首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of ethylene effects on sex determination in cucumber plants   总被引:16,自引:1,他引:15  
Sex differentiation in cucumber plants (Cucumis sativus L.) appears to be determined by the selective arrest of the stamen or pistil primordia. We investigated the influence of an ethylene-releasing agent (ethephon) or an inhibitor of ethylene biosynthesis (aminoethoxyvinyl glycine) on sex differentiation in different developmental stages of flower buds. These treatments influence sex determination only at the stamen primordia differentiation stage in both monoecious and gynoecious cucumbers. To clarify the relationships between the ethylene-producing tissues and the ethylene-perceiving tissues in inducing female flowers in the cucumber, we examined the localization of mRNA accumulation of both the ACC synthase gene (CS-ACS2) and the ethylene-receptor-related genes (CS-ETR1, CS-ETR2, and CS-ERS) in flower buds by in situ hybridization analysis. CS-ACS2 mRNA was detected in the pistil primordia of gynoecious cucumbers, whereas it was located in the tissues just below the pistil primordia and at the adaxial side of the petals in monoecious cucumbers. In flower buds of andromonoecious cucumbers, only CS-ETR1 mRNA was detected, and was located in the pistil primordia. The localization of the mRNAs of the three ethylene-receptor-related genes in the flower buds of monoecious and gynoecious cucumbers overlap but are not identical. We discuss the relationship between the mRNA accumulation patterns and sex expression in cucumber plants.  相似文献   

2.
Sex determination in cucumber (Cucumis sativus L.) plants is genetically controlled by the F and M loci. These loci interact to produce three different sexual phenotypes: gynoecious (M-F-), monoecious (M-ff), and andromonoecious (mmff). Gynoecious cucumber plants produce more ethylene than do monoecious plants. We found that the levels of ethylene production and the accumulation of CS-ACS2 mRNA in andromonoecious cucumber plants did not differ from those in monoecious plants and were lower than the levels measured in gynoecious plants. Ethylene inhibited stamen development in gynoecious cucumbers but not in andromonoecious ones. Furthermore, ethylene caused substantial increases in the accumulation of CS-ETR2, CS-ERS, and CS-ACS2 mRNA in monoecious and gynoecious cucumber plants, but not in andromonoecious one. In addition, the inhibitory effect of ethylene on hypocotyl elongation in andromonoecious cucumber plants was less than that in monoecious and gynoecious plants. These results suggest that ethylene responses in andromonoecious cucumber plants are reduced from those in monoecious and gynoecious plants. This is the first evidence that ethylene signals may influence the product of the M locus and thus inhibit stamen development in cucumber. The andromonoecious line provides novel material for studying the function of the M locus during sex determination in flowering cucumbers.  相似文献   

3.
4.
5.
平基槭为杂性花,雄花与两性花同株,本文对其花性别分化过程进行了细胞形态学观察。结果发现,在花性别分化的早期,雄花和两性花的花芽中雌、雄蕊原基均具备,只是在花芽发育到一定时期,雄花的雌蕊原基发生选择性败育,败育发生在大孢子母细胞减数分裂为4个大孢子时期。两性花的雌蕊可以正常膨大结实,雄蕊花药虽然可以形成二核花粉,但不能正常开裂,属于不育雄蕊。初步分析认为,两性花雄蕊花药不能正常开裂与花粉囊壁纤维层木质化程度低有关。  相似文献   

6.
Sex determination in cucumber (Cucumis sativus L.) is controlled largely by three genes: F, m, and a. The F and m loci interact to produce monoecious (M_f_) or gynoecious (M_f_) sex phenotypes. Ethylene and factors that induce ethylene biosynthesis, such as 1-aminocyclopropane-1-carboxylate (ACC) and auxin, also enhance female sex expression. A genomic sequence (CS-ACS1) encoding ACC synthase was amplified from genomic DNA by a polymerase chain reaction using degenerate oligonucleotide primers. Expression of CS-ACS1 is induced by auxin, but not by ACC, in wounded and intact shoot apices. Southern blo hybridization analysis of near-isogenic gynoecious (MMFF) and monoecious (MMff) lines derived from divers genetic backgrounds revealed the existence of an additional ACC synthase (CS-ACS1G) genomic sequence in the gynoecious lines. Sex phenotype analysis of a segregating F2 population detected a 100% correlation between the CS-ACS1G marker and the presence of the F locus. The CS-ACS1G gene is located in linkage group B coincident with the F locus, and in the population tested there was no recombination between the CS-ACS1G gene and the F locus. Collectively, these data suggest that CS-ACS1G is closely linked to the F locus and may play a pivotal role in the determination of sex in cucumber flowers.  相似文献   

