrient (20–40 mM) led to a 2–3-fold increase of P. dryinus IBB 903 laccase activity. About 10–20 mM concentration of NH4NO3 was optimal for cellulase and xylanase production by F. trogii IBB 146. However, neither the laccase nor the MnP yield was significantly changed by the additional nitrogen source.  相似文献   

12.
Summary Mutants ofXanthomonas campestris B 1459 were isolated that are defective in secretion of both cellulase and amylase. Both enzymes accumulated in the periplasmic space. The defects in secretion of cellulase or amylase were partly overcome by introducing into the mutants specific multiple copies of DNA cloned fromX. campestris, and presumed to code for cellulase or amylase enzymes. The mutant strains also showed reduced amounts of extracellular pectinase and protease activities, as if the mutants were generally defective for secretion of extracellular enzymes. The mutants showed reduced pathogenesis for turnip seedlings. The secretion-defective mutants may allow production of xanthan gum with reduced cellulose, pectin, protein and starch-degrading enzyme activities, thereby allowing more widespread mixing of microbially produced xanthan gum with these commercially important water-soluble polymers.  相似文献   

13.
The production of extracellular laccase by the Grammothele subargentea CLPS no. 436 strain in liquid cultures grown on a carbon-limited basal medium was significantly enhanced when culture conditions, including the addition of CuSO4·5H2O or veratryl alcohol, were consecutively optimized. A laccase activity as high as 1954.5 mU ml−1 of liquid medium was obtained under optimum conditions, which corresponded to non-agitated cultures supplemented with 0.6 mM CuSO4·5H2O. Veratryl alcohol at 1 mM was less effective than CuSO4·5H2O for increasing laccase activity levels; the supplementation of veratryl alcohol resulted only in maximum levels of 44 mU ml−1 in non-agitated cultures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
韩美玲  边禄森  姜宏浩  安琪 《菌物学报》2020,39(8):1538-1550
以糙皮侧耳Pleurotus ostreatus为材料,研究简单碳氮源及木质素纯品诱导条件对其木质纤维素酶活性的影响。结果表明,不同的碳源培养基和氮源培养基对糙皮侧耳漆酶活性、羧甲基纤维素酶活性和木聚糖酶活性均具有极显著的影响(P<0.001),且对糙皮侧耳菌丝生物量也有极显著的影响(P<0.001)。以蔗糖作主要碳源诱导物时,有利于提高糙皮侧耳漆酶活性;以果糖作主要碳源诱导物时,有利于提高糙皮侧耳羧甲基纤维素酶活性和菌丝生物量的积累;以葡萄糖作主要碳源诱导物时,有利于提高糙皮侧耳木聚糖酶活性。以酵母浸粉作主要氮源诱导物时,有利于提高糙皮侧耳漆酶活性和菌丝生物量的积累;以硝酸钾作为主要氮源诱导物时,有利于提高糙皮侧耳羧甲基纤维素酶活性;以硫酸铵作为主要氮源诱导物时,有利于提高糙皮侧耳木聚糖酶活性。碱性木素的存在,有利于提高糙皮侧耳漆酶活性,但不利于菌丝生物量的积累。与此同时,碱性木素的存在对糙皮侧耳羧甲基纤维素酶和木聚糖酶活性并没有促进作用。  相似文献   

15.
Summary Thirty-six thermophilic archaebacteria and nine extremely thermophilic eubacteria have been screened on solid media for extracellular amylase, protease, hemicellulase (xylanase), cellulase, pectinase and lipase activities. Extracellular enzymes were detected in 14 archaebacteria belonging to three different orders. Twelve of these were able to degrade starch and casein and the two Thermofilum strains were able to degrade starch, xylan and carboxymethylcellulose. Three of the eubacteria could degrade only starch. The other six (including four Thermotoga strains) all had activity against starch, xylan and carboxymethylcellulose, and one also had activity against casein. Some of the amylolytic archaebacteria released -glucosidase, -glucosidase, amylase and transglucosylase activities into liquid media containing starch or maltose. Thermotoga strain FjSS3B.1 released amylase, xylanase, cellulase and -glucosidase activities into the medium when grown in the presence of substrates. When the partially purified enzymes from Thermotoga and some of the archaebacteria were compared with known thermostable enzymes the majority were found to be the most thermostable of their type. The -glucosidase, xylanase and cellulase from Thermotoga and two -glucosidases, a -glucosidase, an amylase and a pullulanase from archaebacteria all have half-lives of at least 15 min at 105°C.  相似文献   

16.
The effect of several laccase activity activators,such as ethanol (novel activator), veratryl alcohol, melanin production and aeration level, on the laccase production by Trametes versicolor (CBS100.29) was investigated. The microorganism was cultivated on nylon sponge, functioning as a physical support on which the mycelium was bound. The cultures with veratryl alcohol showed maximum laccase and manganese‐dependent peroxidase (MnP) activities of 238 U/l and 125 U/l, respectively. The laccase activity found is about two times higher than that attained in the control cultures. On the contrary, MnP activity did not appear to be influenced by the addition of this alcohol. Ethanol‐supplemented cultures led to maximum laccase and MnP activity levels of about 102 U/l and 101 U/l, respectively. These activities were approx. 40% lower than those achieved in the reference cultures. The decolourization of the polymeric dye Poly R‐478 by the above‐mentioned cultures was also investigated. A percentage of biological decolourization of around 90% was achieved with control and veratryl alcohol‐supplemented cultures, whereas with ethanol‐supplemented cultures a slightly lower percentage of around 85% was reached after seven days of dye incubation.  相似文献   

17.
It has been well documented that Aureobasidium pullulans is widely distributed in different environments. Different strains of A. pullulans can produce amylase, proteinase, lipase, cellulase, xylanase, mannanase, transferases, pullulan, siderophore, and single-cell protein, and the genes encoding proteinase, lipase, cellulase, xylanase, and siderophore have been cloned and characterized. Therefore, like Aspergillus spp., it is a biotechnologically important yeast that can be used in different fields. So it is very important to sequence the whole genomic DNA of the yeast cells in order to find new more bioproducts and novel genes from this yeast.  相似文献   

18.
Summary Growth of Polyporus hirsutus on rice straw rapidly increases its susceptibility to cellulase and xylanase. Addition of ammonium sulphate to the straw (0.1 g/g) enhances cellulase and xylanase production but does not affect laccase production by the fungus although it appears to inhibit its growth.  相似文献   

19.
It was found that crude preparation obtained from the culture medium of Fusarium avenaceum degraded cellulose and xylan. After chromatography on CM-Sepharose CL-6B of this preparation six fraction were obtained. The eluted fractions II and V showed xylanase activity, fraction IV — cellulase activity and fraction III — xylanase and cellulase activity. The end products of xylan hydrolysis by all xylanase fractions (II, III, V) were xylobiose, xylose, xylotriose and xylotetrose. The end products of cellulose hydrolysis by fractions III and IV was cellobiose, glucose and cellotriose. The data from gel filtration on Sephacryl S-200 indicated a molecular weight of more than 250,000 for both cellulase IV and xylanase V. After gel filtration in the presence of urea disaggregation of those high molecular xylanase and cellulase particles was observed. Xylanase II in difference from the other fractions contained higher amount of sugar. Digestion of fraction II with cellulase-hemicellulase preparation from Phoma hibernica decreased the content of sugar from 17% to 8%, but did not change its enzymatic properties. Cellulase IV as well as xylanase V were inactivated by N-bromosuccinimide, 2-hydroxy-5-nitrobenzyl bromide and tetranitromethane, hence it is suggested that tryptophan and tyrosine are the essential for the activity of these enzymes.  相似文献   

20.
In this work, the effect on laccase activity of adding xylidine, veratryl alcohol and copper sulphate to cultures of Coriolopsis rigida under submerged cultivation conditions have been investigated. The highest activities (approximately 6 × 105 nkat/l) were obtained when the inducers copper sulphate (2 mM) and xylidine (10 mM) were added simultaneously. In addition, operating in the optimal conditions, it was possible to maintain the sustained production of laccase (around 3 × 105 nkat/l) for successive repeated batch cultures in an expanded-bed laboratory scale bioreactor. On the other hand, in vitro phenol degradation by laccase obtained in the bioreactor was studied with/without an effective mediator 1-hydroxybenzotriazol (HBT). The presence of a radical mediator plays an important role inducing the degradation of phenol, and without mediator the polymerization of phenol was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号