7.
Sex determination is the most widely studied subject in cucumber. The sex of cucumber plants can be monoecious, hermaphrodite, gynoecious, androecious, or andromonoecious. Besides environmental factors, three major genes, F/f, M/m, and A/a mainly govern the sex types in cucumber. Regardless of their sex all floral buds are bisexual at the early bud stage. A stage specific arrest of either stamen or carpel leads to unisexual flower development. The possible downstream product of the interaction of the sex determining genes that may directly allow the growth or selectively arrest stamen or pistil is not yet identified. Therefore, in the current study, we performed suppression subtractive hybridization using floral buds from nearly isogenic gynoecious and hermaphrodite cucumber plants and identified for the first time a cDNA homologous to nucleotide sugar epimerase. The expression level of the isolated putative nucleotide sugar epimerase is weak in female floral buds but strong in bisexual and male flowers. The weak level of the putative nucleotide sugar epimerase may be an indication for its improper functioning, which may influence stamen development in cucumber plants.  相似文献   

8.
9.
Members of the Cucurbitaceae family display a range of sexual phenotypes including various combinations of male, female, or bisexual flowers. Ethylene appears to be a key hormone regulating the sex determination process. Application of ethylene, or inhibition of ethylene action, increases or decreases the number of pistil-bearing buds, respectively. Elevated levels of ethylene production and expression of genes for ethylene biosynthesis, have been correlated with pistillate flower production. In this study, we sought to determine the effect of modified endogenous ethylene production on sex expression by constitutively expressing ACS (1-aminocyclopropane-1-carboxylate synthase), the first committed enzyme for ethylene biosynthesis, in transgenic melons (Cucumis melo L.). Most melon genotypes are andromonoecious, where an initial phase of male flowers is followed by a mixture of bisexual and male flowers. ACS melon plants showed increased ethylene production by leaves and flower buds, and increased femaleness as measured by earlier and increased number of bisexual buds. ACS melons also had earlier and increased number of bisexual buds that matured to anthesis, suggesting that ethylene is important not only for sex determination, but also for development of the bisexual bud to maturity. Field studies showed that ACS melons had earlier mature bisexual flowers, earlier fruit set, and increased number of fruit set on closely spaced nodes on the main stem. These results provide a direct demonstration of the importance of endogenous ethylene production for female reproductive processes in melon.  相似文献   

10.
郭金  杨小艳  邓洪平 《植物学报》2017,52(2):202-209
已有的资料将柃木属(Eurya)描述为严格的雌雄异株植物, 性别变异现象极为少见。目前仅在柃木(E. japonica)和钝叶柃(E. obtusifolia)等少数种类中报道过两性花的存在。近几年笔者发现细枝柃(E. loquaiana)存在性别变异现象, 性别变异株上具有不同性别类型的花。该文从单花和植株水平分析了细枝柃的性别表达特性, 并对不同类型花的花部构件生物量分配进行比较分析。结果表明, 细枝柃具有6种类型的花, 从单花水平上看, 细枝柃性别有雌性、雄性及两性3种类型; 细枝柃性别在植株水平上体现较为复杂, 有雌株, 雄株, 雌花和两性花同株, 雄花和两性花同株, 雌雄异花同株及雌花、雄花、两性花同株6种类型; 在细枝柃花部构件生物量分配中, 雄花(包括雄株花和变异株雄花)花部构件生物量分配中雄蕊生物量的分配低于雌花(包括雌株花和变异株雌花)中雌蕊生物量的分配; 两性花中, 雄蕊生物量分配低于雌蕊, 这是其优化资源分配的手段, 进而获取最大适合度收益。  相似文献   

11.
Sex determination is a crucially important developmental event that is pervasive throughout nature and enhances the adaptation of species. Among plants, cucumber (Cucumis sativus L.) can generate both unisexual and bisexual flowers, and the sex type is mainly controlled by several 1-aminocyclopropane-1-carboxylic acid synthases (CsACSs). However, the regulatory mechanism of these synthases remains elusive. Here, we used gene expression analysis, protein–DNA interaction assays, and transgenic plants to study the function of a gynoecium-specific gene, ETHYLENE RESPONSE FACTOR31 (CsERF31), in female flower differentiation. We found that in a predetermined female flower, ethylene signaling activates CsERF31 by CsEIN3, and then CsERF31 stimulates CsACS2, which triggers a positive feedback loop to ensure female rather than bisexual flower development. A similar interplay is functionally conserved in melon (Cucumis melo L.). Knockdown of CsERF31 by RNAi causes defective bisexual flowers to replace female flowers. Ectopic expression of CsERF31 suppresses stamen development and promotes pistil development in male flowers, demonstrating that CsERF31 functions as a sex switch. Taken together, our data confirm that CsERF31 represents the molecular link between female–male determination and female–bisexual determination, and provide mechanistic insight into how ethylene promotes female flowers, rather than bisexual flowers, in cucumber sex determination.

A key regulator promotes female flower development by triggering a positive feedback loop during cucumber sex determination.  相似文献   

12.
栝楼不同性别花芽分化形态解剖特征观察   总被引:1,自引:0,他引:1  
采用体视显微镜、石蜡切片和树脂切片技术对栝楼(Trichosanthes kirilowii Maxim.)不同性别花芽分化发育时期的外部形态和内部解剖结构进行了观察。结果显示,栝楼花为雌雄异株,仅有雌花、雄花两种性别分化,且雄花的发育速度明显快于雌花的发育速度。栝楼雌雄花芽长0.2 mm左右已完成性别分化;栝楼雄花为单性花,分化过程可分为6个时期,整个发育过程仅见雄蕊原基的分化及生长。栝楼雌花为"两性花",分化过程可分为7个时期,存在雌蕊和雄蕊共同发育阶段,后期雄蕊发育败退。本研究明确了不同性别栝楼花芽发育发生的各个阶段、形态变化特点、外部形态变化特征以及雌雄花芽的分化差异,建立了雌雄花芽内部结构分化与外部形态之间相关性,为栝楼早期幼苗鉴定及性别分化研究提供了一定的参考。  相似文献   

13.
Cucurbita pepo L. cv. Trailing Marrow is monoecious, bearing separate male and female flowers and the first functional flowers are usually male. Treatment with 300 ppm ethephon delayed and greatly reduced male flower production and also increased female flower numbers. When plants were sprayed with aminoethoxyvinylglycine (AVG) no female flowers were produced but male flower production was unaffected. Even when ethephon was applied to AVG-treated plants there was still complete inhibition of female flower production. Similarly, AVG-treated plants subsequently exposed to 4000 ppm ethylene for two days never produced female flowers. AVG inhibits the penultimate stage in ethylene biosynthesis i.e. immediately before 1-aminocyclopropane-1-carboxylic acid (ACC). Although spraying AVG-treated plants with ACC did not reverse the inhibition, application of ACC via a cut petiole for a 72 h period following AVG application did cause female flowers to form. The evidence indicates that ACC and not ethylene is the factor controlling female flower production in C. pepo .  相似文献   

14.
15.
16.
Application of ethephon to field-grown plants of both bush andtrailing forms of Cucurbita maxima and C. pepo caused leaf epinasty,suppression of male flowers and earlier production and increasein numbers of female flowers. This gave rise to an increasein the ratio of female to male flowers per plant and a decreasein the total number of flowers. Observations of C. pepo showed that even at the two true leafstage there are several nodes present in the unexpanded shoot.Each node has one main and several secondary buds. The sex ofthe main bud at the first five to six nodes is usually determinedat this stage but the secondary buds still have bisexual potential.The change in sex expression was brought about by all male flowerbuds that had formed by the spraying time aborting, and allbuds that developed (both main and secondary) for at least 7days after spraying became female flowers. Thus, nodes fiveand six had male flowers in the controls, whereas in ethephon-sprayedplants the presumptive male flowers aborted at the bud stageat these nodes and secondary primordia developed into functionalfemale flowers. Cucurbita maxima, Cucurbita pepo, sex expression, ethephon, ethylene, flower abortion, flower differentiation  相似文献   

17.
A number of Cucurbita pepo genotypes showing instable monoecy or partial andromonoecy, i.e. an incomplete conversion of female into bisexual flowers, have been detected. Given that in melon and cucumber andromonoecy is the result of reduction of ethylene production in female floral buds, caused by mutations in the ethylene biosynthesis genes CmACS7 and CsACS2; we have cloned and characterized two related C. pepo genes, CpACS27A and CpACS27B. The molecular structure of CpACS27A and its specific expression in the carpels of female flowers during earlier stages of flower development suggests that this gene is the Cucurbita ortholog of CmACS7 and CsACS2. CpACS27B is likely to be a paralogous pseudogene since it has not been found to be expressed in any of the analyzed tissues. CpACS27A was sequenced in Bolognese (Bog) and Vegetable Spaghetti (Veg), two monoecious inbred lines whose F2 was segregating for partial andromonoecy. The Bog allele of CpACS27A carried a missense mutation that resulted in a substitution of the conserved serine residue in position 176 by an alanine. Segregation analysis indicated that this mutant variant is necessary but not sufficient to confer the andromonoecious phenotype in squash. In concordance with its involvement in stamen arrest, a reduction in CpACS27A expression has been found in bisexual flower buds at earlier stages of development. This reduction in CpACS27A expression was concomitant with a downregulation of other ethylene biosynthesis and signaling genes during earlier and later stages of ovary development. The role of CpACS27A is discussed regarding the regulation of ethylene biosynthesis and signaling genes in the control of andromonoecy-associated traits, such as the delayed maturation of corolla and stigma as well as the parthenocarpic development of the fruit.  相似文献   

18.
It is well established that ethylene is the main hormonal regulator of sexual expression in the Cucurbitaceae family, controlling not only the sexual fate of individual floral buds, but also the female flower transition, that is, the time at which the first female flower appears and therefore the number of female flowers per plant. Although sex determination of individual flower buds is known to be controlled by specific ethylene biosynthesis ACS genes in melon and cucumber, the role of ethylene genes in the control of the transition to female flowering is still unknown. We have identified two contrasting monoecious inbred lines of Cucurbita pepo, Bolognese (Bog) and Vegetable spaghetti (Veg), which differ in female flower transition but not in flower development. In Bog, which is very sensitive to ethylene, the transition to female flowering is very early, whereas in Veg, which is much less sensitive to ethylene, the transition occurs much later. In this article we compare the production of ethylene and the expression profiles of seven genes involved in the biosynthesis, perception, and signalling of ethylene in the two contrasting lines. Bog, with earlier female flower transition, showed higher ethylene production and CpACO1 expression in the apex at an earlier stage of plant development, when Bog is already producing female flowers, but Veg has not transitioned to female flowering yet. Moreover, the expression of the ethylene receptor and CTR-like genes in the apex of Veg and Bog plants indicates that these genes negatively regulate female flower transition during the earlier stages of plant development. The earlier transition to female flowering in Bog is not only associated with a higher production of ethylene in the apex but also with a premature decline of ethylene negative regulators (receptors and CTR-like) in the apex of the plant. These results provide the basis for a model that explains the regulation of female flowering transition in monoecious cucurbits.  相似文献   

19.
Photoperiod and the plant hormone, ethylene, modify sex expression of flowers in cucumber (Cucumis sativus L.). In the present study, femaleness of cucumber occurred under short‐day (8 h photoperiod) conditions compared to that under long‐day (16 h photoperiod) conditions, although the effect of photoperiod was more pronounced in a monoecious than in an andromonoecious cucumber. Application of ethylene had a greater effect than photoperiod on the production of female and bisexual flowers in monoecious and andromonoecious cucumbers, respectively. Ethylene evolution and the expression of CS‐ACS2, CS‐ACS4 and CS‐ERS genes in the shoot apices of both monoecious and andromonoecious cucumber plants had a diurnal rhythm with a peak in the middle of an 8 h or a 16 h light period. Peak ethylene evolution and expression of CS‐ACS2 was greater under short‐day conditions than under long‐day conditions in a monoecious cucumber but not in an andromonoecious one. Expression of CS‐ACS4 in monoecious and andromonoecious cucumber plants did not differ, but the level was higher under short‐day conditions compared with that under long‐day conditions. Thus, CS‐ACS2 and CS‐ACS4 might be involved in the basic diurnal rhythm of ethylene evolution in cucumber. Because exogenous ethylene increased the expression of CS‐ACS2 and CS‐ERS in monoecious cucumber possessing the M locus, but not in andromonoecious cucumber in which the function of the M locus was lost (Yamasaki et al. Plant and Cell Physiology 42, 608–619, 2001), the CS‐ACS2 gene might also be involved in ethylene production by positive feedback via regulation of M locus under short‐day conditions.  相似文献   

20.
Comparative studies are made on floral morphology and anatomy of female and male flowers of Pittosporum tobira. The two types of flower differ little from each other in structure at the early stage of floral development, but appear dimorphic towards anthesis. The male flower becomes cryptically bisexual, although its pistil is slender compared to that of the female flower. The stigmas of the male flower are receptive and can induce pollen germination. The structure of the style in the male flower is identical to that in the female flower. Ovules are produced on the protruded parietal placenta in the male flower, but their development is arrested at the stage of the 4–nucleate embryo sac. The female flower is clearly unisexual, with obviously aborted and sagittate anthers. Its pistil is rather plump and can produce darkish red seeds immersed in sticky pulp. The male and female flowers are similar in vascular anatomy. A conspicuous difference between the two types of flower lies in the stamens. Variation of sexual organs in the genus Pittosporum is reviewed. We assume that the flowers of Pittosporum are derived from the hermaphrodite-flowered ancestor and the female flower has become unisexual through partial reduction of sexual organs at a faster rate than the male flower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号